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A comprehensive discussion is presented of the closed-form solutions
for the responses of single-degree-of-freedom systems subject to
swept-frequency harmonic excitation. The closed-form solutions for
linear and octave swept-frequency excitation are presented and these
are compared to results obtained by direct numerical integration of
the equations of motion. Included is an in-depth discussion of the
numerical difficulties associated with the complex error functions and
incomplete gamma functions, which are part of the closed-form
solutions, and how these difficulties were overcome by employing
exact arithmetic. The closed-form solutions allowed the in-depth study
of several interesting phenomena. These include the scalloped
behavior of the peak response (with multiple discontinuities in the
derivative), the significant attenuation of the peak response if the
sweep frequency is started at frequencies near or above the natural
frequency, and the fact that the swept-excitation response could
exceed the steady-state harmonic response.

Notation

a complex variable

b complex variable

By dimensionless composite parameter
c complex variable

erf(z) error function

erfi(z) imaginary error function

fs linear sweep rate in Hz per minute
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fstart nonzero start frequency for an octave sweep rate
fn natural frequency in Hz

i V-1

p complex variable

q complex variable

Ry octave sweep rate in octaves per minute

r complex variable

t time (also used as a dummy integration variable)
Fmax upper limit of search for peak values

fnatye,:  time at which instantaneous frequency of excitation for linear sweep equals w,,
hatoe  time at which instantaneous frequency of excitation for octave sweep equals w,

u new independent variable for octave sweep

Upeak piave u value at which instantaneous frequency of excitation for octave sweep
equals wy,

() single-degree-of-freedom system displacement response

(?) single-degree-of-freedom system velocity response

V(1) single-degree-of-freedom system acceleration response

v(0) initial displacement

v(0) initial velocity

z complex variable

o octave sweep rate in octaves per second

a composite parameter for closed-form solution for linear sweep
B composite parameter for closed-form solution for linear sweep
0% composite parameter for closed-form solution for linear sweep
0 composite parameter for closed-form solution for octave sweep
010)) general phase function

() composite parameter for closed-form solution for octave sweep
do initial phase value

I'(a,z) incomplete gamma function

T dummy integration variable

7l composite variable proportional to Ry

Qr composite parameter for closed-form solution for linear sweep
Q- composite parameter for closed-form solution for linear sweep
Wn natural frequency in radians per second

Q linear sweep rate in radians per second per second

¥(0) generalized sweep forcing function

X multiplication

Zt composite parameter for closed-form solution for octave sweep
z composite parameter for closed-form solution for octave sweep
4 critical damping ratio

¢ dummy integration variable
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H 1. Introduction

Harmonic excitation is a fact of life in systems with rotating machinery, such as liquid
rocket engine turbopumps, spacecraft momentum wheels, aircraft turbojet engines,
electric plant steam turbines and liquid-transport turbine compressor trains. Associated
with high performance are high shaft speeds and the resulting excitation caused by imbal-
ances in the rotating components and imperfections in the shafts and ball bearings.
Furthermore, phenomena such as shaft whirl and rotor dynamic instability are critical
design aspects. Although performance requirements dictate design parameters such as
shaft speed, avoiding certain speeds due to dynamic interactions within the system is also
a critical design consideration. Completely avoiding critical speeds may not be possible.
For example, if the critical speeds are below the operational shaft speed, then at startup
and shutdown, the rotation rate sweeps through them. The magnitude of the response is a
function of the sweep rate, system damping and modal gains at the excitation and
response locations. In addition, bearing imperfection can produce excitation above and
below the operational frequency, and responses to these imperfections are also a function
of the sweep rate associated with the startup and shutdown of the system. In addition to
rotating machinery considerations, frequency sweep effects are a critical aspect of
harmonic base shake vibration testing, as employed in the aerospace industry, for
example. Therefore, it has been recognized that being able to predict the vibration
response of systems to swept-frequency excitation is critical (e.g. [1-7]).

In 1932 Lewis presented the first response of a single-degree-of-freedom system to linear
frequency sweep excitation [1]. He derived an expression for the envelope functions that
contained the peak values. The limited quantitative results presented by Lewis were
obtained by graphical integration for various levels of damping and sweep rate. Lewis
concluded that the greater the sweep rate, the larger the attenuation relative to steady-state
response, and the higher the instantaneous frequency of excitation would be at which the
peak envelope response occurs. Fearn developed in 1967 [2] an algebraic expression for the
time at which the peak displacement response of a single-degree-of-freedom system
subjected to a linear frequency sweep would occur, and an approximate magnitude of the
displacement response. Until Cronin's dissertation [3], published in 1965, analytical studies
were generally restricted to linear frequency sweep, and exponential sweep-excitation
studies were mostly experimental in nature. Cronin did provide results for relatively slow
sweep rates; his work included analog studies involving linear and exponential excitation
frequency sweeps. In addition to spring-mass single-degree-of-freedom systems, work has
also been done on unbalanced flexible rotors whose spin rate swept through its critical
speeds, e.g., [4]. In these types of systems the modes of vibration would be a function of the
spin rate and the resulting gyroscopic moments. In 1964 Hawkes [5] described an approach
for obtaining the envelope function of the response of single-degree-of-freedom systems
subjected to octave sweep rates. He credits the solution approach to an unpublished
document written in April 1961 by T. J. Harvey. From the publication, it is unclear how all
required initial conditions were obtained for the resulting differential equations that were
solved by numerical integration. The results, however, are consistent with subsequent work
published by Lollock [6], who extended the work for both linear and octave sweep rates to
useful damping and natural frequency ranges.
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In approaches where the envelope function is used to identify the peak response, several
factors need to be considered. First, the peak of the envelope function may not coincide
with the peak of the time history response; this could lead to an incorrect estimate of the
instantaneous excitation frequency that coincides with the peak response. The discrepancy
would be greatest for low-frequency systems and decrease as the natural frequency
increases relative to the starting frequency of the sweep. Another peculiar feature of this
approach is that, whereas the original equation of motion is a second-order differential
equation with two initial conditions (say, on the function and its derivative), the envelope
equations turn out to be two coupled second-order differential equations, each of which
requires two initial conditions, and there does not appear to be any way to derive these
four necessary initial conditions from the original two for the equation of motion. There
are physical arguments that one could make regarding what the initial conditions ought to
be, but there does not appear to be any way to mathematically derive them from the
original initial conditions.

