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From Discrete to Continuous 
Spectra
Exploring Spectral Distribution for 
Schrödinger Operators on Finite and 
Infinite Intervals
Christopher J. Winfield

We study the distribution of eigenspectra for operators of the 
form -y ''+ q(x) y with self-adjoint boundary conditions on both 
bounded and unbounded interval domains. With integrable 
potentials q, we explore computational methods for calculating 
spectral density functions involving cases of discrete and 
continuous spectra where discrete eigenvalue distributions 
approach a continuous limit as the domain becomes unbounded. 
We develop methods from classic texts in ODE analysis and 
spectral theory in a concrete, visually oriented way as a 
supplement to introductory literature on spectral analysis. As a 
main result of this study, we develop a routine for computing 
eigenvalues as an alternative to NDEigenvalues, resulting in 
fast approximations to implement in our demonstrations of 
spectral distribution.

■ Introduction
We follow methods of the texts by Coddington and Levinson [1] and by Titchmarsh [2] (both

publicly  available  online  via  archive.org)  in  our  study  of  the  operator  ℒ[y] =def -y ''+ q(x) y
and the associated problem

ℒ[y] = λ y, (1)

where y ' =def dy
dx

 on the interval ℐ = (0, ∞) with real parameter λ and boundary condition

sin(α) y(0) - cos(α) y ' (0) = 0 (2)
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for  fixed  α,  where  0 ≤ α < π.  For  continuous  q ∈ L1(ℐ)  (the  set  of  absolutely  integrable
functions on ℐ), we study the spectral function ρ(λ) associated with (1) and (2) using two
main  methods:  First,  following  [1],  we  approximate  ρ  by  step  functions  associated  with

related  eigenvalue  problems  on  finite  intervals  Ib =def [0, b]  for  some  sufficiently  large
positive b; then, we apply asymptotic solution estimates along with an explicit formula for

spectral density dρ
dλ

 [2]. For some motivation and clarification of terms, we recall a major

application:  For  certain  solutions  ψ(x, λ)  of  (1)  and  (2)  and  for  any  f ∈ L2(ℐ)  (the  set  of
square-integrable functions on ℐ), a corresponding solution to (1) may take the form

f (x) = 
0

+∞
g(λ) ψ(x, λ) dρ(λ) = 

0

+∞
g(λ) ψ(x, λ)

dρ(λ)

dλ
dλ

where

g(λ) = 
ℐ
ψ(x, λ) f (x) dx

(in a sense described in Theorem 3.1 of Chapter 9 [1]); here, g is said to be a spectral trans-
form of f .  By way of such spectral transforms, the differential operator ℒ  may be repre-
sented alternatively in the integral form


ℐ
ψ(x, λ) ℒ[ f (x)] dx = λ g(λ),

where ρ induces a measure by which g ∈ L2(ℐ, dρ) (roughly, the set of square-integrable
functions  when  integrated  against  dρ)  and  by  which  Parseval’s  equality  holds.  Typical
examples are the complete set  of orthogonal eigenfunctions sin(n π x / b) : n = 1, 2, …  for
α = π

2
 and  the  corresponding  Fourier  sine  transform  in  the  limiting  case  b = +∞  (cf.

Chapter 9, Section 1 [1]).
For a fixed, large finite interval Ib, we consider the problem (1), (2) along with the bound-
ary condition

cos(β) y(b) - sin(β) y ' (b) = 0, (3)
(0 < β ≤ π), which together admit an eigensystem with correspondence

λk⟺ψk(x), k = 1, 2, …,

where  the  eigenvalues  λk  satisfying  Δλk =def λk+1 - λk > 0  and  where  the  eigenfunctions
ψk(x) form a complete basis for L2(Ib). Since the associated spectral function ρb(λ) is a step
function with jumps at the various λk, we first estimate these λk  by way of a related equa-
tion  arising  from  Prüfer  (phase-space)  variables  and  compute  the  corresponding  jumps
Δρb(λk) = ;;ψk<<-2. 
Then, we use interpolation to approximate the continuous spectral function ρ(λ) using data
from a case of large b at points λk and using

dρ(λ)

dλ λ=λk

≈
Δρb(λk)

Δλk
=

1

;;ψk<<2 (λk+1 - λk)
, (4)

imposing the condition ρ(λ) ≡ 0 for all λ ⩽ 0. 
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We compare our results with those of a well-known formula [2] appropriate to our case on
ℐ,  which  we  outline  as  follows:  For  fixed  λ > 0,  let  ψ(x, λ)  be  the  solution  to  (1)  with
boundary values

ψ(0, λ) = cos(α); ψ′(0, λ) = sin(α),

for which the asymptotic formula

ψ(x, λ) = A(λ) cos  λ x + B(λ) sin  λ x + o(1) (5)

holds as x → ∞. Then we have

dρ(λ)

dλ
=

1

π λ A2(λ) + B2(λ)
(6)

from Section 3.5 [2].

