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Improving the Kruskal—
Katona Bounds for Complete
Subgraphs of a Graph

Robert Cowen

An important problem in graph theory is to find the number of
complete subgraphs of a given size in a graph. If the graph is very
large, it is usually only possible to obtain upper bounds for these
numbers based on the numbers of complete subgraphs of smaller
sizes. The Kruskal-Katona bounds are often used for these
calculations. We investigate these bounds in specific cases and
study how they might be improved.

Introduction

Graph theory has many interesting problems that lend themselves to computer investigation.
Mathematica has many graph theory functions that can enable these investigations. We shall
introduce the reader to Mathematica’s graph theory capability while investigating a problem
in extremal graph theory. Extremal graph theory tries to find graphs satisfying certain
extreme properties—for example, having the most triangles for a fixed number of edges.

We first introduce some basic graph theory concepts and show how to represent them in
Mathematica. Formerly, most graph theory functions were contained in the Combinatorica
package; however, this graph theory functionality has, for the most part, been absorbed by
the main program, making it unnecessary to load this package.

Graph Theory Basics

A finite graph g consists of two finite sets, V and E. The elements of the set V are called
vertices and the elements of the set E consist of (unordered) pairs of vertices called edges.
We often write g = (V, E). A graph g; = (Vy, E;) is called a subgraph of graph g if
V1 c Vand E| C E; that is, if each vertex in the subgraph g, is also a vertex in the graph g
and each edge of the subgraph g, is also an edge of the graph g.
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Graphs are often depicted as points (the vertices) and line segments (the edges)
that join pairs of vertices in E. Thus, to draw the graph g consisting of the five labeled
vertices V = {1, 2, 3,4, 5} and with edge set E being all pairs of vertices, we enter the
following command.

g = CompleteGraph[5, VertexLabels » Automatic]

5

This graph is known as the complete graph on five vertices and denoted by K.

In general, K, denotes the complete subgraph on n vertices, that is, the graph with vertex
set{1,2,3, ..., n} and edge set consisting of all pairs of elements of V.

The complement of the graph g = (V, E) is the graph having the same set of vertices V and
whose edges are exactly those pairs of vertices of V that do not belong to E. Thus, the
graph complement of the complete graph g = K5 has no edges at all.

GraphComplement [g]
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Mathematica can also add vertices to an already existing graph. This adds two vertices
labeled A and B to the graph g.

gl = VertexAdd[g, {A, B}]

B
o

This is how to add edges to graph g;. (The symbol “s—" can be entered from the keyboard
using the Esc key; press Esc, type u and e, then press Esc again.)

g2 = EdgeAdd[gl, {A+<1, Ae<2, Ae+3, Ae<4, Bee1, B2,
B —3}]

Vertices and edges can be deleted with the commands VertexDelete and EdgeDelete.
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Another useful operation, VertexContract, contracts a set of vertices into one vertex.
For example, this contracts the graph g, by contracting the vertices labeled A and B into a
single vertex.

VertexContract[g2, {A, B}]

o The Number of Complete Subgraphs of a Graph

An important problem in graph theory is to find the number of complete subgraphs (or
cliques) of a graph. For example, find the number of cliques of a certain size in a large
social network graph. Here, the people are the vertices, an edge joins two people who
know each other and a clique consists of people who all know each other; that is, they
form a complete subgraph.

There is a dual version of this problem, equally important, that asks for the number of inde-
pendent sets of a graph. A set of vertices is independent in the graph g if there are no
edges of g connecting the vertices in the set. (Clearly, a set of vertices of g is independent
if and only if they form a complete graph in the complement of g.)

We consider next how to compute the number of complete subgraphs exactly for small
graphs and how one might obtain useful upper bounds for larger graphs.

Given K7, it is easy to determine how many complete subgraphs there are having, say,
four vertices; the answer is the number of ways to choose four of the seven vertices,
since for each such choice, all edges between the chosen vertices are also present in
the original graph. The number of ways to choose four out of seven objects is just the

binomial coefficient ( Z )

Binomial[7, 4]

35
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However, if the graph is not a complete graph, it is not so easy to determine how many
complete subgraphs of a certain size it contains. We turn to this problem next.