It is the purpose of this article to extend and complement previously published work by
proposing explicit closed-form solutions to both linear and octave frequency-sweep exci-
tation. This allows the computation of the peak response, not just the peak of the envelope
function. The closed-form solutions involve error functions and incomplete gamma func-
tions of complex arguments, computations of which require numerical precision
exceeding that which today's computers can provide. The approach used to overcome this
will be described. The closed-form solutions are compared to solutions obtained by
numerical integration of the equations of motion. Having the ability to compute closed-
form solutions, studies were performed to explore the impact of the frequency separation
between the start frequency of the sweeps and the natural frequency of the system. In
addition, results are presented showing the fine structure of the peak response in relation
to the steady-state resonance response as a function of natural frequencies and critical
damping ratios. This includes some unexpected results, in that the peak response curves
exhibit highly nonlinear behavior with discontinuities in the derivative.

B 2. Equations of Motion

The differential equation for the motion of a single-degree-of-freedom system driven by
harmonic excitation with a linear frequency sweep is given by

$(1) +2 £ wn 3(0) + wj (1) = sin(Q 12/ 2), (1)

where { is the critical damping ratio, w, is the natural frequency, (), is the sweep rate in
radians per second per second, and the dots indicate differentiation with respect to time.
Assume, without any loss of generality, a sweep starting frequency of zero, a force mag-
nitude equal to the mass of the system and initial conditions of y(0) = 0 and y(0) = 0. The
differential equation of motion of a single-degree-of-freedom system driven by harmonic
excitation with an octave frequency sweep is

(1) +2 £ wa y(0) + w;, y(@) = sin(By 2"~ By), 2)
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where By = 2 7 fiare / @ 1l0g(2), « is the octave sweep rate in octaves/sec, and fyar is the
nonzero start frequency of the sweep. As for the linear sweep case, assume a force magni-
tude equal to the mass of the system and initial conditions of y(0) = 0 and y(0) = 0.

It is helpful to also write both the linear sweep and the octave sweep equations in the
following form:

(1) +2 L wy 3(0) + wy (1) = sin((0) — ¢o), 3)

where ¢(#) is a general phase function and ¢q is the initial phase. Both the linear and
octave sweep equations of motion can be put into the following more general form,
which will be useful for constructing closed-form solutions:

() + 2 Lw, 3(1) + wi y(t) = V(). 4)

B 3. Closed-Form Solution: Linear Sweep

The solution to equation (4) can be expressed as

eStwn ﬂ‘l’(r) efTwn sin(\/ 1-8 w,(t—7) ) dr

y(t) = . )
w1 =22

For linear sweep, this becomes

NOES
[64 fn j(; esTon sin(ﬂ wy(t = T)) sin[ QS;2 ] dr) / (w,, ﬂ ) ©

If the sine terms are expanded in terms of complex exponentials, then the resulting integrals
can be computed in terms of the error function, erf(z), and the imaginary error function,
erfi(z), each with complex argument z, where erfi(z) = —i erf(z). Conceptually, the process
proceeds as follows:

1. After converting the sine terms to complex exponentials, expand out the products of
sums of exponentials, splitting the integral accordingly into a sum of several inte-
grals of exponentials and pulling the parts of each integrand that do not depend on
the integration variable outside the integral; the resulting integrals will all have the

't 2
form ﬁ) ed bt gt

2. With some algebraic manipulation, these integrals can be put into the form
ﬂe"(l’ ™4 dr or Lte”(l’ ™4 dr, where p, g and r are, in general, complex valued.

3. Choosing z = p T + g z as the new integration variable, the first of these integrals becomes:

Iljer i o=t dz = Il;er( e dz— [ e = dz) = ‘g e'(erf(p t + q) — erf(q)).

The Mathematica Journal 21 © 2019 Wolfram Media, Inc.



6 C. Christopher Reed and Alvar M. Kabe

An identical procedure can be applied to the second of these integrals, leading to an
expression involving imaginary error functions. Performing the indicated calculations
(including the associated algebra) gives the following closed-form solution for the linear
frequency-sweep excitation case. In the interests of compactness, it is helpful to first
introduce the following auxiliary parameters:

0 — Vi=¢ ), 0 - (Vi-¢ ~¢)o,

Nk Nk

Then the closed-form solution for the linear sweep case can be written as

o) = — ! (I;i) N (@t (ﬁ(§2+;—)+y1))(

>

w12
G

=ghandy = w, 1-22.

AYRYS
ol (B+217) (erf(ﬂ— +iQ) - erf((i) 1A Qs +Q7+ iﬂ+)) +
5 :
- 1+ ——
626l+l[>7 (erf(ﬂ+ +1i Q_) — erf(—( 5 ) t QX +i10 + Q+)) + (7)

&2 (a+i(ty+B )

L
(erﬁ(Q‘+iQ+)—erﬁ(—(%)t\/QS +Q‘+iQ+))+
L
2B (erﬁ(m +iQ—)—erﬁ((%)mms +iQ +Q+)D.

In order to verify that this equation for y(#) does in fact satisfy the equation of motion, we
make use of the fact that the derivatives of the error function and the imaginary error

2¢° and %erﬁ(x) = 2% Then substi-

Vo Vr

tuting equation (7) and its derivatives into the equation of motion yields an expression
involving all of the original erf and erfi functions, plus a number of terms that do not
contain any error functions. Collecting terms with respect to the various error functions,
which is relatively straightforward although algebraically tedious, verifies that the coeffi-
cient of each of the error functions is zero, and that the terms that do not contain any error

function are given by the exponentials %erf(x) =

functions sum to sin(72 £}, /2), which is the forcing function on the right-hand side of the
equation. Since we are interested in the peak acceleration response, the second derivative
of the solution, equation (7), is the sought-after response time history.

