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This article is a summary of my book A Numerical Approach to
Real Algebraic Curves with the Wolfram Language [1].

H 1. Introduction

The nineteenth century saw great progress in geometric (real) and analytic (complex)
algebraic plane curves. In the absence of an ability to do the large number of computations
for a concrete theory, the twentieth century saw the abstraction to algebraic geometry of
this material. Ideas of ideals, rings, fields, varieties, divisors, characters, sheaves, schemes
and many types of homology and cohomology arose. The added benefit of this approach is
that it became possible to apply geometric techniques to other fields. Probably the most
striking accomplishment of this abstract approach was the solution of Fermat’s problem by
Wiles and Taylor at the end of the century.

The plane geometric curve theory of the nineteenth century was collateral damage. All
modern books on the subject want to follow the abstract approach, which raises the bar for
those who want to know this theory. In addition, little attention was given to the concrete
geometric theory. One goal of my book is to rectify this problem; substituting software for
the abstract theory, we can give the theory in terms the non-mathematician can follow.

Since most algebraic curves have only finitely many rational points, I work numerically.
The methods are constructive, heuristic and visual rather than the traditional theorem-proof
of contemporary mathematics. In fact there is a fundamental oxymoron at the heart of my
approach: a numerical algebraic curve is the solution set of an equation f(x, y) = 0, where
f(x,y) is a polynomial with integer or machine-number coefficients. Evaluating this
polynomial at a point (x, y) with machine-number coordinates gives a machine number on
the left-hand side, while the right-hand side is a symbolic number, so actual equality is
impossible. So my book is not an algebraic geometry book. Having worked during my
career as a mathematician in both the abstract and numerical realms, I believe that while
these approaches are incompatible, they can and should coexist within mathematics.
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H 2 Lines

We will generally describe an algebraic plane curve by giving a polynomial in two variables
with integer or real machine-number coefficients.

From an operational point of view, with an exception noted later, for a given curve f(x, y)
we accept the output of NSolve[{f, g}, {x, vy}, R] and FindRoot [{£f, g},
{x, %0}, {Y, Yo} ], where g is another such bivariate polynomial and x, yy are real
machine numbers, as points on the curve f(x, y) = 0. In numerical work, we do not accept
points {xg, yo} as solutions to f(x,y) =0 based on the value of f(xg,yp), known as the
residue. A detailed explanation is in [1].

For example, suppose some calculation claims p is a point on f. (If you have set values
in your session for x, y and so on, now is the time to store them if needed and apply
Clear to them.)

f=x"5-2xy"4+3x"2y-5y"2;
p={-3.0602031048641716", -2.8206303312619827"};

We find a random line g containing p and use FindRoot to check the point of inter-
section of g with f.

g = Expand [RandomReal[{-4, 4}, 2].({x, v} -pP)]
15.515+1.51103x+3.86117y
We see the residue is not zero.
f /. Thread[{x, vy} - p]
-5.68434 x 10
But p can be reconstructed from FindRoot.
q={x, y} /. FindRoot [{£f, g}, {x, p[[1]]1}, {y, P[[2]]}]
{-3.0602, -2.82063}
It checks.
P==4q
True

The simplest example of an algebraic plane curve is a line. The first problem for lines is
to find the equation of a line through two given points. We give our solution, found at the
beginning of Chapter 1 of [1], as it will give the flavor of our approach to this subject.
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Let {x1, y1}, {x2, ¥} be the given points. The desired equation is of the form
ax+by+c=0.

We thus consider the coefficients a, b, ¢ as unknowns, but x, y as coordinates of the given
points. So we have two equations in the three variables a, b, c.

axi+by +c=0,
ax,+by,+c=0.

But this system is underdetermined. It is also not symmetric in the variables, so we use a
dummy variable z and add a third equation to get the system

axi+by +cz=0,
axy+by,+cz=0, (1)
ra+ryb+ryc=1,

where ry, r,, r3 are random real numbers.

Suppose the points are {3, 2} and {5, 6}. Here are the random reals.
{rl, r2, r3} = RandomReal[{-1, 1}, 3]

{0.0780892, 0.690991, -0.880503}

Then the line is constructed as follows.

f=(ax+by+c) /.
Solve[3a+2b+1c==20&&5a+6b+1c==0&& rla+r2b+r3c=1,
{a, b, ¢}1[[1]]

-1.33905+0.669523 x-0.334762y

Perhaps this is not what you expected. But we are working with machine numbers so,
particularly if this is not our final answer, we should not mind. If this does still bother
us, we can always look for integers.

Expand [/ / Coefficient[?, y]]

4. -2.x+1.y

But system (1) gives more options. Suppose instead we were given the point {3, 2} and
slope 2. We can change the second equation by setting x, = 1,y, =2 and z = 0.

(ax+by+c) /.
Solve[3a+2b+1c==0&&1la+2b+0c==0&& rla+r2b+r3c=1,
{a, b, c}1[[1]]

-1.33905+0.669523x-0.334762y
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Expand[% / Coefficient[%, y]]

4. -2.x+1.y

Since our original / already had slope 2, we are now not surprised to get the same result.
Now consider the possibility that our line was given parametrically.

lp={3, 2} +# {2, 4} &;
1p[t]

(3+2t, 2+4t)

This time we replace the second equation in (1) with x, =2, y, =4, and again z = 0.
We solve the new system.

(ax+by+c) /.
Solve[3a+2b+1lc==20&&2a+4b+0c=0&& rla+r2b+r3c=-1,

{a, b, c}]1[[1]]

-1.33905+0.669523x-0.334762y

Expand[% / Coefficient[%, y]]

4. -2.x+1l.y

This is the same answer, because again we have the line through {2, 3} and {5, 6}.
1p[1]

{5, 6}

We can put all of this into one program if we simply make the convention that a slope or
direction vector is denoted by a triple with third coordinate 0. So here is our universal
code for creating a line.

line[p_, 9_, x_, Y_] :=Module]|

{a, b, ¢, M},

M= {
Switch[Length[p], 2, Append[p, 1], 3, p]l,
Switch[Length[q], 2, Append[q, 1], 3, 4],
RandomReal[{-1, 1}, 3]
}i

Normalize[{a, b, ¢} /. First@Solve[M.{a, b, ¢} == {0, 0, 1}]].
{x, v, 1}
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Our results will differ from the previous ones because we are now choosing the random
numbers each run but normalizing the output. The advantage is that each run gives the
same answer up to a factor of +1.

12 = 1line[{3, 2}, {5, 6}, x, y]

0.872872-0.436436x+0.218218y

line[{3, 2}, {1, 2, 0}, %, y]

-0.872872+0.436436x-0.218218y

line[{3, 2}, {2, 4, 0}, %, y]

-0.872872+0.436436x-0.218218y

Expand[12 / Coefficient[12, y]]

4. -2.x+1.y

Computing a point far away from {3, 2} by taking r = 3047 in our parametric equation, we
get approximately {2 ¢, 4 1}.

P2 = 1p[3047]

(6097, 12190}

{2, 4} 3047
(6094, 12188}

So we can consider {2, 4, 0} to be the infinite point on the line. But putting {1, 2, O} in our
line function gave us the same thing, so these infinite points are homogeneous; that is,
they can be multiplied by a scalar getting the same infinite point. Note also that adding a
coordinate 1 to a coordinate pair homogenizes a Cartesian point of the plane.

line[{3, 2, 1}, {2, 4, 0}, x, y]

-0.872872+0.436436x-0.218218y

1ine[{—6, _41 _2}1 {21 4! 0}, Xy Y]

-0.872872+0.436436x-0.218218y
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In Chapter 5 of [1], we find that we have invented the projective plane. So that we do not
get confused, we will henceforth call points (pairs) of our standard Cartesian plane affine
points and the triples projective points.