Consider the graph g, previously defined.

g2

Suppose we want to know how many K, subgraphs g, contains. We start with the list of
its vertices.

V2 = VertexList[g2]
{1, 2, 3, 4, 5, A, B}

Next, we form the set of all subsets of size four of this set.

S2 = Subsets[V2, {4}]

({1, 2, 3, 4}, {1, 2, 3, 5}, {1, 2, 3, A},

{1, 2, 3, B}, {1, 2, 4, 5}, {1, 2, 4, A}, {1, 2, 4, B},
{11 2’ 5’ A}’ {1’ 2’ 5’ B}’ {1’ 2’ AI B}l {11 3’ 4’ 5}’
{1I 3’ 4’ A}’ {1I 3’ 4’ B}’ {1I 3’ 5I A}’ {1I 3' 5' B}I
{ll 3’ A’ B}’ {1’ 4’ 5’ A}I {1’ 4’ 5’ B}l {11 4’ AI B}l
{1l 5’ AI B}’ {ZI 3’ 4’ 5}’ {2I 3’ 4' A}’ {2I 3' 4' B}I
{2I 3’ 5’ A}’ {2’ 3’ 5’ B}l {2’ 3’ AI B}l {21 4’ 5’ A}I
{21 4’ 5’ B}I {2’ 4’ AI B}I {2, 5’ AI B}I {31 4’ 5/ A}l
{3, 4, 5, B}, {3, 4, A, B}, {3, 5, A, B}, {4, 5, A, B}}
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Here is an example of a subset of vertices that generates a complete graph in g5.
CompleteGraphQ[g2, {1, 2, 3, 5}]

True

We now wish to repeat this calculation for all the subsets of size four.
tf = Table [CompleteGraphQ[g2, S2[[i]]], {i, Length[S2]}]
{True, True, True, True, True, True, False, False, False,
False, True, True, False, False, False, False, False, False,

False, False, True, True, False, False, False, False, False,
False, False, False, False, False, False, False, False}

Finally, we count the number of times True occurs in t£.

Count[tf, True]

10

Let «(g, r) be the number of complete subgraphs with r vertices contained in the graph g.
The following program implements «(g, r).

CountCompleteSubgraphs[g_, r_] :=
Count [CompleteGraphQ[g, #] & /@ Subsets[VertexList[g], {r}],

True]

Let us count the number of times K3, K4 and K5 occur in the graph g»; that is, we calculate
k(g,3),«(g,4) and «(g, 5).

CountCompleteSubgraphs[g2, #] & /@ {3, 4, 5}

(19, 10, 2}
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o Bounding the Number of Complete Subgraphs of a Graph

Suppose we know that a certain graph g satisfies (g, 3) < 19. Can we determine the maxi-
mum of (g, 4)? Surely, g can have no K, subgraphs; that is, x(g, 4) = 0, as in this example.

WheelGraph[20]

However, the example g, has been shown to have 19 K3 subgraphs and 10 K4 subgraphs.

In fact, we have shown in a joint paper [1] that for all graphs g with «(g, 3) < 19, the maxi-
mum value of «(g, 4) is 10.

The following definition, due to Bollobds [2], is useful in what follows.
Definition

If 2 <p<r, then k.(k, < x) is the maximum number of K, subgraphs that a graph can
have if the number of its K}, subgraphs is less than or equal to x.

Thus, using this notation, we have shown in [1] that k4(k3 < 19) = 10.
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B A Closely Related Problem

Suppose now that the number of triangles a graph can have is fixed and we want to deter-
mine the graph with the fewest edges that can have that many triangles.

For example, suppose we want a graph having 23 triangles with the fewest possible edges.
Our intuition is to look for graphs that are “tightly packed,” that is, as close to complete
graphs as possible. K¢ has 20 triangles and K7 has 35. So let us start by adding a vertex A

to K¢ and then add three edges from A to three of the vertices of Kg. This adds (; ) =3

new triangles.

h =
EdgeAdd [
VertexAdd [CompleteGraph[6, VertexLabels » Automatic], A],
{A—1, A—2, A 3}]

CountCompleteSubgraphs[h, 3]

23
CountCompleteSubgraphs[h, 2]
18

That shows that a graph with 23 triangles can be gotten with just 18 edges. Is there a
graph with fewer edges that has 23 K3 subgraphs?