B 4. Closed-Form Solution: Octave Sweep

For the case of octave sweep, it is helpful to make a change of independent variable in equa-

Ryt
tion (2) and let u = 22“0_, where R is the octave sweep rate in octaves per minute. With this
change of variable, the equation of motion for octave sweep in the # domain becomes

2nr(u— l)fstart) —0
u

u? p? () + u pp + 2 £ wp) y(u) + wjy y(u) - Sin( (8)
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The initial conditions become y(1) = 0 and y(1) = 0. Similarly, the expression for the second
derivative with respect to time becomes (in terms of derivatives with respect to u),
2

d-y
praats 2(u® $(u) + uyw)), ©)

where we define u = Ry log(2) /60. The advantage of making this change of variable, from
the perspective of numerical integration, is the absence of exponential functions of time in
the forcing function in equation (8); rather, the forcing function is a constant-frequency sine
wave, and the coefficients in the equation are at most quadratic in u. This greatly improves
the stability and reliability of the numerical integration.

It is helpful to write equation (8) for the octave sweep in the following more general form:

u? 2 () + u p(p+ 2 & wy) 3(W) + w; y(u) = (u) =0, (10)

where (1) = sin

(J—U—z” ”_ﬂl 5‘““). Then using the variation of parameters method, we obtain

the following expression for y(u):

1+ -1 |wn

u u
yu)= ————
Quwy -1 (1n
ron :2 = ;21 wn | i+ (21 wn
fw@f e fw(f)f —t
Substituting sin(zﬂ ”;1 ’“‘*‘“) for Y(u) and then expanding the sines in terms of complex

exponentials yields integrals of the form ﬁ"eaf &P dé, which are readily expressed in terms
of incomplete gamma functions after algebraic transformation. The incomplete gamma
function is given by I'(a,z) = fz “ta~1 et dt. For compactness, it is helpful to first

(eriv1-2 Jo (e=i1-2 e

introduce the following auxiliary parameters: Z* = P , L-= P )

f 27 fitart 6 %and(b:wny“l_(z

u

W) = ((2—2—(3+5 e =55+ ) ~(3+50) 6 y=6+C+D 6 - —0+(4+5 ”“’) /

i)
(@mpitw2io (einommd (1(Z-, —iufy) - T(Z-, -if\)) +
i (1(z-,if)-T(Z- iufi))) +
@ n)mffw(eiﬂﬁ (r(z+, —iﬁ.) - r(z+, —iufs)) +
e o2if (P(Z0, iufy) - T(Z, 1))

. Then the resulting expression for y(u) reduces to

(12)
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Ryt
Substituting u = 2 yields the corresponding solution in the time domain:

1
(@) =

pwa\ 1=

2-2-(3450)¢ 7~(3+50) (2%')_6“2”) ¢ () v

((2 mit (26) 1 (erovind (D2, 12 ) - T(2. ~i )+ "
1z i)z 2 )
@rpie Y (72 (r(z.-i7,)-1(z". —izﬁLﬁ)) +
ezt )tz i)

Computing the first and second derivatives of equation (13) and substituting them into the
original equation of motion, equation (2), one discovers, after some algebra and collecting
terms with respect to the various incomplete gamma functions, that the resulting equation can

be put into the form (\/ 1-22 +i\/ -1 ) X (alarge expression) = 0. Since we are

interested in oscillatory motion, which implies 0 < { < 1, it follows that \/ 1-2 +i \/ 22-1
reduces to zero, thereby showing that equation (13) does indeed satisfy equation (2).

B 5. Challenges in Separating Real and Imaginary Parts of
Closed-Form Solutions

The sought-after solutions are the real parts of equation (7) and equation (13). For the
linear sweep, series expressions exist for the real and imaginary parts of both erf(x +iy)
and erfi(x+iy): functions.wolfram.com/GammaBetaErf/Erf/19 for erf(x+iy) and
functions.wolfram.com/GammaBetaErf/Erfi/19 for erfi(x+iy) contain series expres-
sions in terms of Hermite polynomials as well as hypergeometric functions. In practice,
these series have very slow and highly nonmonotonic convergence properties, with the
partial sums fluctuating over many orders of magnitude as successive terms are added.
Furthermore, numerical evaluation of these partial sums using exact numbers as inputs
is extremely slow and computation time increases nonlinearly with the number of terms,
while evaluation using finite-precision numbers yields erroneous results. Since one does
not know ahead of time how many terms will be needed for an accurate computation,
this approach is impractical. As with the error function, there are similar numerical chal-
lenges in computing the incomplete gamma function of complex arguments. Accord-
ingly, the closed-form solutions will be computed using equations (7) and (13) directly.
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B 6. Challenges in Numerical Evaluation of the Exact
Closed-Form Solutions

There are also numerical challenges associated with the exact solutions because of the
complex arguments of the error and gamma functions. Recall that the error function is

given by erf(z) = # ﬁe*’z dt and observe that the magnitude (i.e. the absolute value)

of erfi(z) is the same as the magnitude of erf(z), since erfi(z) = erf(z) /i. However, once
the argument z becomes complex, we would need to integrate expressions of the form
e~ +iw?® = gw’=2iux—x* and the presence of the u? term in the exponent means that the
real part of the exponent grows very quickly with u, that is, as e*’. Since erf(z) is ana-
lytic in the complex plane, we can use the Cauchy integral theorem for line integrals [8]
to break the integral from O to (complex) z into two parts: the integral from (0, 0) to
(0, Im(z)) plus the integral from (0, Im(z)) to (Re(z), Im(z)). In the integral from (0, 0) to
(0, Im(z)), we are in effect integrating e*’ from u = 0 to u = Im(z). Thus, both erf(z) and
erfi(z) increase very quickly, as shown in the plots in Figures 1 and 2. In order for the
end result of the combinations of erf(z) and erfi(z) that appear in the exact solution to
sum to an oscillatory function, very precise cancellations are needed, meaning that
extremely high precision is needed in order to do the numerical evaluations correctly.