Finally, in the last section, we apply the above techniques to extend our study to operators on
large domains [-b, b] and on ℝ, where spectral matrices take the place of spectral functions
as a matrix analog of spectral transforms on these types of intervals (cf. equation (5.5) [1]).
The techniques are described in detail below, but it is of particular interest that our computa-
tions  uncover  an  interesting  pattern  in  a  discrete-spectrum  case,  as  we  are  forced  to  refor-
mulate  our  approach  according  to  certain  eigen-subspaces  involved:  our  desired  spectral
approximations are resolved by way of an averaging procedure in forming Riemann sums.

Various sections of Chapters 7–9 [1] (see also [3] and related articles) present useful intro-
ductory discussion applied to material presented in this article; yet, with our focus on equa-
tions (1)–(6),  one may proceed given basic understanding of Riemann–Stieltjes integration
along with  knowledge  of  ordinary  differential  equations  and  linear  algebra,  commensurate
with (say) the use of Eigensystem and NDSolve.

■ An Eigenvalue Estimator
We compute  eigenvalues  by  first  computing  solutions  θ(x, λ)  on  Ib ×ℝ  to  the  following,
arising from Prüfer variables (equation 2.4, Chapter 8 [1]):

w ' = cos2 w + (λ - q(x)) sin2 w; w(0) = arctan
y(0)

y ' (0)
=

π

2
- α. (7)

Here, tan(θ) = y
y'

, where y is a nontrivial solution to (1), (2) and (3) and θ satisfies

θ(b, l)<l=λk = β + (k - 1) π (8)

From Discrete to Continuous Spectra 3

The Mathematica Journal 21 © 2019 Wolfram Media, Inc.



for positive integers k. We interpolate to approximate such solutions as an efficient means to
invert (8) in the variable l. And we use the following function on (7) throughout this article.

In[1]:= Pruefer[initial_, a_, b_, q_] := ParametricNDSolveValue[
{
y'[x] ⩵ Cos[y[x]]^2 + (l - q) Sin[y[x]]^2,
y[a] ⩵ initial

}, y[b], {x, a, b}, {l}]

Consider  an  example  with  a = 0,  b = 10,  and  potential  q(x) = e-x  for  parameter  l  with
0 ≤ l ≤ L, L = 5, in the case α = π

2
, β = π.

In[2]:= α1 = Pi / 2;
a1 = 0;
b1 = 10;
q1 = Exp[-x];
solution1 = Pruefer[ArcTan[Sin[α1], Cos[α1]], a1, b1, q1];

We create an interpolation approximation for eigenvalues λk.

In[3]:= β1 = Pi;
L1 = 5;
θApproximation1 =

Interpolation[Table[{l, solution1[l]}, {l, 0, L1, .001}]];
EigenvaluesApproximation1[k_] :=
l /. NSolve[θApproximation1[l] ⩵ β1 + (k - 1) Pi, l][[1]]

It is instructive to graphically demonstrate the theory behind this method. Here, we consider
the eigenvalues as those values of λ where the graph of w = θ(b, λ) intersects the various lines
w = β + (k - 1) π  as  we  use  Floor  to  find  kmax  (or  MaxIndex),  our  maximum  index  k,
depending on L.

In[7]:= MaxIndex1 = Floor[(θApproximation1[L1] - β1) / Pi] + 1;
Plot[{θApproximation1[l],

Table[β1 + (k - 1) Pi, {k, MaxIndex1}]}, {l, 0, L1},
AxesLabel → {λ, w}, PlotLabel → w == θ[b, λ]]

Out[8]=

1 2 3 4 5
λ
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w
w G θ(b, λ)
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We choose these boundary conditions so that we may compare our results with those
of  NDEigenvalues  applied  to  the  corresponding  problem  (1)  and  (2)  using
DirichletCondition.