The next theorem is due to Erdos and Hanani (see [3]).
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Theorem

If a graph has x edges, where x = ( ; ) +( i) and s is chosen as large as possible, then
N t
iosn=()4{.1)

If the number of edges is x = 18, then since 18 = (6)+(?) the theorem says that
ks(ky < 18) = (§)+ ( ;) = 23; that is, the maximum number of K3 subgraphs in a graph
with 18 edges is 23.

Is there a graph with fewer edges and 23 triangles? To answer this question, we can use
the Erdos—Hanani theorem to compute the various maximum numbers of triangles with
fewer edges. The program ErdosHanani gives the maximum number of triangles for a
given number of edges, as determined by the Erdos—Hanani theorem; the table computes
these values for edge numbers between three and 18.

ErdosHanani[x_] := Module]
{s=2, t=1, x1},
While[Binomial[s, 2] < x, s++];
s=s-1;
x1 = x-Binomial[s, 2];
If[x1-==0, t=0, t=x1];
Binomial[s, 3] +Binomial[t, 2]

]

number maximum
of edges number of

triangles
3 1
4 1
5 2
6 4
7 4
8 5
9 7
10 10
11 10
12 11
13 13
14 16
15 20
16 20
17 21
18 23

We see from the table that there is no graph with fewer than 18 edges having 23 triangles.
Hence the fewest edges needed to produce a graph with exactly 23 triangles is indeed 18.
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B The Kruskal-Katona Bound

If we specify the number of triangles rather than the number of edges a graph can have,
computing the maximum numbers of larger complete graphs is not as simple as in the pre-
vious section. Exact maximum numbers are not known in most cases, only upper bounds.

A well-known theorem of extremal graph theory (proved independently by Kruskal [4]
and Katona [5]) can provide an upper bound for «(g, r), given (g, p), p < r. In fact, the
Kruskal-Katona result is for more general objects than graphs, but we will only be using
it for graphs and only when p = 3; that is, we specify how many triangles a graph g can
have and want to bound (g, r) for some r > 3.

Theorem

t
2
sen in order and to be as large as possible at the time of choosing. Then for r>3,

k- (k3 Sx)s(i)+(ri1)+(rﬁz).

For example, if the number of triangular subgraphs of g is 19 = (§)+ ( 3 ) + ( ? ), then

the Kruskal-Katona upper bounds for (g, 4) and «(g, 5) are (i)+ ( 4 ) + ( 3) =12 and

3(2)+()-5 o

To use this theorem in Mathematica, we first need to express x as the binomial sum,

Suppose a graph g has x triangles, where x = ( ; ) +( ) +( th ) where each of s, t, u is cho-

xX= (;)+(£)+(?).Given x, the function KK 3 finds the numbers s, ¢, u.
KK3[x_] := Module[

{s=3,t=2,u=1, x1},
While[Binomial[s, 3] < x, s++];
S--j;

x1 = x - Binomial[s, 3];

If[

x1==0,

t=1,

While[Binomial[t, 2] <x1, t=t+1]
17

t--;
u = x1 -Binomial[t, 2];
{s, t, u}
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KK3[19]

{5, 4, 3}

Next, we define the functions K4K3 and K5K3, the Kruskal-Katona upper bounds for

k(g,4) and (g, 5), given that (G, 3) = x.

K4K3[x_] := Module][
{SI tl u}l
{s, t, u} =KK3[x];

Binomial[s, 4] +Binomial[t, 3] + Binomial[u, 2]

]

K5K3[x_] := Module[
{SI tl u}l
{s, t, u} =KK3[x];

Binomial[s, 5] +Binomial[t, 4] + Binomial[u, 3]

]

Here are the results for 19 triangles.
{K4K3[19], K5K3[19]}

(12, 3}

Thus, ks(ks < 19) < 12 and ks(k; < 19) < 3.

Here again is the graph g, with 19 triangles. It has 10 K, subgraphs and two K5 subgraphs.

g2
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CountCompleteSubgraphs[g2, #] & /@ {3, 4, 5}
{19, 10, 2}

As mentioned, we proved in [1] that k4(k3 < 19) = 10 and ks(k3 < 19) = 2.
Finding k.(k3 < x) exactly is often very difficult and results are not known in most cases.