In[164]= Plot3D[Log[10, Abs[Erf[x+1Yy]]], {x, -500, 500},
{y, -500, 500}, PlotRange - All,
PlotLabel - log;o[Abs[erf[x + iy]]],
AxesLabel - {"Re", "Im"}, BaseStyle - 12]

10g10,(¢|§ff(x +iyl)

Out[164]=

A Figure 1. Plot of logy lerf(x + iy)|. Observe that over the range —500 < x < 500 and —500 < y < 500,
the magnitude of erf(x + i y) increases to about 10'%0:000,
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Inf168;:= Plot3D[Log[10, Abs[Erfi[x+1iy]]], {x, -500, 500},
{y, -500, 500}, PlotRange - All,
PlotLabel - log;o[Abs[erfi[x + iy]]],
AxesLabel -» {"Re", "Im"}, BaseStyle -» 12]

logo(lerfiCx + i )

Out[168]= “500

A Figure 2. Plot of logyg lerfi(x + iy)|. The behavior of erfi is similar to that of erf.

Because of the extremely high numerical precision requirements, Mathematica, which
implements arbitrary-precision arithmetic, was chosen to compute the closed-form solu-
tions. This made it possible to experiment with different levels of computational precision.
Some results were computed with hundreds or thousands of digits of precision. Depending
on the values of the input parameters (sweep rate, natural frequency, damping coefficient,
etc.), it was found that different levels of precision were needed in order to get reliable
results—not a very attractive idea, since it is impossible to know ahead of time how much
precision would be needed for any particular set of inputs. Fortunately, Mathematica also
allows exact arithmetic (using rational and/or exact symbolic numbers as inputs), and this
made it possible to use the exact analytic solutions in a computationally tractable form.
More specifically, one can evaluate functions numerically using exact arithmetic by means
of the following steps:

1. Convert all of the inputs to integers, rational numbers or exact symbolic numbers
such as Pi or E, or rational multiples thereof, all of which are treated as having infi-
nite precision.

2. Set the global variable $MaxExtraPrecision, which specifies the maximum
number of extra digits of precision, to Infinity. This enables as much extra
precision as possible.
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3. Evaluate the function of interest with the desired (exact) inputs. This will, in general,
yield a very complicated exact expression.

4. Evaluate this exact value to the desired number of digits of precision for the out-
put in order to get a recognizable numerical value, with the understanding that
any imaginary “dust” arising from this numerical truncation will be ignored. (For
the results presented later, we used 30 digits of output precision.)

m 7. Comparison of Exact and Numerical Solutions

To build confidence in the closed-form solution, the equation of motion was also solved by
direct numerical integration. For the linear sweep case, the results presented herein were
obtained from the closed-form solution, equation (7), as well as direct integration of the dif-
ferential equation of motion, equation (1). The closed-form solution was evaluated by first
rationalizing all of the inputs to (7) (other than integers, rational numbers and multiples of
e and 7) using Rationalize [input, 0] (which converts any number to rational form),
and then evaluating the real part of the result (to eliminate any very small imaginary
numbers) to the desired number of digits of precision (typically 30, 50 or 100) with the N
function. The numerical solution was obtained by integrating the equation of motion (1)
with NDSolve out to a some desired maximum time (typically some time after the sweep

frequency hits the natural frequency of the system), with InterpolationOrder — 5,
1 1
15x40x % " 5x40x 2 ]

27

MaxSteps —» 10" 8, and MaxStepSize - If[wy < 15 7,

Figure 3 shows the response time histories for a system with a natural frequency of 5 Hz
and a critical damping ratio of 1%. The sweep frequency was started at zero Hz and the
sweep rate was 150 Hz/min, or s = 5 7w rad / sec?. In the figure, the dashed orange line is
the closed-form solution and the dotted blue line is the direct numerical integration solu-
tion. Clearly, the differences are imperceptible. Table 1 shows the numerical values for
both solutions for a randomly selected subset of the time points used in plotting Figure 3.
Again, it is evident that for all practical purposes, the solutions are identical.

10 L e Numeric

ot

Exact

sk

A Figure 3. Acceleration response time histories of a single-degree-of-freedom system, f,, = 5 Hz,
excited by a harmonic force with a linear sweep rate frequency of 150 Hz/min.
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Time Exact Numeric
(sec) Acceleration Acceleration AAcceleration
0.761046 0.152084 0.152084 6.11288x 1078
0.823968 0.177004 0.177004 4.45193x 1078
1.28228 -0.059255 -0.059255 2.86608x 1078
1.88316 -2.82614 -2.82614 2.20916x 1078
2.32626 -2.71312 -2.71312 3.07327x10°8
2.63129 -3.61323 -3.61323 2.9596x 1078
2.70631 -2.51184 -2.51184 7.27678x107°
3.73391 2.31482 2.31482 2.05486x 1078
4.57711 5.54772 5.54772 4.03676x107°
4.95676 2.17309 2.17309 2.61235x 1078

A Table 1. Selected acceleration response values from the time histories shown in Figure 3.

For the octave sweep case, the results in Table 2 were obtained from the closed-form
solution, equation (13), as well as by direct integration of the differential equation of motion
in the u-domain, equation (8). The procedure for evaluating the closed-form solution for the
octave sweep case was identical to that described for the closed-form solution in the linear
sweep case. The numerical solution was obtained by integrating equation (8) in the u#-domain
with NDSolve from u =1 out to some desired maximum value of u (typically corre-
sponding to some time beyond the time at which the sweep frequency hits the natural
frequency of the system), with InterpolationOrder —» 5 and MaxSteps —» 10" 8,
and then using equation (9) to transform the acceleration back to the #-domain. Figure 4
shows the response time histories for a system with a circular natural frequency of 1/4 Hz and
critical damping ratio of 0.01. The sweep frequency was started at 1/8 Hz and the sweep rate
was 1/2 octaves/min. The orange dashed line is the closed-form solution and the blue dotted
line is the direct numerical integration solution. Again, the differences are imperceptible.
Table 2 provides the numerical values for both solutions for a randomly selected subset of the
time points used in plotting Figure 4; for all practical purposes, the results are identical.
h{0)
o Numeric
Exact

201

A Figure 4. Acceleration response time histories of a single-degree-of-freedom system, f,, = 0.25 Hz,
excited by a harmonic force with an octave sweep rate frequency of 0.5 octaves/min.
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Time Exact Numeric

(sec) Acceleration Acceleration AAcceleration
136.19442 2.63166 2.65684 -0.02518
146.73462 -15.89134 -15.89029 -0.00106
159.71743 -6.08328 -6.09272 0.00944
126.99928 -12.59820 -12.59412 -0.00408
125.91816 4.39599 4.40947 -0.01348
152.41040 7.72848 7.72970 -0.00122
131.95368 -5.14402 -5.16466 0.02064
144.33781 12.02835 12.00936 0.01899
136.27535 4.99460 4.98006 0.01454
151.97680 2.67062 2.67935 -0.00873

A Table 2. Selected acceleration response values from time histories shown in Figure 4.