The method for finding equations of lines can be generalized to find curves of degree d

through wz(dﬂ) — 1 sufficiently general points. See [2] for the code of aCurve (here a
stands for affine).

We do define two families of curves that are used extensively as examples in [1]. The first
are Gaussian curves. We start with a single variable polynomial p(z), typically with integer
coefficients but possibly complex integers such as 3 + 4 i. Replace z by x + i y; after expand-
ing, the formal real part forms a curve. Gauss used this construction in his first and fourth
proofs of the fundamental theorem of algebra, published 50 years apart.

gaussCurve([p_ , X_, Y_, 2_] :=
ComplexExpand[Re[p /. {z>x+TIy}]]

For example, the following is said to be Gauss’s original example for the fourth proof.
Note that it has a singular point!

fl = gaussCurve[z"5-52"4+92"3-52"2, x, vy, 2]

5x?2+9x3-5xt+x°+5y?2-27xy?+30x?y?-10x3y?-5y*+5xy?

ContourPlot[fl =0, {x, -6, 6}, {y, -6, 6}, ImageSize » Small]

(o

6 4 2 0 2 4
A second family of curves I call Newton’s hyperbolas. Here n can range from 1 to 228,

newtonHyperbola[n_, x_, y_] := Module[{v, ¢, k, n2dig, s},
If[(n>2"28) || (n<0), Print["n out of range"];
Return[Fail]];
v = {{0, 0}, {1, O}, {0, 1}, {2, O}, {1, 1}, {O, 2},
{3, 0}, {2, 1}, {1, 2}, {0, 3}, {4, O}, {3, 1},
{2, 2}, {1, 3}, {0, 4}, {5, 0}, {4, 1}, {3, 2},
{2, 3}, {1, 4}, {0, 5}, {6, O}, {5, 1}, {4, 2},
{3, 3}, {2, 4}, {1, 5}, {0, 6}};
c=4{1,1,1, .2,1, .2, .008, .2, .2, .008, .000064,
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.008, .2, .008, .000064, .2"10, .2"6, .008, .008,
.2”6, .2~10, .2715, .2~10, .26, .273, .26,
.2710, .2"15};

k = Which[n<8, 3, n<64, 6, n<1024, 10, n< 32768,
15, n< 2721, 21, True, 28];

n2dig = IntegerDigits[n, 2, k];

s = Reverse[n2dig];

FromCoefficientRules|[

Table[v[[i]] -» (-1) "s[[i]] e[[i]], {i, k}], {x, y}]]

nh376 = newtonHyperbola[376, x, y]

1+x-0.2%x>-0.008x3+y-xy+0.2x>y-0.2y?°-0.2xy?>+0.008y?

ContourPlot[nh376 =0, {x, -25, 25}, {y, -30, 25},
ImageSize -» Small]

/

20} A
30~ ‘ ‘

-20 -10 O 10 20

B 3. Important Definitions

The fotal degree of a plane curve is an important invariant, but not quite as simple in the
numerical case as it may seem. Small coefficients of the highest degrees matter little near
the origin but strongly affect the asymptotic and infinite behavior of the curve. Therefore,
we approach this symbolically using CoefficientRules.

tDeg[f_, x_, y_] :=
Max [Table[Total[t], {t, Keys[CoefficientRules[f, {x, y}1]1}]1]
Sometimes a little care is necessary to make sure that coefficients that are the result of round-
off error only are not allowed to increase the degree; a judicious use of Chop may be required.

Because we are often working numerically, we use a slightly stronger criterion for a plane
curve f(x, y) to be called regular at a point p on f. The quantity b (a—ax f) -a (% f) is known

as the Jacobian determinant of the intersection of the curve f and line ax+ by +c at p.
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We say p is a regular point of f = 0 if the Jacobian is not numerically zero for almost all
pairs a, b of machine numbers. In practice, this can be checked by letting a, b be random
real numbers. For a regular point p, a tangent line is defined as follows.

tLine[f_, p_, x, y] :=
line[p, {D[f, y], -D[£f, x], 0} /. Thread[{x, ¥} » pP], %, ¥]

On the other hand, a point p of f(x, y) is called singular if the Jacobian is zero at p for
all numbers a, b. Again, in practice it is enough to check for a random pair a, b.

An alert reader may notice that since we are working constructively, regular and singular
are not logical negations of each other, but a practical test does distinguish regular from
singular points.

An important kind of point for [1] is a critical point. A point p on curve f is critical if it is
also on the curve defined by y D[f, x] — x D[f, y]. All real critical points of a curve can be
found easily in practice by the following.

criticalPoints[f_, x_, y_] :=
DeleteDuplicates|
{xl Y]’ /. NSolve[{f, YD[fI x] 'XD[fl Y]}I {xl Y]‘I Reals],
Norm[#1 - #2] < 1.%"-6 &]

Unlike the conditions regular and singular, which are invariant under transformations such as
translation, being a critical point is a positional property. Among the critical points are local
extrema of the distance from the origin to a point on the curve and, by our definition, singular
points. The most important thing about critical points is that every affine topological compo-
nent of a plane curve contains at least one critical point. This means that from our simple
function for finding critical points, we will be able to locate all components on the curve, no
matter how small—even one-point components.

Consider the following contrived example of a numerical cubic curve, which has an
isolated point.

hl = -0.3625600420883557" + 0.0805181117798253" x +
0.31666929459884297" x? +0.19484528794280442" x3 -
0.27630436149898124" y-0.5134344028165023" xy -
0.6511049000079859" x? y + 0.45295488379091586" y? -
1.109368568425435" xy2 -0.8788321984542753" y3;

cpl = criticalPoints[hl, x, y]

{{-1.27562, 1.20231}, {0.042992, ~0.498191}}

The Mathematica Journal 20 © 2018 Wolfram Media, Inc.



A Wolfram Language Approach to Real Numerical Algebraic Plane Curves

ContourPlot[hl == 0, {x, -2, 2}, {y, -2, 2},
Epilog » {Red, PointSize[Medium], Point[cpl]}]

2F
[ ]
1t
0—\/
1t
-2k .
-2 -1 0 1 2

The point with coordinates {—1.27562, 1.20231} is a one-point component of the curve h1.

The same idea allows us to find the closest point on a curve to a given point in the plane.

closestPoint[f_, q_, x_, y_] :=Module[{g, p, cp},
g = Expand[f /. Thread[{x, y} -» Take[q, 2] + {x, ¥}11;
cp = criticalPoints[g, x, y];
q+First@MinimalBy[cp, Norm]
1

In this case, the closest point may be one invisible on a plot.

closestPoint[hl, {-1, 1}, x, y]

{-1.27562, 1.20231}

We may also find the infinite points of a curve. Here is code that is slightly different
from [1] but avoids subroutines. This uses a random variable so that different runs give
the infinite points in possibly a different order.

infiniteRealPoints[f_, x_, y_] :=
Module[{d, ca, K, fm, k, rnl, sol, soll},
d = tbheg[f, x, ¥];
ca = <|CoefficientRules[f, {x, y}]|>;
K = Select[Keys[ca], Total[#] ==d &];
fm = FromCoefficientRules[Table[k -» ca[k], {k, K}],
{x, v}1;
rnl = RandomReal[{-1, 1}, 2].{x, y}-1;
sol = NSolve[{fm, rnl}, {x, y}, Reals];
If [Length[sol] == 0, Return[{}], sol = {x, y} /. sol];
soll = DeleteDuplicates[sol, Norm[#1l - #2] < .001 &] ;
Normalize /@ Table[Append[soll[[i]], 0], {i, Length[soll]}]

The Mathematica Journal 20 © 2018 Wolfram Media, Inc.