However, if there is a graph g with x triangles, x = ( ; ) + ( ; ) + ( th ) with k(g,7) = (i) +

(r_t | ) + ( . i‘ ’ ) (the Kruskal-Katona bound), then k,(k3 < x) = k(g, r). Complete graphs

are obvious examples. Also, as remarked in [2], if the number of triangles x = ( ; ) + ( ; )

we define the graph % by adding to K a single vertex A and ¢ edges joining A to t vertices

of K;; then k. (ks < x) = «(h, r) = (i)+ ( r_t | ) (the Kruskal-Katona bound). For exam-
7 4

ple, suppose x = 3 + )= 41. We construct such a graph, A;.

hl =
EdgeAdd [
VertexAdd [CompleteGraph[7, VertexLabels » Automatic], A],
{A—1,A—2, Ae—3, Ae—4}]

A

CountCompleteSubgraphs[hl, #] & /@ {3, 4, 5}

(41, 39, 22}
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{K4K3[41], K5K3[41]}
(39, 22}

Thus, k4(k; < 41) = 39 and k5(kz < 41) = 22.
Next, we find those numbers of triangles for which this construction works; that is, the
third entry in their binomial representation is 0.

thirdEntryZero[x_] := Select[Range[x], KK3[#][[3]] == 0 &]

thirdEntryZero[100]

{1, 2, 4, 5,7, 10, 11, 13, 16, 20, 21, 23, 26, 30, 35, 36, 38,
41, 45, 50, 56, 57, 59, 62, 66, 71, 77, 84, 85, 87, 90, 94, 99}

Also, it is not difficult to see that if x = (; ) + ( ; ) + ( i ), the Kruskal-Katona bound is

the same as for (; ) + ( ;) (since (i}) = 0 for w > 1). So the list of the numbers of trian-

gles x for which k4(ks < x) is known can be expanded. Here are the known values for the
first 100 positive integers.

known = Union[thirdEntryZero[100], thirdEntryZero[100] + 1]
(1, 2,3,4,5,6, 7,8, 10, 11, 12, 13, 14, 16, 17, 20, 21,
22, 23, 24, 26, 27, 30, 31, 35, 36, 37, 38, 39, 41, 42,

45, 46, 50, 51, 56, 57, 58, 59, 60, 62, 63, 66, 67, 71,
72, 77, 78, 84, 85, 86, 87, 88, 90, 91, 94, 95, 99, 100}

This leaves the following numbers of triangles up to 100 still unknown.
unknown = Complement [Range[100], known]
{9, 15, 18, 19, 25, 28, 29, 32, 33, 34, 40, 43, 44,

47, 48, 49, 52, 53, 54, 55, 61, 64, 65, 68, 69, 70, 73,
74, 75, 76, 79, 80, 81, 82, 83, 89, 92, 93, 96, 97, 98}
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We have in fact settled (see [1]) the cases x = 9, 15, 18, 19 (where k4(k; < x) = 2,6, 9, 10,
respectively). We add these cases to the list of the known values.

known ' = Union[known , {9, 15, 18, 19}]

{1, 2, 3, 4,5, 6,7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18,
19, 20, 21, 22, 23, 24, 26, 27, 30, 31, 35, 36, 37, 38, 39,
41, 42, 45, 46, 50, 51, 56, 57, 58, 59, 60, 62, 63, 66, 67,
71, 72, 77, 78, 84, 85, 86, 87, 88, 90, 91, 94, 95, 99, 100}

And these are the unknown values of k4(k3 < x) for x < 100.
unknown ' = Complement [Range[100], known ']

{25, 28, 29, 32, 33, 34, 40, 43, 44, 47, 48,
49, 52, 53, 54, 55, 61, 64, 65, 68, 69, 70, 73, 74,
75, 76, 79, 80, 81, 82, 83, 89, 92, 93, 96, 97, 98}

We had started listing the integer sequence a; = k4(k3 < i) (see [6]), and the preceding re-
sults can be used to add to this sequence; for example, the first term of the sequence,
as = 1 (when there are four triangles allowed, the graph has at most one Kj); the sequence
continued up to ayy = 15. Since we now know the consecutive values up to a4, we can
add four more consecutive values: a; = 15, axy = 15, a3 = 16, a4 = 16. Our conjecture
in the next section implies that as = 16. Other selected values of the sequence can obvi-
ously also be obtained, given that we know so many of the first 100 cases.