H 8. Construction of Peak Response Curves

The construction of the peak response curves involved two steps. First, the times at which
the peak of the absolute value of the acceleration occurred were obtained via numerical
integration for the desired combinations of w,,  and (), for linear sweep or R, for octave
sweep. These times were then used as the starting points for a very fine-grained search of
the exact analytical solutions in order to determine the peak acceleration in each case.
Development of a generic algorithm to accomplish this was not trivial, as will be dis-
cussed. However, the effort was made easier by previously published results that indicate
that the peak envelope values, which would contain the peak response values, would
occur after the instantaneous frequency of excitation was equal to the natural frequency of
the system. Hence, the search for the peaks was started at the point in the response time
history where the instantaneous frequency of excitation was equal to the circular natural
frequency of the system. For the linear sweep excitation, the time was computed as

tnat]inear = wn V 1 _42 /QS (14)

and for the octave sweep excitation, the value was computed as

@ —‘I_(Z(U” /log(2) -1l

log (15)

Ro T fstart

tnatoclave -

In the case of the numerical approach, we sorted the list of computed acceleration values
generated via integration, starting at fna,,.,. in order to find an initial approximation to the
peak acceleration, and then did a more refined local search around this peak using
standard local optimization techniques. In the case of the analytical approach, much
smaller increments in w, were used in order to get a sharper picture of some unusual phe-
nomena that emerge at low frequencies. Accordingly, interpolations were generated of the
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times at which the numerically generated peak responses occurred, as a function of w,, for
combinations of ¢ and () for linear sweep, or R, for octave sweep. Thus, for any value of
wp, we could use this interpolated time value as the starting point for a refined numerical
search that involved evaluating the exact analytical solution at very closely spaced time
points in a neighborhood of this time. For this, we chose time points that were equally
spaced in the phase of the forcing function, that is, at 0.25° phase increments, which pro-
vided precise, although computationally intense results. In addition, care was taken to
search for the peak sufficiently past the start of the search, given by equation (14) or
equation (15), to guarantee that the global maximum peak had been found.

Associated with the question of at which point in a time history to start the search for the
peak value, that is, fhag,.., and fhat..» 15 the question of how far past this point the search
should be conducted to guarantee that the global peak has been identified. Unfortunately,
the only way we found to reliably accomplish this was through trial and error. For linear
sweep, we found experimentally that it was very helpful to divide the w, range into two
parts: w, < 15 rad/sec and w, > 15 wrrad/ sec.

For relatively low natural frequencies, that is w, < 15 rrad/sec (f;, = 7.5 Hz), it was found
experimentally that evaluating the function out to #ymax = 10 tay,.,, gives reliable results in
most cases, with the peak response typically occurring about 20% of the way out to fax. At
low values of w,, however, sometimes the peak response occurred about 45 to 50% of the
way out to fmax. Although with hindsight, we could have obtained the peak response
without going out so far in time, we wanted to be sure that the peak response found was in
fact the true global peak response. We observed that in some cases, what looked like a
global peak value eventually got "dethroned" by a peak that occurred quite a few cycles
later, due to the beating of the frequencies involved. Thus, all of the low-frequency
responses, as well as a subset of the high-frequency responses, were visually monitored
graphically, and if any peak responses were found at times more than 50% or so of the way
out to fmax, then the coefficient of #ya,,., fOr fmax Was increased accordingly. For higher
natural frequencies, that is, w, > 157, it was found that fm.x = 5 fnay,., generally gave
reliable results for high sweep rates (~150-200 Hz/min), while #max = 1.2 thay,.,, gave
reliable results for lower sweep rates (~10-20 Hz/minute).

In view of the oscillatory nature of the system, it was important to constrain the
maximum integration step size to be at most a small fraction of a cycle. Based on prior
experience with similar computations, we chose the maximum step size to be 1/40 of a
cycle of the largest frequency of interest, which was the sweep frequency at the fpax
value described previously. For simplicity, we deliberately chose to constrain the
maximum step size based on the largest frequency of interest, encountered at time fmax,
rather than attempt to change the maximum step size as the frequency changed. For the
low sweep frequencies encountered in the early parts of a sweep, this step size was
much smaller than 1/40 of a cycle, but this did not create any problems. The numerical
integrator used (NDSolve) employs an adaptive algorithm that adjusts the step size as
needed, subject to any user-prescribed constraints. In addition, we used fifth-order inter-
polation in the numerical integrator so that the acceleration would be a third-order inter-
polating function. Finally, in view of the progressive increase of sweep frequency with
time, we found it useful to specify a maximum of 100,000,000 integration time steps
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(considerably more than the integrator's default value), as in some cases a smaller
maximum number of time steps (such as 10,000,000) did not allow the adaptive inte-
grator to reach the global peak response.

It was also required that the closed-form solution be evaluated at very closely spaced time
increments in order to reliably find the peak acceleration. This strategy leveraged off of
the previously computed numerical solutions, that is, the times at which the numerically
obtained peak values occurred, in order to do a very fine-grained search (with the closed-
form solution) in the neighborhood of the numerically computed peak value. Although a
global list of search points could have been generated in other ways without the use of the
numerical solution, using the points generated by the numerical integrator seemed like the
most efficient approach. The strategy then was to use the numerically generated estimate
of when the peak acceleration occurs and search within plus or minus some number of
cycles of this time, at equally spaced increments in the forcing function phase. We found
that searching within £60 cycles with 1,440 phase increments per cycle (i.e. at 0.25°
phase increments) yielded reliable results.