10

Barry H. Dayton

Here is an example using Newton hyperbola 376.

infiniteRealPoints[nh376, x, y]

{{-0.99913, -0.0417029, 0.},
{-0.707107, -0.707107, 0.}, {-0.0417029, -0.99913, 0.})}

4. Topology and Tracing

We start with an idea Gauss used in his 1849 proof of the fundamental theorem of algebra
characterizing real plane curves. Given a bivariate polynomial f(x, y), Gauss considered the
semialgebraic set f* = {{x, y} | f(x,y) > O}. The algebraic curve f(x,y) =0 is the complete
topological boundary in R? of f*.

Among other things, this nicely solves our conundrum as to the precise meaning of the
curve f(x,y) =0 when f(x, y) is a polynomial with machine-number coefficients, as the
inequality f(x, y) > O does make sense numerically.

Another consequence of this definition is that for each regular point p of the curve, a line
different from the tangent line intersecting the curve at this point travels from f* to the
negative set f~ at p. We will see later in this section that a curve defined by a square-free f
has only finitely many singular points, so a contour plot gives a reasonable picture of the
curve in a bounded region with appropriate scaling. Contour plots may miss large parts or
all of the curve if the polynomial f(x,y) has a factor repeated an even number of times.
Fortunately, if f is a polynomial with integer coefficients, then the built-in function
Factor finds the repeated factors, and one can produce a square-free polynomial with the
same curve. For machine-coefficient polynomials, there is a function given in Appendix 1
of [1] and in [2] that can check to see if f is square free and if not, produce a square-free
polynomial giving the same curve.

This last paragraph also tells us that the complement of a square-free curve is two colored,
with the curve separating the colors. In particular, an algebraic real plane curve cannot
have bifurcations [3]. That is, the following cannot be a plot of an algebraic curve.

Plot[lO'll {Exp[5 x], -Exp[5x]}, {x, 2, 5}, Axes » False,
PlotStyle - Blue]|

There are always an even number of branches going in and out of singular points, an
essential idea we will use in the next section.
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For now, the main use of the Gauss point of view is that a square-free curve is oriented;
that is, we can specify a direction of travel along the curve. In his proof, Gauss proposed
“walking along the curve” with f* on our right. Essentially, we are traveling around topo-
logical components clockwise. As an aside, the curve Gauss was using is our Gaussian
curve of the particular complex univariate polynomial p(z) that he was proving has a
zero. Thinking of points of the plane as complex numbers, Gauss showed the walker
would always stumble over a zero of p(z).

We implement this by noting that for regular points, this right-hand direction is given by the
vector (Dy f, Dy f), so we can use the following code (g stands for Gauss, T for tangent, and
vec for vector).

gTvec[f_, p_, x_, y_] :=
Cross |
Normalize[Chop[{D[f, x], D[f, y]} /. Thread[{x, ¥} » pP],
1.%7-6]111

Example: Consider the curve x> —y. (In the PDF and HTML versions, the graphic is
not interactive.)

Manipulate[
Graphics|[{
{Blue, Line[Table[{t, t*2}, {t, -1, 1, .01}]1]},
{Red,
Arrow|[
{{tl tAz}l {tr tA2}+gTvec[x’\2_Y! {tl tAz}l X, Y]}]}
}, PlotRange -» {{-1.5, 1.5}, {-1, 2}}, ImageSize -» Small],
{tl _ll 1}!
SaveDefinitions -» True

]

g
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This leads to path tracing. In [1], we consider various methods, including using a method
based on the built-in NDSolveValue. Here, we use a very common method given by
the following.

Options[pathFinderT] = {maxiterations —» 40};

pathFinderT[f , p , 9_, s_, Xx_, Y_, OptionsPattern[]] :=
Module|[
{maxit, pO, L, k, tv, u, 1, pl},
maxit = OptionValue[maxiterations];

PO = p;

L = Reap|[
Sow[p];
k=0;

While[Norm[q-p0] > 2 s && k < maxit,
tv = gTvec[f, p0, %, y];
u=p0+stv;
1=1ine[u, {tv[[2]], -tv[[1]], O}, %, ¥];
Pl ={x, y} /. FindRoot[{f, 1}, {x, u[[1]]},

{y, ul[2]11}1;
Sow[pl];
poO = pl;
k++];
Sow[q]
10[2, 1171
If[k > maxit,
Print["Warning: iteration limit reached at ", pl]];
L];

This function traces from point p to point ¢ in the direction defined by gTvec with
steps of size s. By default, it stops after 40 steps, but that can be changed by an option.
If g is the wrong direction from p, this fails with a warning. The direction can be
changed by replacing the curve f by — f. If there is a singular point in the path between
p and g, then this will likely get hung up there. The key is that one can trace into a singu-
larity, but not out. Normally, we use critical points for the endpoints p, g, but we may
need to add points between singularities.

The bow curve is a good example of using path tracing.

f3=x"2y-x"4-y"3;
gpl = Join]|[
{x, vy} /. NSolve[{£f3, x"2+y"~2-.25}, {x, vy}, Reals],
Chop[criticalPoints[£f3, x, y]]
1

{{-0.330354, -0.375322}, {0.330354, -0.375322},
{0.380892, 0.237985}, {-0.380892, 0.237985}, {0, 0}}
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pta = Association[Table[i » gpl[[i]], {i, Length[gpl]}]]
</1->{-0.330354, -0.375322},

2 {0.330354, -0.375322}, 3 > {0.380892, 0.237985},
45 {-0.380892, 0.237985}, 5 {0, 0} >

RegionPlot[£f3 >0, {x, -.5, .5}, {y, -.5, .5},
ImageSize -» Small,
Epilog » {Red, PointSize[Medium], Point[gpl]}]

m RN

02+

—04}

-04 -02 00 02 04

We proceed as follows with the positive direction clockwise around the positive region,
but always into the singularity at {0, 0}.

Pl = pathFinderT[£f3, pta[l], pta[5], .04, x, v];

P2 = pathFinderT[£f3, pta[4], pta[5], .02, x, vy,
maxiterations -» 100];

P3 = pathFinderT[-£f3, pta[4], pta[5], .02, x, vy,
maxiterations - 100];

P4 = pathFinderT[£f3, pta[3], pta[5], .02, x, ¥y,
maxiterations - 100];

P5 = pathFinderT[-£3, pta[3], pta[5], .02, x, vy,
maxiterations - 100];

P6 = pathFinderT[-£f3, pta[2], pta[5], .04, x, y];

ListLinePlot[{P1, P2, P3, P4, P5, P6}, PlotStyle - Thick,

Frame -» True, Axes - False, ImageSize - Small]

0.2¢ 3
0.1¢F E
00F E
-0.1¢ E
-02¢ 9
_03¢L El

-04 s ‘ ‘
-04 -02 00 0.2 04
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In [1], we develop a number of utility functions to make tracing easier and do many
examples, particularly of Gaussian curves. But the main point we are making is that a
square-free curve can be reasonably approximated by a piecewise linear curve, and the
instructions to do so can be given by a graph (network) consisting of the endpoints of
each trace as vertices with the direction traveled, not traced, as directed edges. Here is
the graph for the previous example.

Graph[{1»5, 554, 455,553, 355, 52},
VertexLabels -» "Name"]

3 1

5. A Classical Interlude

In this section, we touch base with contemporary algebraic geometry. We operate in the
real and complex projective planes Pg and P.

Our construction follows our discussion on lines in Section 2. A point in the real (or
complex) projective plane is a triple {a, b, c} of real (or complex) numbers so that not all of a,
b, c are zero. Two such triples that differ by a nonzero real (or complex) multiple are con-

sidered the same. For example, if ¢ # 0, then loosely speaking, {a, b, c] = (g R l—;, 1) = (g, é’)
is an affine point. We called points (a, b, 0) infinite points; in the projective plane they are
just points. Just as we added a variable z for the third coefficient in the equation of a line, in
the projective plane we again add a third variable for equations. We call this homogenization.
Now we want all of our monomials to have the same total degree. The next function homoge-

nizes a bivariate polynomial.

homog[f_, x_, y_, z2_] :=
Expand [z~ tDeg[f, x, y] (f /. Thread[{x->x/2, y>y/2}])]

That is, if we are working with a polynomial f(x, y) of degree d, a monomial is converted
by x'y/ — x' y/ 74717/, There is a 1-1 correspondence between two-variable monomials of
total degree less than or equal to d and three-variable monomials of degree exactly d.