B Almost Complete Graphs and Turan Graphs

We have used complete graphs in building the maximal examples. However, even if we
remove an edge from a complete graph, the number of K, subgraphs in this new graph
grl is the same as the Kruskal-Katona bound based on the number of K3 subgraphs
(calculated by K4K3 [grl]), as the following computation shows. (This can also be estab-
lished with a simple argument that we omit.)

grl[k_] :=

EdgeDelete[CompleteGraph[k, VertexLabels -» Automatic],
{1e—2}]
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grl[6]

k number of K4 K4K3
subgraphs bound

5 2 2
6 9 9
7 25 25
8 55 55
9 105 105
10 182 182
11 294 294
12 450 450
13 660 660
14 935 935
15 1287 1287

In fact, even if we remove several edges from a complete graph, as long as they share a
common vertex, the number of K4 subgraphs in the resulting graph g and the Kruskal-Ka-
tona bound (based on the number K4K3 [g] of K3 subgraphs) remain the same, as the
reader can easily check with Mathematica. However, if we remove two edges that do not
share a common vertex, this is no longer the case, as the following computations show.

DeleteTwoEdges[k_] :=
EdgeDelete[CompleteGraph [k, VertexLabels » Automatic],
{1e—2, 3—4}]
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DeleteTwoEdges [7]

7
1 6

5
k Ks Ky K4K3
subgraphs subgraphs bound
6 12 4 5
7 25 16 17
8 44 41 42
9 70 85 86
10 104 155 156
11 147 259 260
12 200 406 407
13 264 606 607
14 340 870 871
15 429 1210 1211

This time, the number of K, subgraphs is one less than the K4K3 upper bound! These
graphs are also Turan graphs. The Turan graph 7(n, k) is the graph formed by partitioning
a set of n vertices into k subsets with sizes as equal as possible (differing by at most 1) and
connecting two vertices by an edge if and only if they belong to different sets of the parti-
tion. The built-in Mathematica function TuranGraph [n, k] draws this graph. For ex-
ample, T(n, k) partitions the vertices {1, 2, 3,4, 5} into the subsets {1, 2}, {3, 4}, {5}; the
edge 1 «— 2 is omitted since it would connect vertices in the same subset, {1, 2}; 3 « 4 is
omitted since it would connect vertices in the same subset {3, 4}.
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TuranGraph[5, 3, VertexLabels -» Automatic]

2 4

The graphs T(k, k — 2) are especially interesting to us as they are the same as the graphs
DeleteTwoEdges [k], defined before. It may not be immediately apparent that
TuranGraph[9, 7] is the same graph as DeleteTwoEdges [9]; however, if we
chose the right GraphLayout for the Turan graph, it becomes rather obvious.

TuranGraph[9, 7, GraphLayout -» "CircularEmbedding"]

In addition, IsomorphicGraphQ can always be used to check.
IsomorphicGraphQ[DeleteTwoEdges[9], TuranGraph[9, 7]]

True

Therefore, for the Turan graph 7(k, k — 2), the actual number of K, subgraphs is just one less
than the Kruskal-Katona bounds! Do these graphs provide the true maximum values of K,
subgraphs based upon the number of their triangles? We conjecture below that they do for
k > 6. In addition, it is not hard to show that the number of triangles in 7(k, k—2) is

17
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4(k—4)+4(k_4)+(k_4

2 3
{3, 4}, {5}, {6}, ..., {k}; then consider all possible ways of choosing three elements from these
sets without choosing two elements from the same set.) This expression can be simplified.

). (This follows because the vertex sets of T(k, k — 2) are {1, 2},

Factor[4 (k-4) + 4 Binomial[k -4, 2] + Binomial[k -4, 3]]
1

— (-4+k) (-2+k) (3+k)

6

The sequence of these triangle numbers for the graphs 7(k, k —2) is the same (with an
offset) as the sequence A000297 in [7]. (We recently added a comment to this entry that
mentions this.)