9. Peak Response Curves for Linear Sweep

Figure 5 shows the peak response (from the exact solution) normalized by 1/2 /¢, the
steady-state resonant response when the excitation frequency is equal to the undamped
natural frequency of the system, plotted against the natural frequency of the system for
three linear excitation sweep rates, f; = 10, f; = 20 and f; = 200 Hz/min. The system has
a critical damping ratio of { = 0.08 and its natural frequency was varied from 0.25 Hz to
10 Hz in steps of 0.01 Hz. Each of the (almost 1,000) peak response values on each of
these curves was computed via the process for computing peak acceleration (from the
exact solution) described in Sections 7 and 8, that is, searching within £60 cycles of the
numerically generated estimate of when the peak acceleration occurs, with 1,440 phase
increments per cycle. As can be seen, the attenuation of the peak response relative to the
resonant steady-state response is significant for systems with low natural frequencies. As
the natural frequency increases, which allows a greater number of response cycles during
any given excitation frequency range, the attenuation decreases. These results are con-
sistent with those published by others [6]. What is not consistent is the scalloped
behavior of the peak curves at the lower frequencies. This behavior was obtained with
both the numerically integrated results and the closed-form solution. Figure 6 shows an
expanded close-up view of the lower-frequency range of Figure 5 and was generated by
simply changing the horizontal plot range in Figure 5. The details visible in Figure 6 will
be discussed in more detail later.
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Figure 5. Normalized peak response plotted against natural frequency for several linear excitation
sweep rates. Left-to-right curves correspond to top to bottom in key.
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Figure 6. Close-up of the low-frequency range of Figure 5. Left-to-right curves correspond to top
to bottom in key.

Another observation is that the peak response during a frequency sweep can exceed the
steady-state resonant response. This is shown in Figure 7, where the normalized peak
responses are shown for two sweep rates (Figure 7 was obtained from Figure 5 by simply
adjusting the vertical plot range to focus on the overshoot portion of the response). This
might seem counterintuitive, since the frequency of excitation is sweeping through the
natural frequency and therefore does not dwell. However, the sweep causes a response
that is at the natural frequency of the system and that decays as a function of the system
damping. Once the sweep frequency passes the natural frequency, the total response is
the response due to the excitation plus the free-decay response of the system at its natural
frequency. This is what causes the beating in the response once the sweep frequency
passes the natural frequency. The decaying free response plus the transient response to
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the swept excitation can combine to produce higher peak responses than the resonant
response caused by harmonic dwell at the natural frequency. The overshoot observed
here is consistent with the overshoot observed by Cronin [3].
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A Figure 7. Close-up of overshoot phenomenon observed in Figure 5. Left-to-right curves corre-
spond to top to bottom in key.

Figure 8 shows the normalized peak response for various sweep rates plotted against the
natural frequency squared divided by the linear sweep rate; this normalization allows com-
parison to results presented in the literature. The critical damping ratio for this system is
{ = 0.08. The data used in Figure 8 is the same as the data used in Figure 5, only plotted
differently. Observe that the curves merge into one, as explained by Hawkes [5].
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A Figure 8. Normalized peak response for several linear sweep rates plotted against £, / /s, Where
fn is the natural frequency and f; is the sweep rate.
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o 9.1 Discontinuities in Derivative of Peak Response Curves at
Low Frequencies

In Figures 5 through 8, one observes periodic discontinuities in the derivative of the peak
response curve. Moreover, the curve does not increase monotonically; sometimes it starts
to dip down before hitting a discontinuity in slope and resuming its upward trend. One
also observes that at very low frequencies the discontinuities in the derivative are not
very regular, but as the natural frequency is gradually increased, they take on a much
more regular nature. These discontinuities are best understood in terms of what we will
call the “competing peaks” phenomenon, which can be most clearly explained by taking
several observations into account:

1. The peak response always occurs some time after the sweep frequency reaches the
natural frequency of the system.

2. As the natural frequency of the system is increased, the time at which the sweep fre-
quency reaches the natural frequency occurs later and later, since for these prob-
lems the sweep frequency always started at 1/8 Hz.

3. Thus the time at which the peak acceleration occurs can be expected to increase as
the natural frequency is increased.

4. In the array of plots shown in Figure 9, which show the response time histories for
several very closely spaced values of w,, one observes that as the time at which
the peak acceleration is reached increases, the “dominant” peak (i.e. the largest
global peak) is eventually overtaken (from one value of w, to the next, i.e. from
one plot to the next) by the secondary peak (i.e. the second-largest global peak),
which has been increasing all along. So when this happens, the rate of change of
the global peak suddenly changes, since it is now associated with a different peak,
and thus there is a discontinuity in the slope of the peak response curve. These
peak responses as a function of frequency are summarized in the plot insert at the
lower-right corner of Figure 10.
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max = 2.802 max = 2.934 max = 2.959
f,=0291 Hz f,=0316Hz f,=0341 Hz

351 351 351

The dominant peak (red) above increases slowly as the natural frequency
increases, while the secondary peak (green) increases rapidly.

max = 2.902 max = 3.283 max = 3.499
f, =0.366 Hz f,=0391 Hz f,=0416 Hz

The secondary peak overtakes the dominant peak as the natural frequency
increases further, and becomes the new dominant peak.

A Figure 9. Evolution of peak acceleration as natural frequency is increased (left to right, then

top to bottom).
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A Figure 10. Evolution of peak acceleration as secondary peak overtakes the dominant peak. The

first six points come from the preceding plots.
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In principle, there are actually three possible types of behavior that can lead to discontinu-
ities in the derivative of the peak response curve, and all can be understood in terms of the
preceding logic:
1. A decreasing peak is overtaken by an increasing peak (this is the case described in
the preceding).