In[9]:= operator[q_] := -y''[x] + q y[x];
WolframEigenvalues =
NDEigenvalues[
{operator[q1], DirichletCondition[y[x] ⩵ 0, True]},
y[x], {x, a1, b1}, MaxIndex1]

Out[10]= {0.121624, 0.450057, 0.963838,
1.66557, 2.56019, 3.65123, 4.9415}

In[11]:= CoddingtonLevinsonEigenvalues =
Table[Quiet@EigenvaluesApproximation1[k], {k, MaxIndex1}]

Out[11]= {0.121623, 0.45005, 0.963772,
1.66522, 2.55891, 3.64748, 4.93221}

We now compare and contrast  the methods in  this  case.  The percent  differences of  the
corresponding eigenvalues are all less than 0.2%, even within our limits of accuracy.

In[12]:= Table[
Abs[WolframEigenvalues[[n]] -

CoddingtonLevinsonEigenvalues[[n]]] /
(Mean[{WolframEigenvalues[[n]],

CoddingtonLevinsonEigenvalues[[n]]}]), {n, MaxIndex1}]

Out[12]= 2.25034 × 10-6, 0.000015286, 0.0000677834,

0.000207569, 0.000500677, 0.00102788, 0.0018808

In contrast, our interpolation method allows some direct control of which eigenvalues are to be
computed, whereas NDEigenvalues  (in the default setting) outputs a list up to 39 values,
starting from the first.  Moreover,  our  method admits  nonhomogeneous boundary conditions,
where NDEigenvalues admits only homogeneous conditions, Dirichlet or Neumann.

■ Spectral Density: Discrete Approximation

We proceed to build our approximate spectral  density function dρ
dλ

 for the problem (1) and
(2) on ℐ with the same potential q as above. We compute eigenvalues likewise but now on a
larger interval [0, b] for b = 150 and with nonhomogeneous boundary conditions, say given
by α = 3 π

4
, β = π

4
 (albeit ρ does not depend on β). 

In[13]:= a2 = 0; b2 = 150; α2 = 3 Pi / 4; β2 = Pi / 4; L2 = 1; q2 = q1;
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We compute  eigenvalues  via  our  interpolation  method and  compute  a  minimum kmin  (or
MinIndex)  as  well  as  a  maximum index so  as  to  admit  only  positive  eigenvalues;  ρ  is
supported on [0, ∞) and negative eigenvalues result in dubious approximations by ρb(λ).

In[14]:= solution2 = Pruefer[ArcTan[Sin[α2], Cos[α2]], a2, b2, q2];
θApproximation2 =
Interpolation[Table[{l, solution2[l]}, {l, 0, L2, .0005}]];

λ2[k_] :=
Quiet[
l /. FindRoot[θApproximation2[l] ⩵ β2 + (k - 1) Pi,

{l, 0, -1, 1}][[1]]];
MaxIndex2 = Floor[(θApproximation2[L2] - β2) / Pi] + 1;
ApproximateEigenvalues2 = Table[λ2[k], {k, MaxIndex2}];
MinIndex2 = Module[{k}, k = 1;

While[ApproximateEigenvalues2[[k]] <= 0, k++];
k];

We now compute the values rk
2

Δλk
.

In[19]:= ψSolution2 = ParametricNDSolve[
{operator[q2] ⩵ l y[x], y[0] ⩵ Cos[α2], y'[0] ⩵ Sin[α2]},
y, {x, 0, b2}, {l}];

Δeigenvalues2[k_] := ApproximateEigenvalues2[[k + 1]] -
ApproximateEigenvalues2[[k]];

rSquared2[k_] :=
1 /
(NIntegrate[

(y[ApproximateEigenvalues2[[k]]][x] /. ψSolution2)^2,
{x, 0, b2}]);

DensityFunction2[k_] := rSquared2[k] / Δeigenvalues2[k];
CoddingtonLevinsonPointPlot2 =
ListPlot[
Table[{ApproximateEigenvalues2[[k]], DensityFunction2[k]},
{k, MinIndex2, MaxIndex2 - 1}]]

Out[23]=

0.2 0.4 0.6 0.8
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■ Fitting Method
We now apply the method of [2] as outlined in equation (6). We use FindFit  to include
data  from  an  interval  near  the  endpoint  x = b  that  includes  at  least  one  half-period  of  the
period of the fitting functions sin λ x and cos λ x.

In[24]:= FitTable2[k_] :=
Table[{x, y[ApproximateEigenvalues2[[k]]][x] /.