If particular a, b, ¢ with h(a, b, ¢) =0, then h(ra, r b, r c) = 0 also, so being a zero is a
property of the projective point p = (a, b, ¢). Thus projective curves are the zero set of
homogeneous polynomials in three variables. Also in the example for the bow curve £3,
(1,0, 0) is a point of the homogenization of f(x, y), which means (1, 0, 0) is an infinite
point of f.
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The opposite of homogenization is specialization. We can substitute the number 1 for any
of the three variables in a homogeneous polynomial and get a two-variable polynomial that
is in general nonhomogeneous. For example, if we homogenize f(x, y) and then specialize
at z, we get back the original. But specializing at x or y produces a new polynomial.

We say f is a singular curve if any complex projective singular point exists. So f may
be a singular curve even though there are no affine singularities. We do this partly to
be consistent with the algebraic geometers, but also because singular curves (even with
infinite or complex singularities) do behave differently from regular curves.

Likewise, a curve f is reducible if its homogenization is reducible over the complex numbers.
Because homogenization preserves polynomial multiplication, the homogeneous polynomial %
is reducible if and only if all its specializations are reducible. It is fairly rare that a bivariate
real polynomial has complex factors, but an important class of examples is the homogeneous
functions in two variables. These always factor into linear factors, but some factors may be
complex. Consider the next example.

ga=x3-2x2y+xy%-y3;
Factor[g4]

x-2x°y+xy’-y?

ContourPlot[g4 =0, {x, -3, 3}, {y, -3, 3}, ImageSize » Small]

3,\ |

2f ]

-3k ‘ ‘ ‘ ‘ ‘ J
-3 -2 -1 0 1 2 3

This seems to be irreducible, but the plot appears to be a straight line rather than a cubic.
Furthermore, it is singular at (0, 0). Think of this curve as a homogenization of a polyno-
mial of one variable and specialize aty = 1.

giy=qg4 /.y->1

-l+x-2x%+%3

sol5 = x /. NSolve[g4y];
g5 = Times @@ Table[ (x-ysol5[[i]]), {i, 3}]

(x-1.75488y) (x- (0.122561 +0.744862 1) y)
(x- (0.122561 - 0.744862 1) y)

15

The Mathematica Journal 20 © 2018 Wolfram Media, Inc.



16

Chop [ComplexExpand [g5] ]

x3-2.x°y+1.xy*>-1.y°

Barry H. Dayton

So g5 gives a complex numerical factorization of g; the two complex factors are invisible

on the contour plot.

Related to singular points are intersection points. Here is an example.

NSolve[{y"2-x"4, y"2+x"5}, {x, vy}, Reals]

{{x->-1., y»>-1.}, {x->-1.,y->1.},
{x->0.,y->0.}, {x=>0.,y->0.},
{x->0.,y->0.}, {x-0.,y->0.}, {x->0.,y->0.},
{(x->0.,y->0.}, {x-0.,y->0.}, {x>0., y—>0.}}

We say the intersection of these curves at (0, 0) has multiplicity 8. To explain what this
means, particularly in the case of numerical curves, we use the formulation given in [4],
which has been implemented numerically by Z. Zeng and the author. The implementation
in the plane curve case is given in Appendix 1 of [1], the code and examples are in [2] and
further information can be found in [5].

Intersections and singularities are connected, in that if f and g intersect at p, then the
curve f X g has a singularity at p. However, there is an important difference. If we perturb
a curve with a singularity by adding some terms with very small coefficients, the singular-
ity often goes away. But if we perturb both of the curves intersecting at p, then locally we
have the same multiplicity. Here is an example.

f-y-x"2;
g=y-x-1;
Row [ {

ContourPlot[fg==0, {x, -1, 0}, {y, O, 1}, ImageSize -» 150],
ContourPlot[f g- .001 ==

ImageSize » 150],

, {x, -1, 0}, {y, O, 1},

ContourPlot[ (f- .001) (g+ .001) ==0, {x, -1, O},
{y, 0, 1}, ImageSize -» 150]

}, Spacer[20]]

10
0.8+
061
04+
02+

00 v v S
-10-08-0.6-04-02 0.0

10
0.8+
0.6
04+

02F

0.0 ..

-1.0
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What this shows is that singularities are numerically unstable, but intersections are numeri-
cally stable. Thus in [1], which emphasizes the numerical point of view, we avoid getting
deeply into singularities, but we can deal with intersections.

This leads to the most important theorem of complex projective plane algebraic geometry,
Bézout’s theorem.

Given complex algebraic curves f(x, y) and g(x, y) of degrees (respectively) m and n with
no common nonconstant factor, there are exactly mn complex projective points on both
curves counting intersection multiplicity.

There are many proofs in the literature, and we will not give a complete proof here or in [1].
The complicating issue is when there are infinite or multiple intersection points. The typical
proof involves use of the resultant. In the case of possibly infinite but not multiple points, one
approach is to apply a random projective transformation. The resulting curves then, with high
probability, will have no infinite intersection points and moreover, each intersection point
will have a unique x coordinate. We can find these by applying the resultant with respect to x,
which will then give a polynomial of degree m n with distinct and hence non-multiple zeros.
One can easily find the y coordinates of the transformed system by substituting each x in
either equation and solving for y. Finally, transforming back will give the m n solutions of the
original system. We will study these transformations and find infinite intersection points by
transforming, solving the affine system and transforming back in the next section.

As an example, consider the following Gaussian cubic and quadratic. There is one infinite
solution. Applying the random projective linear transformation with matrix

3 4 -3
30 2
-4 2 2

gives a system of equations that leads to polynomials with rational coefficients, no infinite
solutions and unique x coordinates for the affine solutions.

f6=-1+2x-3x"2+x"3+3y"2-3xy"2;
g6=4y-x"2+8;
823 13521x 537x? 628x3 5073y

+ + +
137 842 275684 68921 68921 275684
2391xy 567x%y 238y%2 619xy? 583y3
- + + - ;
68921 68921 68921 68921 68921 ’
428 182x 16x? 1372y 276xy 911y?
+ - + .

1681 1681 1681 1681 1681 1681

fér =

gébr =

Row [ {

ContourPlot[{f6 =0, g6 == 0}, {x, -5, 5}, {y, -5, 5},
ImageSize » 200],

Spacer[20],

ContourPlot[{f6r == 0, g6r == 0}, {x, -5, 5}, {y, -5, 5},
Epilog » {Red, PointSize[Medium], Point[{2, 0}]},
ImageSize » 200]

}
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Pictured are the original system and the transformed system. The indicated point in the
second plot corresponds to the infinite solution {0, 1,0} of the first plot. Even in this
simple example with equations and transformation using one-digit integers, the resultant
polynomial was a rational polynomial with numerators of 17 digits and a denominator
of 21 digits!

Later in [1], Bézout’s theorem is used in the discussion of Cayley’s theorem and Harnack’s
theorem. In this section, we use Bézout’s theorem to argue the singularity theorem:

(d-1)(d-2)

An irreducible curve of degree d has at most 5

complex projective singular points.

In [1] I take a constructive point of view and show instead that a curve of degree d with
(d-1)(d-2)
2
of smaller degree that meets the given curve in too many points, so has a common factor with

the given curve. In fact, in Appendix 1 of [1] we implement this argument with a function

+ 1 or more singular points is reducible. In the argument, we produce a polynomial

that factors the defining polynomial of any curve with %(d_z) + 1 or more singularities.