2. An increasing peak is overtaken by a more rapidly increasing peak.

3. A decreasing peak passes a more slowly decreasing peak so that the more slowly
decreasing peak is now the dominant peak (possible in principle, but not observed
in this example).

The later the peak (i.e. the larger the natural frequency of the system), the longer the sys-
tem has to build up to a steady-state-like response, so that successive peak accelerations
(corresponding to successively higher natural frequencies) attain higher and higher values,
hence the overall upward general trend of the peak response curve. For this same reason,
at high sweep frequencies successive peaks in the response versus time curve all have
very similar amplitudes, so that when the natural frequency w, is changed slightly and one
peak overtakes another, the difference in the rates at which the dominant and secondary
peaks are increasing is extremely small and barely noticeable. Thus the peak response
curve appears to be smooth at high frequencies.

10. Peak Response Curves for Octave Sweep

As described earlier, in the octave sweep case, it is extremely helpful to first make a

change of independent variable by letting u = 2%_ The resulting differential equation for
y(u) then has a constant-frequency forcing term in the # domain (at the expense of coeffi-
cients in the equation that are at most quadratic in time). The resulting differential equa-
tion for y(u), equation (8), was solved both analytically (equation (13)) and numerically,
and then transformed back to the time domain.

10.1 Numerical Integration in the « Domain

The time fny,,,,, at which the sweep frequency equals the oscillator’s resonant frequency
is given by equation (15). However, since the integration is being done in the u domain,
the corresponding expression for the u# value at which the system’s resonant frequency is
reached becomes

0 Tpeakery w, 1-
Upeakoerave = 2 ; © - g (16)
ctay 27[f‘stan

Since in the # domain the forcing function is a constant-frequency sine wave, we found
experimentally that in most cases it was sufficient to integrate to a maximum u value of
1.5 tpeak although occasionally it was necessary to go up to 3 or 4 times Upeai, In

octave ? octave ”

some cases it is possible for the value of upeqk to become less than 1, and so we also

octave
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imposed a lower bound of 1.05 on the maximum value of u. We again used fifth-order
interpolation for computing derivatives in NDSolve and again allowed the integration to
go for a maximum of 100,000,000 time steps: recall that for octave sweep we used the sub-

Ryt
stitution u = 2’0 , 0 u increases exponentially with ¢, and thus the number of steps in the

u domain can become much larger than the number of time steps in the # domain.

o 10.2 Numerical Optimization to Identify Peak Response

Once the differential equation (for a given set of w,, Ry, fsart and ¢ values) had been
solved, the following procedure for finding the peak response was followed:

1. Create a list of the {u, y(u), y(u)} values generated via numerical integration.
&Ly

dr
from this list select the largest response.

2. Use equation (9) to evaluate (in the time domain) at each u value and then

3. Use the data from steps (1) and (2) to also create an interpolating function for
Ly

P | as a function of .

4. Having found this initial estimate of the peak value, then use the interpolation func-
tion returned by NDSolve to do a local optimization (via the FindMaximum
function) around this initial peak, using this peak as a starting point.

o 10.3 Peak Response Curves for Octave Sweep

Figure 11 shows the normalized peak response to various octave sweep rates. Each of
the (almost 1,000) peak response values on each of these curves was computed via the
process for computing peak acceleration (from the exact solution) described in Sections
7 and 8, that is, searching within £60 cycles of the numerically generated estimate of
when the peak acceleration occurs, with 1,440 phase increments per cycle. As expected,
the slower the sweep rate, the lower the attenuation. In addition, the scalloped behavior
in the peak response curves that was observed for the linear sweeps is also present here,
although not as pronounced. This is because the octave sweep increases in frequency
more rapidly than the linear sweep.
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Figure 11. Normalized peak responses with £ = 0.08 and several values of octave sweep rate Ry
(octaves/minute). At low natural frequencies, f,,, the peak response was computed in increments
of 0.002 Hz. Left-to-right curves correspond to top to bottom in key.

Figure 12 shows an expanded view of Figure 11 corresponding to the lower frequency sys-
tems so that the scalloped behavior can be better seen. Figure 12 was obtained from Figure
11 by simply adjusting the vertical and horizontal plot ranges.
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Figure 12. Expanded view of peak response curves with £ = 0.08 at low natural frequencies for vari-
ous octave sweep rates Ry (octaves/minute). Left-to-right curves correspond to top to bottom in key.

Figure 13 shows the results from Figure 11 normalized by the octave sweep rate, as sug-
gested by Hawkes [5]. The data used in Figure 13 is the same as the data used in Figure
11, only plotted differently. As in the case with the linear sweep rate and its normalization
factor, the octave sweep rate results also merge into a single curve for systems with the
same critical damping ratio.

The Mathematica Journal 21 © 2019 Wolfram Media, Inc.



Peak Response of Single-Degree-of-Freedom Systems to Swept-Frequency Excitation 23

1.00 -

095 -

0.90 -

0.85

Normalized Acceleration

0.80 -

005 0.10 0.50 1 5 10
Jfn (Hz) / Ry (Oct/Min)

A Figure 13. Normalized peak response curves for £ = 0.08 and various octave sweep rates plotted
against f,/Ro, where f, is in Hz and Ry is in octaves/minute.

Figure 14 shows comparable results to those in Figure 13 for systems with a critical damp-
ing ratio of £ = 0.01.
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A Figure 14. Normalized peak response curves for £ = 0.01 and various sweep rates with
fsart = 1/8 Hz, plotted against f,,/Ro; f is in Hz and Ry is in octaves/minute.