ψSolution2},
{x, b2 - Min[2 Pi / (Sqrt[ApproximateEigenvalues2[[k]]]),

b2 / 2], b2,
Min[2 Pi / (Sqrt[ApproximateEigenvalues2[[k]]]), b2 / 2] /
10}];

coefficient[k_] := FindFit[FitTable2[k],
AA Cos[Sqrt[ApproximateEigenvalues2[[k]]] x] +
BB Sin[Sqrt[ApproximateEigenvalues2[[k]]] x],

{AA, BB}, x];
TInterpolation =

Interpolation[
Table[{ApproximateEigenvalues2[[k]],

1 / (Pi Sqrt[ApproximateEigenvalues2[[k]]]
((AA /. coefficient[k])^2 +

(BB /. coefficient[k])^2))},
{k, MinIndex2, MaxIndex2}]];

TPlot = Plot[TInterpolation[x],
{x, ApproximateEigenvalues2[[MinIndex2]],
ApproximateEigenvalues2[[MaxIndex2]]}, PlotRange → Full,

PlotStyle → Green];

The function  ApproximateEigenvalues  may return  non-numerical  results  among the
first few, in which case we recommend that either b or L be readjusted or that MinIndex be
set large enough to disregard such results.

We  now  compare  our  results  of  the  discrete  and  continuous  (asymptotic  fit)  spectral
density approximations.

From Discrete to Continuous Spectra 7

The Mathematica Journal 21 © 2019 Wolfram Media, Inc.



In[28]:= ShowCoddingtonLevinsonPointPlot2, TPlot,

AxesLabel → λ,
Row[{d, ρ}]

Row[{d, λ}]
,

PlotLabel → "Spectral Density Approximations",
Epilog →
Inset[Framed[SwatchLegend[{Blue, Green},

{"Discrete case", "Asymptotic fit"}]],

Scaled[{.4, .6}]]

Out[28]=

0.2 0.4 0.6 0.8
λ

0.1

0.2

0.3

0.4

dρ

dλ

Spectral Density Approximations

Discrete case

Asymptotic fit

We compare the results by plotting percent differences, all being less than 0.1%.

In[29]:= ListPlot[
Table[{ApproximateEigenvalues2[[k]],

Abs[TInterpolation[ApproximateEigenvalues2[[k]]] -
DensityFunction2[k]] /

Mean[{TInterpolation[ApproximateEigenvalues2[[k]]],
DensityFunction2[k]}]}, {k, MinIndex2, MaxIndex2 - 1}],

AxesLabel → {λ, "%"},
PlotLabel → "Percent Differences in Approximations"]

Out[29]=

0.2 0.4 0.6 0.8
λ

0.02
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%
Percent Differences in Approximations
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■ Check with Exact Calculation
We  chose  q  as  above  because,  in  part,  the  solutions  can  be  computed  in  terms  of  well-
known BesselI  (modified Bessel) functions. Replacing λ  by l = λ + i ϵ,  for λ, ϵ > 0, the
solutions are linear combinations of

BesselI2 i l , 2 e-x ,

BesselI-2 i l , 2 e-x .
(9)

From asymptotic estimates (cf. equation 9.6.7 [4]), we see that the former is dominant and
the latter is recessive as x → +∞ when Im l > 0. Then, from Chapter 9 [1], equation 2.13
and Theorem 3.1, we obtain the density function by computing

dρ(λ)

dλ
=

-1

π
lim
ϵ→0+

 lim
b→+∞

φ(b, λ + i ϵ) / ψ(b, λ + i ϵ) =def -1

π
lim
ϵ→0+

m( λ + i ϵ), (10)

where  ψ(x, l)  is  a  solution  as  above  and  φ(x, l)  is  a  solution  with  boundary  values
φ(0, l) = sin(α),  φ′(0, l) = -cos(α).  (Here, m  is commonly known as the Titchmarsh–Weyl
m-function.)  In  the  following  code,  we  produce  the  density  function  in  exact  form  by
replacing  functions  from  (9),  the  dominant  by  1  and  the  recessive  by  0,  to  compute  the
inside limit and thereafter simply allowing l = λ to be real.