Going back to the cubic, we homogenize and then specialize aty = 1.

f6=-1+2x-3x"2+x"3+3y"2-3xy"2;
cp6 = criticalPoints[f6, x, y]

{{2.32472, 0.}, {0.096778, 0.554664}, {0.096778, -0.554664}}

The resulting plot shows the infinite points of f in the specialization where the dashed line
is the original infinite line. The original infinite points are named ipl, ip2, ip3. The
first critical point becomes the infinite point (0, 1, 0) in the x-z plane, and the other two go
to the points pcp2, pcp3.

h6 = homog[£f6, x, v, 2] /. {y-> 1}

-3x+x3+32-3x%>2+2x2%-23
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ipl = {-Sqrt[3], 0};

ip2 = {0, 0};

ip3 = {Sqrt[3], 0};

cp6ha = Expand [Append [cp6[[2]], 1] /cp6[([2, 2]]1][[{1, 3}]]

{0.17448, 1.80289)

cp6hb = Expand [Append [cp6[[3]], 1] /cp6[[3, 2]]]1[[{1, 3}]]

{-0.17448, -1.80289)

ContourPlot[{h6 =0, z == 0}, {x, -3, 3}, {z, -3, 3},

ContourStyle » {Thick, Dashed},

Epilog -» {{PointSize[Large], Black, Point[{ipl, ip2, ip3}]},
{PointSize[Large], Red, Point[{cp6ha, cp6hb}]}},

ImageSize -» Small]

3p

So in the projective plane, infinite points look just like affine points. We can trace projec-
tive paths just like affine paths. Thus, we can form graphs just like in the affine case; in par-
ticular, the projective graphs now have the property that every vertex is even. This gives
my fundamental theorem of real plane projective algebraic curves, henceforth called just
the fundamental theorem, which completely describes the topology of the projective curve.

Let h(x,y,7z) =0 be a homogeneous real plane projective algebraic curve C. Then
there is a finite set of points V in C, called vertices, and a set of edges E between pairs
of vertices satisfying:

1. Each edge corresponds to a continuous arc (or path) in C connecting the two vertices.
2. Every singular point of C is a vertex.

3. The interiors of any two arcs corresponding to edges are disjoint; that is, arcs
only meet at vertices.

4. Every point of C is either a vertex or an interior point of an arc.

5. The graph is an Euler graph, that is, every vertex is even.
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In the previous example, the graph can be rendered as follows, where the vertex names refer
to the original affine specialization.

GraphPlot[{"ip2" -» "cp2", "cp2" -» "ip3", "ip3" - "cpl”,
"cpl" - "ipl", "ipl" -» "cp3", "cp3" - "ip2"},
VertexLabeling » True, DirectedEdges - True,
ImageSize -» Small]

ip2 ———— ¢p2
cp3 ip3

ipl —=—— cpl

Several comments are in order. First, critical points are not a concept in the projective plane;
they come from some affine specialization. They make good vertices, but in this context are
somewhat arbitrary. The same is true of the direction of the curve, but these graphs can be
given a directed Euler graph structure. The fact that these are Euler graphs implies they can
be decomposed into (not necessarily disjoint) directed circuits.

Already in his 1799 proof of the fundamental theorem of algebra, Gauss essentially calcu-
lates the infinite points of Gauss curves coming from a monic polynomial p(z) of degree d as

, Qj+d-Dmy (Qj+d-Dn
lpj = (COS(—), s1n(—
2d 2d

Since the Gaussian curve already approximately intersects large circles about the origin in
the affine points (and their antipodal points) given by the first two coordinates, one can infer
that the graph will have edges pointing directly out from boundary points on a large circle to
the appropriate infinite point. Thus by treating any two antipodal points of the curve on a
large circle about the origin as the same infinite vertex, we convert the bounded graph to the
projective graph.

),O)forj: 1,...,d.

A more interesting example of a Gaussian curve is Gauss’s example, which has two com-
ponents and a singular point.

f7 = gaussCurve[z"5-52"4+92"3-52"2, x, y, z]

5x2+9x3-5xt+x>+5y2-27xy?+30x?’y?-10x3y?-5y*+5xy*
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We find the critical and boundary points on a circle of radius 4 and put them in an associa-
tion for labeling.

g7p = Chop@Join]|[
criticalPoints[£f7, x, y],
{x, y} /. NSolve[{£f7, x"2+y"2-36}, {x, y}, Reals]
1
g7A = <|Table[i -» g7p[[i]], {i, Length[g7p]}]|>;

We show a contour plot and the bounded graph. Then, by treating boundary points as infi-
nite points and identifying pairs of antipodal points (7 & 11, 8 & 13,9 < 6, 5 & 12,
14 < 10), here is the projective graph.

Row [ {
Show [
ContourPlot[{f7 =0, x*2+y"~2 =36}, {x, -6, 6.5},
{y, -6., 6.5}, ContourStyle -» Orange],
Graphics[Table[{Text[i, g7A[i]]}, {i, 14}]1]1,
ImageSize -» 150],
Framede@
Graph[{6->1, 159, 1252, 2513, 1154, 4> 14,
854,455, 1053, 357}, VertexLabels » "Name",
EdgeStyle -» Magenta, ImageSize -» 150],
Framed@Graph[{6 >1, 158, 1252, 2511, 11 - 4,
412,854,456, 103, 310},
VertexLabels -» "Name", EdgeStyle -» Green, ImageSize - 150]
}, Spacer[10]]

6F 7 ]
1
p 1 8 6 12 10

8 12

6 14

We mention the Riemann—Roch theorems, whose main subject is the concept of genus.
These theorems are the backbone of complex curve theory and even real space curve theory.
However, for real plane curves the important invariant of a curve is the degree, not genus, so
we do not dwell on these theorems.

21

The Mathematica Journal 20 © 2018 Wolfram Media, Inc.



22 Barry H. Dayton

B 6. Fractional Linear Transformations

An important tool in [1] is utilizing the projective linear transformations. We follow
Abhyankar [6] by keeping the discussion mainly in the affine realm, where it is easier
to compute, viewing these as fractional linear transformations.

A fractional linear transformation is a function ® defined by

appx+apytai anxtapytaxp
O(x, y) = ,
d1x+d2y+d3 d1x+d2y+d3

where a;; and dj are real (or sometimes complex) numbers in the form of integers or machine

numbers. Setting the common denominator to zero defines a line, so the domain of ® is the
affine plane minus this line.

The notation suggests describing the fractional linear transformation compactly by
the matrix:
app dp aps
A=|ay axn axn
di dy ds
This is more compact as well as useful, as the fractional linear transformation is actually
given by the two-step procedure using matrix multiplication:

X

u v
(x’y)'—)A y :(u,V,W)H(—,—).
1 w w

In the Wolfram Language, this becomes the function £1t.

£1t[{x_, y_}, A_] := Module[
{u, v, w},
{u, v, w} =A.{x, v, 1};
If[Abs[w] <1.%"-6, {}, {u/w, v/w}]
1

To the extent that we want to work completely in the affine domain, we note that the
Wolfram Language also includes fractional linear transformation under the name linear
fractional transformation. So one can also use the Wolfram Language Transfor:-
mationFunction to evaluate a fractional linear transformation.

Here is an example.

A={{1, 0, -2}, {O, -1, O}, {O, 1, 1}};
A // MatrixForm

1 0 -2
0 -1 0
0 1 1
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f£1t[{2, 1}, A]

In [1], to keep things simple we assume the matrix A is invertible. Matrix multiplication
corresponds to composition of transformations; in particular, since our matrices are invert-
ible, so are our fractional linear transformations.

Somewhat unique to [1], we have our transformations work on curves as well as points.