Conjecture

If k> 6, the Turan graph T(k, k—2) has the maximum number of K, subgraphs for any
graph with 1 /6 (k + 3) (k — 2) (k — 4) triangles.

B Finding Maximal Examples

Mathematica has a large database of graphs accessible with the function GraphData.

We wish to find maximal examples, that is, graphs that have the greatest number of K4
subgraphs for their number of triangles. We make this precise with the following defi-
nition. A graph g is a K4-maximal graph with respect to K3 subgraphs if it has the greatest
number of K, subgraphs for any graph with the same number of K3 subgraphs (triangles) as
g. We believe that these K4-maximal graphs are “tightly packed” and thus have a relatively
small number of vertices given their number of triangles. Suppose first we wish to find all
the Ks-maximal graphs with exactly nine triangles. The Kruskal-Katona bound is three.

K4K3[9]

3
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However, the maximal number of K, subgraphs is really two, that is, k4(ks < 9) = 2 (see
[1]). We first look for examples in the set of nonisomorphic graphs with six vertices, that
is, subgraphs of K.

GraphData[6]

({6, 12}, {6, 13}, {6, 14}, {6, 16}, {6, 19}, {6, 21}, {6, 24},
{6, 25}, {6, 28}, {6, 29}, {6, 32}, {6, 33}, {6, 39}, {6, 41},
{6, 42}, {6, 44}, {6, 45}, {6, 49}, {6, 51}, {6, 53}, {6, 55},
{6, 57}, {6, 59}, {6, 60}, {6, 61}, {6, 65}, {6, 66},

{6, 67}, {6, 69}, {6, 70}, {6, 71}, {6, 72}, {6, 73},

{6, 74}, {6, 75}, {6, 76}, {6, 77}, {6, 78}, {6, 79},

{6, 80}, {6, 81}, {6, 82}, {6, 83}, {6, 84}, {6, 86},

{6, 88}, {6, 90}, {6, 92}, {6, 95}, {6, 96}, {6, 97},

{6, 99}, {6, 100}, {6, 101}, {6, 102}, {6, 103}, {6, 104},
{6, 105}, {6, 106}, {6, 108}, {6, 109}, {6, 110}, {6, 111},
{6, 112}, {6, 114}, {6, 120}, {6, 122}, {6, 123}, {6, 124},
{6, 125}, {6, 127}, {6, 128}, {6, 129}, {6, 130}, {6, 133},
{6, 135}, {6, 136}, {6, 137}, {6, 138}, {6, 139}, {6, 140},
{6, 141}, {6, 144}, {6, 148}, {6, 149}, {6, 150}, 2C3,
2P2+2K1, 2P2+K1,3, 2P3, AGraph, AntennaGraph, {Barbell, 3},
{BiggestLittlePolygon, 6}, {BlackBishop, {3, 4}}, C3+3K1,
C3+P2+K1, C3+P3, C4+2K1l, C4+P2, C5+K1, {Complete, 6},
{CompleteBipartite, {2, 4}}, {CompleteTripartite, {1, 1, 4}},
{CompleteTripartite, {1, 2, 3}}, {Cone, {3, 3}}, CrossGraph,
{Cycle, 6}, DominoGraph, EGraph, {Empty, 6}, {Fan, {1, 5}},
{Fan, {2, 4}}, FishGraph, {HamiltonLaceable, {6, 1}},
{Hexahedral, 3}, {Hexahedral, 4}, {Hexahedral, 5},

HGraph, K1,1,3+K1, K1,4+K1, K2,3+K1, K4+2K1,

K4-e+2K1l, K5+K1, {King, {2, 3}}, {LadderRung, 3},

{Lollipop, {4, 2}}, {Lollipop, {5, 1}}, MothGraph,

NetGraph, OctahedralGraph, P2+4K1l, P2+K1,3, P2+K4,

P2+K4-e, P3+3K1l, P3+P2+K1l, P4+2K1l, P4+P2, P5+K1,

{Pan, 5}, {Path, 6}, {Polyiamond, {4, 1}}, {Prism, 3},
{Queen, {2, 3}}, RGraph, {Star, 6}, {Tadpole, {3, 3}},
{Tadpole, {4, 2}}, {Tree, {6, 2}}, {TriangularGrid, 2},
{Turan, {6, 5}}, UtilityGraph, W5+K1l, {Wheel, 6}}
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Here is the first such graph.