In[30]:= ψExact2 =
y[x] /.
DSolve[{operator[q2] ⩵ l y[x], y[0] ⩵ Cos[α2],

y'[0] ⩵ Sin[α2]}, y, x][[1]];
ϕExact2 =

y[x] /.
DSolve[{operator[q2] ⩵ l y[x], y[0] ⩵ Sin[α2],

y'[0] ⩵ -Cos[α2]}, y, x][[1]];
ratio2 = ϕExact2 / ψExact2

Out[32]= -BesselI-1 + 2 ⅈ l , 2 BesselI-2 ⅈ l , 2 ⅇ-x  +

BesselI1 + 2 ⅈ l , 2 BesselI-2 ⅈ l , 2 ⅇ-x  +

2 BesselI-2 ⅈ l , 2 ⅇ-x  BesselI2 ⅈ l , 2 -

BesselI-1 - 2 ⅈ l , 2 BesselI2 ⅈ l , 2 ⅇ-x  -

BesselI1 - 2 ⅈ l , 2 BesselI2 ⅈ l , 2 ⅇ-x  -

2 BesselI-2 ⅈ l , 2 BesselI2 ⅈ l , 2 ⅇ-x  

BesselI-1 + 2 ⅈ l , 2 BesselI-2 ⅈ l , 2 ⅇ-x  +

BesselI1 + 2 ⅈ l , 2 BesselI-2 ⅈ l , 2 ⅇ-x  -

2 BesselI-2 ⅈ l , 2 ⅇ-x  BesselI2 ⅈ l , 2 -

BesselI-1 - 2 ⅈ l , 2 BesselI2 ⅈ l , 2 ⅇ-x  -

BesselI1 - 2 ⅈ l , 2 BesselI2 ⅈ l , 2 ⅇ-x  +

2 BesselI-2 ⅈ l , 2 BesselI2 ⅈ l , 2 ⅇ-x 
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In[33]:= Density2 =
-1

Pi

Imratio2 /. BesselI2 ⅈ l , 2 ⅇ-x  → 1,

BesselI-2 ⅈ l , 2 ⅇ-x  → 0

Out[33]=

Im
-BesselI-1-2 ⅈ l ,2-BesselI1-2 ⅈ l ,2-2 BesselI-2 ⅈ l ,2

-BesselI-1-2 ⅈ l ,2-BesselI1-2 ⅈ l ,2+2 BesselI-2 ⅈ l ,2


π

We  likewise  compare  the  exact  formula  for  the  continuous  spectrum  with  the  discrete
results, noting that the exact graph appears to essentially be the same as that obtained by
our asymptotic fitting method (not generally expecting the fits to be accurate for small λ!).

In[34]:= ExactPlot2 = Plot[Density2, {l, 0, L2}, PlotRange → Full,
PlotStyle → Black];

ShowCoddingtonLevinsonPointPlot2, ExactPlot2,

AxesLabel → λ,
Row[{d, ρ}]

Row[{d, λ}]
, PlotLabel → "Spectral Density",

Epilog →
Inset[Framed[SwatchLegend[{Blue, Black},

{"Discrete approximation", "Continuous, exact"}]],

Scaled[{.45, .65}]]

Out[35]=

0.2 0.4 0.6 0.8
λ

0.1

0.2

0.3

0.4

dρ

dλ

Spectral Density

Discrete approximation

Continuous, exact
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■ Extension to Unbounded Domains: A Proof of Concept

For the operator ℒ we now extend our study to large domains ℐb =def [-b, b] in the discrete-
spectrum case and to the domain ℝ in the continuous-limit case. We choose an odd function
potential  of  the  form  q(x) = c x e-r x  for  positive  constants  c,  r.  We  focus  on  the  spectral
density associated with specific boundary values at x = 0 and an associated pair of solutions
to (1): namely, we consider expansions in the pair ϕ1(x, λ) and ϕ2(x, λ) such that

ϕ1(0, λ) = 1,
ϕ1
′ (0, λ) = 0,

ϕ2(0, λ) = 0,
ϕ2
′ (0, λ) = 1.

(11)

We apply the above computational methods to the analytical constructs from Chapter 5 [1]
in both the discrete  and continuous cases.  First,  for  the discrete  case,  we compute spectral
matrices  associated with  self-adjoint  boundary-value problems and the  pair  as  in  (11):  We
estimate  eigenvalues  λk : k = 1, 2, …  for  an  alternative  two-point  boundary-value  problem
on ℐb for (moderately) large b > 0 to compute the familiar jumps of the various components
ρi j;b(λ). These components induce measures that appear in the following form of Parseval’s
equality for square-integrable functions f  on ℐb (taken in a certain limiting sense):

gj(λ) = 
-b

b
f (t) ϕ j(t, λ) dt,


-b

b
; f (t)<2 dt = 

-∞

∞

i, j=1

2
gi(λ) gj(λ) dρi j;b(λ) dλ

(real-valued  case).  Second,  we  compute  the  various  densities  as  limits  as  b → +∞  by
the formulas

dρ jk(λ)

dλ
= -

1

π
Im Mjk(λ),

M11 =
1

m- - m+
,

M12 = M21 =
1

2
m- + m+ M11,

M22 = m- m+ M11,

(12)

where m+(λ)  and m-(λ)  are certain limits of m-functions, related to equation (10),  but for
our ODE problem on domains [0, +∞) and (-∞, 0], respectively. The densities are com-
puted by procedures more elaborate than (6), as discussed later. Then, we compare results
of the discrete case like in (4), approximating

dρi j(λ)

dλ λ=λk

≈
Δρi j;b (λk)