FLT[f_, A_, x_, y_] :=Module][
{fh, gh, z},
fh = Expand[z“tDeg[f, x, y] (f/. {x>x/2, y~>y/2})];
gh = Expand[fh /. Thread[{x, y, 2} » Inverse[A].{x, ¥y, 2}]];
Chop[gh /. {z > 1}, 1+"-10]
1

The fractional linear transformation ® takes the curve (i.e. the bivariate polynomial f) to a
curve g such that g(®((x, y)) = 0 whenever f(x, y) = 0.

Here is an example using A as defined before.

f8=x"2+y"2-1;
g8 = FLT[f8, A, x, y]

3+4x+x°+6y+4xy+4vy?

The relationship between FLT and £1t is shown by the following example; £1t maps
points to points and FLT maps curves to curves. The image of a point under £1t is a
point of the image of the curve under FLT.

g8 /. Thread[{x, y} » f1t[{.6, .8}, A]]

-1.11022x 10716

In this case, the transformation takes the circle to a conic, a parabola. One can use the various
transformations given by the Wolfram Language. We provide some additional ones in [2]
(such as k1lRotation, which takes line k to line /, and kReflection, the reflection
about the line k) as Euclidean transformations and kShear as an affine transformation.
As an example, we give k1Rotation.

klRotation[k_, 1_, x_, y_] :=Module|
{a, b, p, T, R},
a = Coefficient[k, {x, y}1;
b = Coefficient[1l, {x, y}];
If [Abs[Det[{a, b}]] < 1.%*"-9,
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Print["No affine center"]; Return[Fail]
1i
p={x, y} /. First@eNSolve[{k, 1}];
T={{1, 0, -p[[2]1]1}, {O, 1, -p[[2]]}, {O, O, 1}};
R = Join[Append [N[RotationMatrix[{a, b}]], {0, 0}],
{{o}, {0}, {1}}, 2];
Inverse[T] .R.T
1

More importantly, we have two fractional linear transformations that act on the projective
plane. The transformation ip2z takes the infinite point p to the origin and the original infi-
nite line to the x axis. The transformation iTransform specializes the projective plane
by removing the line / from the affine plane and making it the infinite line; the new x axis
is the original infinite line.

ip2z[ip_, x_, y_] :=Module|[
{p, B},
If[Length[ip] # 3,
Print["not infinite point"]; Abort|[],
If[Abs[ip[[3]]] > 1.%x"-6,
Print["not infinite point"]; Abort[],
p = Chop[ip, 1.*"-6]

N L

]
B = {

{1.414213562373095~, 0.7, 0.7},

{0.7, 0.7, 1.4142135623730957},

{0.7, -0.7071067811865475~, -0.7071067811865475" }

}i

If[Abs[First@p] <1.%"-6, Return[B]];
B.klRotation[line[p, {0, 0}, x, ¥], %X, x, v]]

As an example, we are interested in the behavior of the infinite point of the preceding curve g8.

g8=3+4x+x2+6y+4xy+4y?%;
ip8 = infiniteRealPoints[g8, x, y]

{{-0.894427, 0.447214, 0.}}

h8 = FLT[g8, ip2z[First@ip8, x, y], %, y]

2.5%x?-0.894427y-3.57771xy+1.05279 y?

The Mathematica Journal 20 © 2018 Wolfram Media, Inc.



A Wolfram Language Approach to Real Numerical Algebraic Plane Curves 25

ContourPlot[{h8 == 0}, {x, -1, 1}, {y, -.5, .5},
ContourStyle » Blue, ImageSize » Small, Axes - True]

04+

02+

00

02+

—04F)

-10 -05 00 0.5 10

The transformation ip2z puts the infinite point at the origin of this plot, which shows the
infinite line as the x axis. It appears that the parabola g8 is actually tangent to the infinite
line at the infinite point. To check, we can calculate the tangent line to 48 at the origin to
see it is the x axis, that is, y = 0.

tLine[h8, {0, 0}, x, y]
0.+1.y

There are various alternate versions of the functions £1t and FLT to handle working pro-
jectively. For example, £1ti accepts infinite points as input or returns them as output.

The main application for iTransform is that we can now find all complex projective
singular points or intersection points in one step by picking a random line that, with high
probability, will not go through any of the finite number of singular or intersection
points. For details, see [1].

m 7. Applications to Geometry

In [1], the theory so far is applied to recover known results in lower-dimension geometry.
First we consider nonsingular conics in the form

a X’ +axy+azy*+azx+asy+ag=0,

where the a; are integers or machine numbers. We identify them as to type (hyperbola,
parabola, ellipse) and write them in standard form. We parameterize them by rational or
trigonometric functions, find their foci and directrix or conversely, construct them from
arbitrary foci and another appropriate value such as the semilatus rectum.

We then discuss the numerical theory for nonsingular cubics. Unlike the number theory
case, which is one of the most difficult subjects in mathematics, the numerical case is very
simple. We give a function to find the numerical inflection points; then, with a choice of
inflection point, we have a deterministic black-box function to calculate the Weierstrass
normal form and j-invariant. The j-invariant almost completely classifies numerical cubics
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relative to fractional linear transformations, that is, relative to the real projective linear
group: there are two conjugate classes for each j. Under the complex projective linear
group, the classification is complete.

We end with Cayley’s theorem: an irreducible curve of degree d with &2(‘1_2) double

points has a rational parameterization. This means that with parameter ¢, the parameteri-
zation components have the form of a polynomial in ¢ divided by another polynomial in
t. The coefficients are not, however, expected to be rational numbers; Cayley only
promises algebraic numbers. Thus in practice, this parameterization works best with
machine-number coefficients. We illustrate by parameterizing the hypocycloid.

ox =
-((0.3946283194078104\
(—0.19419306729140778\+O.5008120016643439\t+
2.342269796866374" t2 +2.100529395812897" t3 +
1.0 ¢4)) /

(0.16466880387583177\ +0.6038407805584985" t +
1.3651593716897787" t2+1.4880474310771863~ t3 +
l.\t‘l));

oy =

-((0.5577361971418063\

(0.04150396033309846‘ +0.5103350783662945" t +
2.153089385284384" t2 + 3.3532487723268503" t3 +
1.°¢4)) /

(0.16466880387583177" + 0.6038407805584985" t +
1.3653393716897787\t2+1.4880474310771863‘t3+

1.7 t%));

ParametricPlot[{¢x, ¢y}, {t, -20, 20}, PlotStyle - Black,
PlotRange -» All, Axes - False, ImageSize - Small]

The gap occurs because we only plotted the parameter on a closed interval; in theory it
should run from —oo < ¢ < co. Details of how the parametric functions were calculated
are in [1].
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B 8. The Mobius Band Model of the Real Projective Plane

Topologists often think of the real projective plane as a Mdbius band where the entire
outer boundary is squashed to the affine origin. Alternatively, the Mobius band can be
viewed as the real projective plane with a tiny disk about the affine origin removed, the
boundary of that disk being the boundary of the Mobius band. In either case, the center
line of the band is the infinite line.

It is common to construct a Mobius band out of a strip of paper. Here is a slightly different
but useful way, but shown in Figure 1 by a physical deconstruction: cut from a boundary
point to the center (infinite) line, then cut around the center line.

A Figure 1. Constructing a Mébius band.

This gives a long skinny strip that we can identify with the real projective plane shown in
Figure 2. The vertical yellow lines are the negative and positive y axes, and the standard
quadrants of the affine plane are numbered in Roman numerals.

32 : I infinite line v | infinite line I :
0.3F lower half plane . upper half plane , e
02F negative x axis positive x axis negative x axis 1
01F 1
00 Z€er10 zero
3 -2 -1 0 1 2 3

A Figure 2. The real projective plane.

We implement the mappings from the projective plane to this strip, called the rectangular
hemisphere in [1] for reasons given there, and from the strip to the Mobius band by the
following functions.