Figures 15 and 16 show the severe attenuation that occurs when the start frequency of the
sweep is close to the natural frequency. In both figures, the sweeps were started at 1 Hz.
As can be ascertained, the attenuation is significant for systems with natural frequencies
close to or below 1 Hz, as would be expected. Hence, the attenuation is not only a func-
tion of the natural frequency, damping and sweep rate, but also of the proximity of the
start frequency of the sweep to the natural frequency. As with Figure 11, each of the peak
response values on each of the curves in Figures 14-16 was computed via the process for
computing peak acceleration (from the exact solution) described in Sections 7 and 8.
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Figure 15. Normalized peak response curves for octave sweep with ¢ =0.08 and fgur = 1 Hz

(instead of 1/8 Hz). Left-to-right curves correspond to top to bottom in key.
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A Figure 16. Normalized peak response curves for octave sweep with £ =0.01 and fgur = 1 Hz
(instead of 1/8 Hz). Left-to-right curves correspond to top to bottom in key.
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B Conclusion

The derivation of closed-form solutions for the responses of single-degree-of-freedom
systems subject to linear and octave swept-frequency harmonic excitation was pre-
sented. The closed-form solutions were compared to results obtained by direct
numerical integration of the equations of motion with excellent agreement obtained. In
addition, an in-depth discussion was presented on the numerical difficulties associated
with the gamma and error functions of complex arguments that are part of the closed-
form solutions, and how these difficulties were overcome by employing exact arithmetic
with infinite-precision numbers, that is, rational and/or exact symbolic numbers. This
included a study of precision requirements by performing computations with numerical
precision exceeding what is available on today’s computers. The closed-form solutions
allowed the in-depth study of several interesting phenomena including: (a) computation
of the peak response instead of the peak of the envelope function; (b) scalloped
behavior of the peak response with frequent discontinuities in the derivative; (c) the sig-
nificant attenuation of the peak response if the sweep frequency is started at frequencies
near or above the natural frequency; and (d) the fact that the swept-excitation response
could exceed the steady-state harmonic response when the system is excited at its
natural frequency.

B Acknowledgments

We are grateful to Luke Titus of Wolfram Research for his valuable suggestions on exact
numerical computation.

This work was supported by contract # FA8802-14-C-0001.

B References

[1]1 F. M. Lewis, “Vibration during Acceleration through a Critical Speed,” Transactions of the
American Society of Mechanical Engineers, 54(1), 1932 pp. 253-261.

[2] R. L. Fearn and K. Millsaps, “Constant Acceleration of an Undamped Simple Vibrator
through Resonance,” The Aeronautical Journal, 71(680), August 1967 pp. 567-569.
https://doi.org/10.1017/S0001924000055007 .

[3] D. L. Cronin, Response of Linear, Viscous Damped Systems to Excitations Having Time-
Varying Frequency, Ph.D. thesis, Dynamics Laboratory, California Institute of Technology,
Pasadena, California, 1965. authors.library.caltech.edu/26518.

[4] R. Gasch, R. Markert and H. Pfutzner, “Acceleration of Unbalanced Flexible Rotors through
the Critical Speeds,” Journal of Sound and Vibration, 63(3), 1979 pp. 393-409.
https://doi.org/10.1016/0022-460X(79)90682-5.

[6] P. E. Hawkes, “Response of a Single-Degree-of-Freedom System to Exponential Sweep
Rates,” Shock, Vibration and Associated Environments, Part |l, Bulletin No. 33, February
1964 pp. 296-304. apps.dtic.mil/dtic/tr/fulltext/u2/432931.pdf.

The Mathematica Journal 21 © 2019 Wolfram Media, Inc.


https://doi.org/10.1017/S0001924000055007
https://authors.library.caltech.edu/26518/
https://doi.org/10.1016/0022-460X(79)90682-5
https://apps.dtic.mil/dtic/tr/fulltext/u2/432931.pdf

26

C. Christopher Reed and Alvar M. Kabe

[6] J. A. Lollock, “The Effect of Swept Sinusoidal Excitation on the Response of a Single-Degree-
of-Freedom Oscillator,” in 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics,
and Materials Conference, 2002, Denver, CO. https://doi.org/10.2514/6.2002-1230.

[7] R. Markert and M. Seidler, “Analytically Based Estimation of the Maximum Amplitude during
Passage through Resonance,” International Journal of Solids and Structures, 38(10-13),
2001 pp. 1975—-1992. https://doi.org/10.1016/S0020-7683(00)00147-5.

[8] L. Ahlfors, Complex Analysis: An Introduction to the Theory of Analytic Functions of One
Complex Variable, New York: McGraw-Hill, 2000.

C. C. Reed and A. M. Kabe, “Peak Response of Single-Degree-of-Freedom Systems to Swept-Frequency
Excitation,” The Mathematica Journal, 2018. https://doi.org/doi:10.3888/tmj.21-1.

About the Authors

Dr. Chris Reed is a Senior Engineering Specialist in the Structures Department at The
Aerospace Corporation. As an applied mathematician, his work has encompassed mechani-
cal vibrations, structural deformation, space-based sensor system performance, satellite sys-
tem design optimization, flight termination system interference, fluid sloshing, electrostatic
discharges, dielectric degradation on satellites and queueing systems. He has two patents
and received a Wolfram Innovator award in 2017. His B.S. is from the California Institute
of Technology and his M..S. and Ph.D. degrees are from Cornell University.

Dr. Alvar M. Kabe is the Principal Director of the Structural Mechanics Subdivision of
The Aerospace Corporation. He has made notable contributions to the state of the art of
launch vehicle and spacecraft structural dynamics. He has published numerous papers, is
an Associate Fellow of the AIAA, and has received The Aerospace Corporation’s
Trustees’ Distinguished Achievement Award and the Aerospace President’s Achievement
Award. His B.S., M.S. and Ph.D. degrees are from UCLA.

C. Christopher Reed

Senior Engineering Specialist
Structures Department
M4-912

The Aerospace Corporation
P.O. Box 92957

Los Angeles, CA 90009-2957
cchristopher reed@aero.org

Alvar M. Kabe

Principal Director

Structural Mechanics Subdivision
M4-899

The Aerospace Corporation

P.O. Box 92957

Los Angeles, CA 90009-2957
alvar.m.kabe@aero.org

The Mathematica Journal 21 © 2019 Wolfram Media, Inc.


https://arc.aiaa.org/doi/10.2514/6.2002-1230
https://doi.org/10.1016/S0020-7683(00)00147-5
mailto:cchristopher.reed@aero.org
mailto:alvar.m.kabe@aero.org
http://doi.org/10.3888/tmj.21-1