Δλk
. (13)
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□ Discrete Case

After  choosing  (self-adjoint)  boundary  conditions  (of  which  the  limits  ρi j  happen  to  be
independent)

y(-b) = sin(α),
y ' (-b) = cos(α),
y(b) = sin(β),
y ' (b) = cos(β),

(14)

on an interval  ℐb,  we estimate eigenvalues and compute coefficients r1;k,  r2;k  from the
linear combinations

hk(x) = r1;k ϕ1(x, λk) + r2;k ϕ2(x, λk)

for the associated orthonormal (complete) set of eigenfunctions hk; k = 1, 2, 3, ..., whereby 

Δρi j;b(λk) = ri;k · rj;k

(real-valued  case).  Here,  the  functions  hk(x) result  by  normalizing  eigenfunctions  ψk(x)
satisfying (14) so that we obtain

r1;k = ψk(0)
;;ψk <<

,

r2;k = ψk ' (0)
;;ψk <<

.

We  are  ready  to  demonstrate.  Let  us  choose  q(x) = x e-5 ;x<,  b = 50 π  and  α = π
2

,  β = 0
(arbitrary).  Much  of  the  procedure  follows  as  above,  with  minor  modification,  as  we
include ParametricNDSolveValue  to obtain the values ψk(0)  and ψk ' (0)  (the next
result may take around three minutes on a laptop).

In[36]:= L3 = 2; b3 = 50 Pi; a3 = -b3; α3 = Pi / 2; β3 = 0;
q3 = x Exp[-5 Abs[x]];
solution3 = Pruefer[ArcTan[Cos[α3], Sin[α3]], a3, b3, q3];
ψsolution3 = ParametricNDSolve[

{operator[q3] ⩵ l y[x], y[a3] ⩵ Sin[α3], y'[a3] ⩵ Cos[α3]},
y, {x, a3, b3}, {l}];

ψ3[l_, x_] := y[l][x] /. ψsolution3;
θApproximation3 =

Quiet[Interpolation[Table[{l, solution3[l]},
{l, 0, L3, .001}]]];

MaxIndex3 = Floor[(θApproximation3[L3] - β3) / Pi];
λ3[n_] :=
Quiet[l /. NSolve[θApproximation3[l] ⩵ β3 + (n - 1) Pi, l]][[
1]]

eigenvalues3 = Table[λ3[n], {n, MaxIndex3}];
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MinIndex3 = Module[{k},
k = 1;
While[eigenvalues3[[k]] <= 0, k++]; k

];
NormSquared3[n_] := NIntegrate[ψ3[eigenvalues3[[n]], x]^2,

{x, a3, b3}];
NormFactor3 = Table[NormSquared3[n],

{n, MinIndex3, MaxIndex3}];
ψAtZero3 := ParametricNDSolveValue[

{operator[q3] ⩵ l y[x], y[a3] ⩵ Sin[α3], y'[a3] ⩵ Cos[α3]},
y[0], {x, a3, b3}, {l}];

ψPrimeAtZero3 := ParametricNDSolveValue[
{operator[q3] ⩵ l y[x], y[a3] ⩵ Sin[α3], y'[a3] ⩵ Cos[α3]},
y'[0], {x, a3, b3}, {l}];

r1[n_] :=
Quiet[Evaluate[ψAtZero3[eigenvalues3[[n]]]] /

Sqrt[NormFactor3[[n]]]];
r2[n_] :=

Quiet[Evaluate[ψPrimeAtZero3[eigenvalues3[[n]]]] /
Sqrt[NormFactor3[[n]]]];

We now approximate the density functions by plotting λ

k, Qi j;k where

Qi j;k =def Δρi j;b(λk)  (λk+2 - λk) + Δρi j;b(λk+1)  (λk+3 - λk+1) (15)

(for  certain K ≤ kmax - 3)  as  we compute the difference quotients  at  the various jumps,
over  even  and  odd  indices  separately,  and  assign  the  corresponding  sums  Qi j;k  to  the

midpoints λ

k of corresponding intervals [λk, λk+1].