1. Map from affine plane to rectangular hemisphere.

moebiusPhi[p ] := If][
Length[p] = 2&&p[[2]] # O,
{ArcTan@@N[p], N[ArcTan[Norm[p]] /Pi]},
Echo[p, "ambiguous point "]; {}

]
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2. Map from rectangle to Mobius band.

moebiusBAux[t_] := Module|

{a=N[Sqrt[2] -1]},

{
Cos[2t+Pi] / (l+acCos[t]),
Sin[2t+Pi] / (1+acCos[t]),
1/ (l+acCos[t+Pi/2])

}

1

moebiusB[s_, t_] := t moebiusBAux[s] + (1 -t) moebiusBAux[s + Pi]

3. Plot M6bius band with infinite line.

moebiusPLMB := Show[
ParametricPlot3D[moebiusB[t, s], {t, -Pi, Pi},
{s, 0, .5}, Mesh - None, PlotStyle -» Opacity[0.8]],
ParametricPlot3D[moebiusB[t, .5], {t, O, Pi},
PlotStyle -» {Thick, Blue, Dashed}],
Boxed -» False, Axes - False]

A simple example is the hyperbola x> — y> — 4; we give the construction. The infinite points
are ipl = {1, 1,0} and ip2 = {1, —1, 0}. Unfortunately, even this simple example takes up a
great deal of space, so we will just get started. We consider the part of this hyperbola in the
second quadrant of the affine plane and plot it on the M6bius band. We start at the infinite
point {—1, 1, 0} and trace to the infinite point {—2, 0}, which is an ambiguous point.

f9=x"2-y"2-4;
The affine part is well known, so we inspect the obvious infinite points {1, 1, 0}, {1, —1, 0}.
A9 = ip2z[{-1, 1, 0}, x, y]

{{1., 1., 0.}, {O., O., 1.41421}, {0.5, -0.5, -0.707107}}

A technicality is that ip2z uses the line function, which could randomly differ by a
multiple of —1. We need a specific choice, so we set the value of A9.

A9 = {{-1.0000000000000002~, -1.0000000000000002, 0.7},
{0., 0.7, 1.4142135623730957},

{-0.5000000000000001", 0.5000000000000001",
-0.7071067811865475" }};

h9 = FLT[£9, A9, x, y]

2.x+1.xy-2.y?
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Again, the x axis represents the infinite line for £9, and the origin the infinite point.

RegionPlot[{h9 >0, x*2+y~2< 1}, {x, -1, 1}, {y, -1, 1},
Axes - True, ImageSize » Small]

10F ‘/

05+

00

-05+

N

-10kL ‘ ‘ 4
-10 =05 0.0 0.5 1.0

To connect this plot to the affine curve, find the points where h9 intersects the circle
of radius 1.

bp9 = {x, y} /. NSolve[{h9, x*2+y"2-1}, {x, y}, Reals]
{{0.514587, 0.857438}, {0.724617, -0.689152}}

Now map these back to the affine plane to see that it is the first point in bp9 that is related
to a point in the second quadrant.

ap9 = flt[#, Inverse[A9]] & /@bp9

{{-2.78082, 1.93209}, {2.08849, -0.601504}}

So the part of the hyperbola in the second quadrant can be traced using two parts: the part
from the x intercept {—2,0} to the point ap9[[1]] and the image of the part from
bp9 [ [1]] to the infinite point represented by {0, 0, 1}.

L91 = f1t[#, Inverse[A9]] & /@

pathFinderT[h9, {0, 0}, First@bp9, .05, x, y];
J91 = pathFinderT[f9, First@ap9, {-2, 0}, .2, x, yv];
K91 = Join[L91, J91];

We see no error messages, so we assume the tracing went correctly. Now apply moebiusPhi.

01 = moebiusPhi [#] & /@K91;

{3
{-2, 0}
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Here we get some warning messages. We have to set the ambiguous points correctly and

can then draw Figure 3.

So we have drawn this section of the hyperbola on the rectangular hemisphere.

05F
04¢
03F
02¢F
0.1F
00E

Q1[[1]] = {N[ArcTan[-1, 1]], .5};
Q1[[-1]] =N[{Pi, ArcTan[2] /Pi}];

~—

-3

-2

-1

0

1

2

3

A Figure 3. The part of the hyperbola in the second quadrant on the rectangular hemisphere.

M1l = moebiusB eeeQl;
Show[Graphics3D[{Thick, Black, Line[M1]},
ViewPoint » {-1.09, 2.53, -1.97}], moebiusPLMB,
Boxed -» False]

The reader may wish to attempt the other sections of the hyperbola; the one in the third
quadrant is similar to Line [Q1], and the parts in the first and fourth quadrants can be

done together since the x intercept (2, 0) does not give an ambiguity (Figure 4).

0.5
04
03
0.2
0.1
0.0

__

N—

N—

-3

-2

-1

0

1

2

A Figure 4. The full plot of the hyperbola on the hemisphere looks like this.
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Finally, we lift to the actual M6bius band using moebiusB and plot (Figure 5).

A Figure 5. The hyperbola on a Mébius band.

This last example was simple! From now on we just show the final output (Figure 6).

A Figure 6. Here are two Mdbius plots of lines, the first a line through the origin, and then a typical line.

Next, Figure 7 shows two affinely parallel lines meeting at an infinite point and three circles;
the black one contains the origin in its interior.

A Figure 7. Affinely parallel lines and three circles.
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In Figure 8, we plot the rational function y = )7()%)' This has two infinite points: a singular

one at (0, 1, 0) and a regular one at (1, 0, 0).

A Figure 8. Plot of a rational function.

Experimenting with these plots we see, as the fundamental theorem tells us, that these
curves are comprised of loops, that is, simple closed curves. Draw these yourself using the
pattern in our hyperbola example that stops at the rectangle, print it out (preferably in land-
scape orientation with smaller aspect ratio), then cut it out, twist and tape together the two
copies of the infinite line to make the Mobius band. Now cut out a loop. Two things can
happen: either you get two pieces, one of topologically a disk and the other not, or only
one piece, as in the classic example of cutting a Mobius band along the center line.

In the first case, we call the loop an oval, and the complementary piece shaped like a disk
is called the interior. In the other case, we call this a pseudo-line. Notice both kinds of lines
have this property. One easy way to tell, without going through the trouble of constructing
a physical Mobius band, is that an oval meets the infinite line (or any other line for that
matter, since up to fractional linear transformations all lines are the same) in an even
number of points (possibly zero). A pseudo-line meets the infinite line in an odd number of
points. Again, since in the projective plane all lines are equivalent, two pseudo-lines
always meet in an odd number of points, in particular, at least one.

From Bézout’s theorem, a curve of even degree meets any line in an even number of
points. A consequence is that a nonsingular curve can contain at most one pseudo-line.
Further, if the degree is even, each loop of the curve must be an oval. On the other
hand, each nonsingular curve of odd degree must contain exactly one pseudo-line and
possibly some ovals.

This last paragraph is in italics because it essentially tells us the topological structure of
nonsingular plane curves.
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B 9. Diamond Diagrams

We can now find the specific topological (and even some geometrical) structure of any
particular real plane curve, at least up to degree six. We concentrate on the Newton’s
hyperbola family of curves introduced in Section 2. These are not well conditioned, so
they present interesting problems. It may be necessary to go to arbitrary-precision
numbers to get further with these, although for well-conditioned curves I have used the
methods of [1] for curves up to degree nine.

We first consider Harnack’s theorem [7] and related problems from Hilbert’s 16 problem,

Part 1 [8]. Harnack’s first theorem states that a nonsingular curve of degree d can have at
(d-1)d-2)
2

concepts in topology, but a heuristic proof is easy from Bézout’s theorem, especially given
the ideas of ovals and pseudo-lines in the last section.

most m = + 1 topological components in P2. A rigorous proof requires advanced

As mentioned in the last section, an oval is a loop that cuts the Md&bius band in two
parts, one topologically a disk. That part is known as the interior of the oval. It is possi-
ble that the interior of an oval contains another oval. Consider the following example
with fractional linear transformation given by matrix ZapY that cuts the y axis out of
the affine plane.