GraphData@{6, 12}

We apply GraphData to each entry to get the graphs themselves but suppress the
large output.

graphdata6 = GraphData /@ GraphData[6];
Within those, we next search for graphs with nine triangular subgraphs. There is only one.

triangles[6, 9] =
Select [graphdata6, CountCompleteSubgraphs[#, 3] =9 &]
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We attach labels to the vertices of this graph for later use.

gr2 = Graph[EdgeList [First@triangles[6, 9]],
VertexLabels -» Automatic]

3

This graph gr2 has two K4 subgraphs.

CountCompleteSubgraphs[gr2, 4]

Hence gr2 is a K4,-maximal example (see [1]).
This graph embedding is also extremal in another way; see [8].

We search for examples in the set of graphs with seven vertices, using the command
GraphData([7], which lists all non-isomorphic graphs with seven vertices. (If k> 7,
GraphData [k] only lists some of the graphs with k vertices). GraphData[7] has
1044 entries, so the result is not immediate.

graphdata7 = GraphData /@ GraphData[7];

There are 35 examples of graphs with seven vertices and nine triangular subgraphs.

triangles[7, 9] =
Select[graphdata7, CountCompleteSubgraphs|[#, 3] == 9 &];

Length[%]

35
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To see the individual graphs, we use Mathematica’s built-in function Manipulate,
where, in addition to the graph, the number of K, subgraphs of the graph is listed.

Manipulate|[
Texte
Column [
{Show[triangles[7, 9] [[u]], ImageSize » {250, 250}],
Spacer[20],
Row[{"number of ", Style["K", Italic],, " = ",
CountCompleteSubgraphs[triangles[7, 9] [[u]l], 4]}]
}, Alignment - Center],
{{u, 1, ""}, 1, 35, 1, Appearance - "Labeled"},
SaveDefinitions -» True]

GU 1

number of K4 =2
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We suspect that one of the K4-maximal graphs in triangles[7, 9] is really a simple
modification of the single K4-maximal graph with six vertices found in GraphData [6];
that is, the graph plus an edge. (We obviously do not want to add a triangle!) Stepping
through the Manipulate, graph number 22 is easily seen to be that graph.

g3 = triangles[7, 9][[22]]

We then add the edge A « 4 to the graph gr2 found in GraphData [6] and finally, use
IsomorphicGraphQ to verify that they are indeed isomorphic.

gr3 = EdgeAdd[VertexAdd[gr2, A], A — 4]

3

IsomorphicGraphQ[g3, gr3]

True
Next, suppose we want to find the K4-maximal graphs with 19 triangles. Although K¢ has
( 3 ) = 20 triangles, if we remove even one edge from Kg, the resulting graph has only 16

triangles! Hence, there are no subgraphs of K¢ with exactly 19 triangles. However K7 has

(; ) = 35 triangles; thus it is reasonable to search GraphData [ 7] for examples.
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triangles[7, 19] =
Select [graphdata7, CountCompleteSubgraphs[#, 3] == 19 &]

Sometimes there are hidden edges in graph drawings in Mathematica; the graph in the mid-
dle is a case in point (the edge from the center top to center bottom vertices cannot be
seen). We therefore redraw the graphs, setting the option GraphLayout.

Graph[EdgeList [#], VertexLabels -» "Name",
GraphLayout -» "CircularEmbedding"] & /@ triangles[7, 19]

We now ask for the number of K, subgraphs and the number of K5 subgraphs in these graphs.
CountCompleteSubgraphs[#, 4] & /@triangles[7, 19]

{10, 10, 10}
CountCompleteSubgraphs[#, 5] & /@ triangles[7, 19]
{2, 2, 2}

Also, all three graphs have the same number of edges, 17.
CountCompleteSubgraphs[#, 2] & /@triangles[7, 19]

(17, 17, 17}
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Thus, we have found three examples of graphs that illustrate our result of [1], that
k4(k3 =19) =10.