In[52]:= DifferenceQuotients11 =
Table[{Mean[{eigenvalues3[[n]], eigenvalues3[[n + 1]]}],

r1[n]^2 / (eigenvalues3[[n + 2]] - eigenvalues3[[n]]) +
r1[n + 1]^2 /
(eigenvalues3[[n + 3]] - eigenvalues3[[n + 1]])},

{n, MinIndex3, MaxIndex3 - 3, 2}];
DifferenceQuotients22 =

Table[{Mean[{eigenvalues3[[n]], eigenvalues3[[n + 1]]}],
r2[n]^2 / (eigenvalues3[[n + 2]] - eigenvalues3[[n]]) +
r2[n + 1]^2 /
(eigenvalues3[[n + 3]] - eigenvalues3[[n + 1]])},

{n, MinIndex3, MaxIndex3 - 3, 2}];
DifferenceQuotients12 =

Table[{Mean[{eigenvalues3[[n]], eigenvalues3[[n + 1]]}],
r1[n] × r2[n] / (eigenvalues3[[n + 2]] - eigenvalues3[[n]]) +
r1[n + 1] ×
r2[n + 1] /
(eigenvalues3[[n + 3]] - eigenvalues3[[n + 1]])},

{n, MinIndex3, MaxIndex3 - 3, 2}];
DiscreteCasePlot =
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In[52]:=

ListPlot[{DifferenceQuotients11, DifferenceQuotients22,
DifferenceQuotients12},

PlotStyle → {Blue, Orange, Green}];

We give the plots below, in comparison with those of the continuous spectra,  and give a
heuristic argument in the Appendix as to why this approach works.

□ Continuous Case

First, we apply the asymptotic fitting method using the solutions ϕ1 and ϕ2. Here, we have
to  compute  full  complex-valued  formulas  for  the  corresponding  m-functions  (cf.  Section
5.7 [2]) where a slight modification of the derivation of m+, via a change of variables and
a complex conjugation, results in m- (See Appendix).

In[56]:= ϕ1solution = ParametricNDSolve[
{Evaluate[operator[q3] ⩵ l y[x]], y[0] ⩵ 1, y'[0] ⩵ 0},
y, {x, a3, b3}, {l}];

ϕ1[l_, x_] := y[l][x] /. ϕ1solution;
ϕ2solution = ParametricNDSolve[

{Evaluate[operator[q3] ⩵ l y[x]], y[0] ⩵ 0, y'[0] ⩵ 1},
y, {x, a3, b3}, {l}];

ϕ2[l_, x_] := y[l][x] /. ϕ2solution;
Fitψ2Plus[l_] :=
FindFit[Table[{x, ϕ2[l, x]},

{x, b3 - 2 Pi / Sqrt[l + 1], b3, 2 Pi / (15 Sqrt[l + 1])}],
aa Cos[x Sqrt[l]] + bb Sin[x Sqrt[l]], {aa, bb}, x]

Fitψ1Plus[l_] :=
FindFit[Table[{x, ϕ1[l, x]},

{x, b3 - 2 Pi / Sqrt[l + 1], b3, 2 Pi / (15 Sqrt[l + 1])}],
cc Cos[x Sqrt[l]] + dd Sin[x Sqrt[l]], {cc, dd}, x]

Fitψ2Minus[l_] :=
FindFit[Table[{x, ϕ2[l, x]},

{x, a3, a3 + 2 Pi / Sqrt[l + 1], 2 Pi / (15 Sqrt[l + 1])}],
aa Cos[x Sqrt[l]] + bb Sin[x Sqrt[l]], {aa, bb}, x]

Fitψ1Minus[l_] :=
FindFit[Table[{x, ϕ1[l, x]},

{x, a3, a3 + 2 Pi / Sqrt[l + 1], 2 Pi / (15 Sqrt[l + 1])}],
cc Cos[x Sqrt[l]] + dd Sin[x Sqrt[l]], {cc, dd}, x]

APlus[l_] := aa /. Fitψ2Plus[l];
BPlus[l_] := bb /. Fitψ2Plus[l];
CPlus[l_] := cc /. Fitψ1Plus[l];
DPlus[l_] := dd /. Fitψ1Plus[l];
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AMinus[l_] := aa /. Fitψ2Minus[l];
BMinus[l_] := bb /. Fitψ2Minus[l];
CMinus[l_] := cc /. Fitψ1Minus[l];
DMinus[l_] := dd /. Fitψ1Minus[l];

mPlus[l_] := -(CPlus[l] + I DPlus[l]) / (APlus[l] + I BPlus[l]);
mMinus[l_] := -(CMinus[l] - I DMinus[l]) /