Zapy = {{O, 1, 0}, {0, O, 1}, {1, O, O}};

gc2 = gaussCurve[(z"2-1) (2"2-4), x, vy, 2]
4-5x2+x*+5y°-6x%yr+yt

d2 = FLT[gc2, Zap¥, x, Y]
1-6x2+x*-5y?+5x?y%+4y*

Labeled[ContourPlot[d2 == 0, {x, -3, 3}, {v, -2, 2},
ImageSize » Small], Text@"oval inside an oval"]

2F 0

oval inside an oval
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We say the smaller oval has depth 2. If there were another oval inside that oval, it would
have depth 3, and so on. It is easy to prove that the maximal depth of an oval in an irre-
ducible curve of degree d is d/2; simply consider a line through a point in the interior of
the deepest oval and apply Bézout’s theorem. The next example generalizes this.

gd5 = gaussCurve[(2"2-1) (2"2-4) (2+5), x, vy, 2];
d5 = FLT[gd5, ZapY, x, y]

1-10x2+5x*+5y-30x?y+5xty-
5y2+15x?y?2-25y3+25x?y3+4y*+20y°

gd6 = gaussCurve[(2"2-1) (z2"2-4) (2°2-9), x, vy, 2];
dé = FLT[gd6, ZapY, x, y]

1-15x2+15x* -x%-14y?2+84x?y?-14x*y?+49y*-49x?y*-36y°

Text@
Row [
{Labeled[ContourPlot[d5 =0, {x, -4, 4}, {y, -2, 2},
ImageSize » Small], "oval of depth 2, degree 5"],
Spacer[20],
Labeled[ContourPlot[d6 =0, {x, -4, 4}, {y, -2, 2},
ImageSize » Small], "oval of depth 3, degree 6"]}]

2F 27
1+ 1+
0 : | 0 7 @
-1t — B 1t
2L ‘ ‘ ‘ 4 2b ‘ ‘ ‘ J
-4 22 0 2 4 -4 2 0 2 4
oval of depth 2, degree 5 oval of depth 3, degree 6

Continuing this way, we can in principle construct an oval of depth d/2 using a curve of

degree d for d even and a curve of depth % for d odd.

An M-curve is a nonsingular curve with the maximum number m of components. To best
show the possible arrangements of the components of an M-curve, we use diamond
diagrams. We have two main types, first the Descartes—Viro diagrams (or more simply
the Viro diagrams), which depend on the signs of coefficients of the equation f(x,y) of
the curve [9]. These diagrams turn out to be in 1-1 correspondence with the Newton
hyperbolas. We also use Gauss diagrams, which show the complementary positive and
negative value sets of f(x, y).
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The code for drawing diamond diagrams is very long and explained in [1] and [2]; in this
article we do not give code, only graphics.

For the Viro diagram in the first quadrant including the positive axes, the color of the dot at
the point (i, j) is green if the coefficient of x’ y/ is positive and red if it is negative. We do
not allow equations with any term O for a Viro diagram. The curve then separates the red
and green lattice points.

As an example, consider Newton hyperbola 413 (Figure 8).

nh413=-1+x-0.2x2+0.008x3-y-xy-0.2x>y+0.2y%-
0.2xy%2+0.008y3;

AN >

Figure 9. The Viro diagram, region plot, graph and diamond diagram for the function nh413.

In this case, the Viro diagram and Gauss diagram (not shown) are the same, other than the
color of the lattice points; orange indicates where f > 0 and brown where f < 0. A graph
is given using only the infinite points, which are labeled «, B, v, d. The outer boundary of
the diamond represents the infinite line. The diamond diagram indicates that: (1) on the
positive x axis the curve crosses three times; (2) it does not cross the negative x axis; and
(3) it crosses the positive y axis once and the negative y axis twice. The Viro diagram
gives the maximal number of crossings according to Descartes’s theorem on each positive
and negative x, y and z axis, viewing f as a single-variable polynomial restricted to these
lines. In the projective plane, the z axis is the line of infinite points {x, y, 0} where infinite
points in the first/third quadrant are positive and those in the second/fourth quadrant are
considered negative in this context.

In this example, the crossing points are given as follows.
xCross = {x, y} /. NSolve[{nh413, y}, {x, vy}, Reals]

{{1.33975, 0}, {5., 0}, {18.6603, 0}}

yCross = {x, y} /. NSolve[{nh413, x}, {x, y}, Reals]

{{0, -29.1421}, {0, -0.857864}, {0, 5.}}

35
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Let @, 3, y be the infinite points.

Normalize /@ infiniteRealPoints[nh413, x, y]

{{-0.0384901, -0.999259, 0.},
{-0.999259, -0.0384901, 0.}, {-0.707107, 0.707107, 0.}}

The Newton hyperbola 613 is more complicated (Figure 10).

nh613 = newtonHyperbola[613, x, y]

~1+x+0.2%x%°-0.008x%x°-y+xy+0.2%x%y-0.2y?+0.2xy>-0.008y>

raw Viro diagram

A Figure 10. The Viro diagram for the function nh613.

We see there are three ambiguous cells, that is, four lattice points {(i, j), (i + 1, j), @, j+ 1),
@+1,j+ 1)} with (@), (@+1,j+1) one color and (i + 1, j), (i, j+ 1) the other. There are
two different possible ways to connect regions given by dashed curves in the colors aqua and
magenta. Without further investigation, there is no a priori way to determine the correct
choice; a slight perturbation of the curve can affect this. A RegionPlot suggests an answer.

RegionPlot[nh613 > 0, {x, -10, 10}, {y, -10, 10},
Axes -» True, ImageSize - Small]

10F
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Checking infinite points and critical points confirms that there is nothing unexpected
going on outside the region plot, so we get the Gauss diagram and graph (Figure 11).

A Figure 11. Gauss diagram and graph.
In this case, a tiny perturbation changes the geometry and the Gauss diagram (Figure 12).

h10 = nh613 + .8;
RegionPlot[hl0 > 0, {x, -10, 10}, {y, -10, 10},
ImageSize -» Small]

10F

A Figure 12. The region plot and Gauss diagram for the perturbed nh613 are different from nh613.
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Originally, the negative complement was connected and the positive complement had
three components; after the perturbation, it is the positive complement that is connected.
Luckily, we did not need to change any values of the lattice points when changing from
the Viro diagram to the Gauss diagram. In general, the user will need to do that. See [1] or
some later examples.

Now that we have explained our diagrams, we can show some M-curves. Hilbert gave
a series of M-curves for each degree that are given by Viro diagrams and hence exist
by the work of Viro. We simply give the diagrams here (Figure 13). For more informa-
tion see [1].

acas Qt&tk
‘0303 by

d=5

A Figure 13. Viro diagrams of M-curves of degree d.

Hilbert suggested other possibilities with more nesting in degree six.

Many more details on these diagrams and Hilbert’s 16™ problem [8] are given in [1].

We now have all of our tools. In [1] we illustrate more complicated examples, two of them

the curve (x2 +y2)> — 4 x3y2 and the Newton hyperbola 336941. Both of these curves have
interesting behavior at or near the infinite line, so a contour plot, even with large scale,
cannot show everything.
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® 10. Conclusion

At present, we have shown how to analyze and plot curves of degree up to six in various
ways. For well-conditioned curves, these machine-number methods often work with higher
degree; the author has had success with curves of degree eight and nine. To adequately deal
with Newton hyperbolas of degree greater than six, one would perhaps like to rewrite some
of the code to use arbitrary precision.

Our forthcoming book is a first attempt to apply numerical methods to a formerly abstract
subject. There is a lot more that can be done in this area. We hope the book will be a start-
ing point.
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