We now ask what is the maximal number of K4 subgraphs in a graph with 25 vertices. We
again search for graphs with seven vertices and 25 triangles.

triangles[7, 25] =
Select [graphdata7, CountCompleteSubgraphs[#, 3] == 25 &]

— AN

e

The one example we have found has 16 K4 subgraphs, and the Kruskal-Katona bound for
K, subgraphs is 17.

CountCompleteSubgraphs[triangles[7, 25][[1]], 4]

16

K4K3[25]

17

We investigate this graph further.

Graph[triangles[7, 25][[1]], VertexLabels -» Automatic,
GraphLayout -» "CircularEmbedding"]

7
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This is the Turan graph 7(7, 5); edges 4 «— 6 and 5 «— 7 are missing from K5. This can
also be seen with the HighlightGraph function.

HighlightGraph[CompleteGraph[7, VertexLabels -» Automatic],
triangles[7, 25][[1]]]

Since this is one of the Turan graphs and we have conjectured that they are K;-maximal,
we believe we have found a K4-maximal example with 25 triangles.

Another example: Suppose we have a graph with 29 triangles. The Kruskal-Katona
bound is 22.

K4K3[29]

22

A search in graphdata7 yields no graphs with 29 triangles. If we search in
GraphData [8], we find one graph with 29 triangles. It has 16 K, subgraphs.

graphdata8 = GraphData /@ GraphData[8];

triangles[8, 29] =
Select[graphdata8, CountCompleteSubgraphs[#, 3] == 29 &]

The Mathematica Journal 20 © 2018 Wolfram Media, Inc.



Improving the Kruskal-Katona Bounds for Complete Subgraphs of a Graph 27

CountCompleteSubgraphs[triangles[8, 29][[1]], 4]

16

So it looks like the most K4 subgraphs we can find for a graph with 29 triangles is 16. We

3 2

(Z)+(g) = 19. Thus, if we add vertices A and B to K¢ and connect them to four and

three vertices of Kg, respectively, we get a graph with 29 triangles and 20 K4 subgraphs.

can do better! For 26 triangles, since 26 = (6)+(4), the Kruskal-Katona bound is

triangles[8, 29] =
EdgeAdd [
VertexAdd [CompleteGraph[6, VertexLabels -» Automatic],
{A,B}], {A—~1,Ae<2,A+3,A—4,B—1,B—2, B 3}]

B

{CountCompleteSubgraphs[triangles[8, 29], 3],
CountCompleteSubgraphs[triangles[8, 29], 4]}

{29, 20}
The graph triangles[8, 29] has eight vertices, but it did not show up in

GraphData [8], which has only 289 out of 12346 possible graphs. GraphData [ 7]
contains all 1044 graphs with seven vertices.
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o A Larger Example

We have looked at examples with relatively few vertices, and these examples might give
the impression that the Kruskal-Katona bounds do not differ significantly from the real
values—so why expend so much effort trying to improve them? We construct a larger
example to show that the difference can be quite large.

g4a = RandomGraph[ {25, 200}]

a4 = {CountCompleteSubgraphs[g4a, 3],
CountCompleteSubgraphs[g4a, 4]}

{700, 1246)

Here is another example.
g4b = RandomGraph|[ {25, 200}];
b4 = {CountCompleteSubgraphs[g4b, 3],
CountCompleteSubgraphs[g4b, 4]}

(666, 989}
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The Kruskal-Katona bound, however, usually yields more than twice as many K, subgraphs!
More extreme examples can easily be constructed.

K4K3@xFirst /@ {a4, b4}

(2410, 2275}

B Conclusion

There have been some efforts to improve the Kruskal-Katona bounds in the case of
graphs (see, for example [1] and [9]); however these have had very limited success. We
feel that not enough insight into this problem has been gained and that perhaps by using
computer experiments, conjectures can formulated and then proved to advance our knowl-
edge in this area. For example, if we knew that a maximal K, example with 19 triangles
must occur in a graph with seven vertices, our search of GraphData[7] would be suffi-
cient to prove that the maximum number of K, subgraphs a graph with 19 K3 subgraphs
can have is 10. We succeeded in proving this result in [1] without using computers, but
only with a great deal of effort.

To read more on using Mathematica’s graph theory capability to investigate other maxi-
mal problems in graph theory, see [10] and [11].
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