(AMinus[l] - I BMinus[l]);

dρ11[l_] := 1 / (Pi (mMinus[l] - mPlus[l]));
dρ12[l_] := .5 (mPlus[l] + mMinus[l]) dρ11[l];
dρ22[l_] := mPlus[l] × mMinus[l] × dρ11[l];

AsymptoticFit = Plot[{Im[dρ11[l]], Im[dρ22[l]], Im[dρ12[l]]},
{l, eigenvalues3[[MinIndex3]], L3},
PlotStyle → {Blue, Orange, Green}];

We now compare the result of the discrete and asymptotic fitting methods for the elements

Qi j =def dρij

dλ
.

In[75]:= ShowAsymptoticFit, DiscreteCasePlot, Epilog → Inset[
Text@Framed@Grid[{

{"", A11, A22, A12},
{"Discrete", Style["●", Blue, 8],
Style["●", Orange, 8], Style["●", Green, 8]},

{"Asymptotic", Style["———", Blue],
Style["———", Orange], Style["———", Green]}

}, Alignment → {{Left, Center, Center}, Automatic}],
Scaled[{0.7, 0.167}]],

PlotLabel → "Spectral Matrix Ai j - Various Methods",

ImageSize → {400, 300}

Out[75]=
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■ Appendix
We have deferred some discussion on our use of Quiet, comparison of eigenvalue compu-
tations, discrete eigenspace decomposition and Weyl m-functions to this section. 

First, we have used Quiet to suppress messages warning that some solutions may not be
found.  From  Chapter  8  [1],  we  expect  unique  solutions  since  the  functions  θ(b, ·)  are
strictly  increasing.  We  have  also  used  Quiet  to  suppress  various  messages  from
ParametricNDSolve  and other related functions regarding small values of q(x)  to be
expected with short-range potentials and large domains.

Second,  our  formulation  of  Qi j  and  the  midpoints  λ

k  as  in  (15)  arises  from a  decompo-

sition of the eigenspace by even and odd indices.  We motivate this decomposition by an
example plot of the values r1k · r2k,  where the dichotomous behavior is quite pronounced,
certainly for large k.

In[76]:= ListPlot[{Table[r1[n] × r2[n], {n, 1, MaxIndex3, 2}],
Table[r1[n] × r2[n], {n, 2, MaxIndex3, 2}]},

Epilog →
Inset[Framed[SwatchLegend[{Blue, Orange},

{"k odd", "k even"}]], Scaled[{.15, .15}]],
PlotLabel → "The r1; k · r2; k Dichotomy",
AxesLabel → {k, "r1; k · r2; k"}]

Out[76]=
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k
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r1; k · r2; k

The r1; k ·r2; k Dichotomy
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We are thus inspired to compute the quotients over even and odd indices separately. Then,
we consider,  say,  a  relevant  expression  from Parseval’s  equality:  for  appropriate  Fourier
coefficients gi;k, i = 1, 2, associated with respective solutions ϕi, we write


∞

k=1

gi;k gj;k Δρi j;b(λk) =


k odd

gi;k gj;k Δρi j;b(λk) + gi;k+1 gj;k+1 Δρi j;b(λk+1) ≈ 
k odd

gi(λ

k) gj(λ


k) Qi j;k Δλk.
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We suppose that λk+2 - λk ≈ 2 Δλk  and gi;k ≈ gi;k+1 ≈ gi(λ

k)  for the corresponding transforms

gi(λ) in the limit b → ∞. Of course, a rigorous argument is beyond the scope of this article.

Finally, we elaborate on the calculations of the m-functions m+  and m-: Given the asymp-
totic expressions 

ϕ1
±(x, λ) = a±(λ) cos λ x + b±(λ) sin λ x + o(1),

ϕ2
±(x, λ) = c±(λ) cos λ x + d±(λ) sin λ x + o(1),

as x → ±∞ (resp.), we follow Section 5.7 of [2], making changes as needed, with a modifi-
cation via complex conjugation (l → λ - i ϵ, say) for m- to arrive at

m±(λ) = -
c±(λ) ± i d±(λ)

a±(λ) ± i b±(λ)
(resp.).
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