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The metric structure on a Riemannian or pseudo-Riemannian 
manifold is entirely determined by its metric tensor, which has 
a matrix representation in any given chart. Encoded in this 
metric is the sectional curvature, which is often of interest to 
mathematical physicists, differential geometers and geometric 
group theorists alike. In this article, we provide a function to 
compute the sectional curvature for a Riemannian manifold 
given its metric tensor. We also define a function to obtain the 
Ricci tensor, a closely related object. 

■ Introduction
A  Riemannian  manifold  is  a  differentiable  manifold  together  with  a  Riemannian  metric
tensor that takes any point in the manifold to a positive-definite inner product function on
its tangent space, which is a vector space representing geodesic directions from that point
[1].  We can  treat  this  tensor  as  a  symmetric  matrix  G  with  entries  denoted  by  gij  repre-
senting the relationship between tangent vectors at a point in the manifold, once a system
of local coordinates has been chosen [2, 3]. In the case of a parameterized surface, we can
use the parameters to compute the full metric tensor.

In[1]:= ParameterizedSurfaceMetric[parametrization_, {u_, v_}] :=
Module[
{
U = D[parametrization, u],
V = D[parametrization, v]

},
{ {U.U, U.V}, {V.U, V.V} }

]
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A classical  parametrization  of  a  surface  is  the  standard  parameterization  of  the  sphere.
We compute the metric tensor of the standard sphere below.

In[2]:= SphereParameterization[u_, v_] :=
{Cos[u] Sin[v], Sin[u] Sin[v], Cos[v]}

In[3]:= MatrixForm@
Simplify@ParameterizedSurfaceMetric[

SphereParameterization[u, v], {u, v}]

Out[3]//MatrixForm=

Sin[v]2 0
0 1

This also works for more complicated surfaces. The following is an example taken from [4].

In[4]:= BumpySphere[u_, v_] :=
{Sin[u] Sin[v] + 1 / 20 Cos[20 v], Cos[u] Sin[v] + 1 / 20 Cos[20 u],
Cos[v]}

In[5]:= ParametricPlot3D[BumpySphere[u, v], {u, -π, π},
{v, -π, π}, MaxRecursion → 4,
PlotStyle → {Orange, Specularity[White, 10]}, Axes → None,
Mesh → None, Boxed → False]

Out[5]=
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In[6]:= ParameterizedSurfaceMetric[BumpySphere[u, v], {u, v}]

Out[6]= Cos[u]2 Sin[v]2 + (-Sin[20 u] - Sin[u] Sin[v])2,
Cos[u] Cos[v] (-Sin[20 u] - Sin[u] Sin[v]) +
Cos[u] Sin[v] (Cos[v] Sin[u] - Sin[20 v]),

Cos[u] Cos[v] (-Sin[20 u] - Sin[u] Sin[v]) +

Cos[u] Sin[v] (Cos[v] Sin[u] - Sin[20 v]),
Cos[u]2 Cos[v]2 + Sin[v]2 + (Cos[v] Sin[u] - Sin[20 v])2

Denoting the coordinates by xi, we can then define ds2 := gij dxi dxj, where the gij are func-
tions  of  the  coordinates  xi;  this  definition  uses  Einstein  notation,  which  will  also  apply
wherever applicable in the following. From this surprisingly dense description of distance,
we  can  extract  many  properties  of  a  given  Riemannian  manifold,  including  sectional
curvature,  which  will  be  given  an  explicit  formula  later.  In  particular,  two-dimensional
manifolds, also called surfaces, carry a value that measures at any given point how far they
are  from  being  flat.  This  value  can  be  positive,  negative  or  zero.  For  intuition,  we  give
examples of each of these types of behavior.

The sphere is the prototypical example of a surface of positive curvature.

In[7]:= ParametricPlot3D[SphereParameterization[u, v],
{u, -π, π}, {v, -π, π}, Axes → None, Boxed → False]

Out[7]=
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Any convex subspace of Euclidean space has zero curvature everywhere.

In[8]:= ParametricPlot3D[{u, v, 0}, {u, -10, 10}, {v, -10, 10},
Boxed → False, Axes → False]

Out[8]=

The monkey saddle is an example of a two-dimensional figure with negative curvature.

In[9]:= Plot3D[x (x^2 - 3 y^2), {x, -10, 10}, {y, -10, 10},
Boxed → False, Axes → False]

Out[9]=

Sectional curvature is  a locally defined value that  gives the curvature of a special  type of
two-dimensional  subspace  at  a  point,  where  the  two  dimensions  defining  the  surface  are
input  as  tangent  vectors.  Manifolds  may have  points  that  admit  sections  of  both  negative
and positive curvature simultaneously, as is the case for the Schwarzchild metric discussed
in  the  section  “Applications  in  Physics.”  An  important  property  of  sectional  curvature  is
that  on  a  Riemannian  manifold  it  varies  smoothly  with  respect  to  both  the  point  in  the
manifold being considered and the choice of tangent vectors. 
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Sectional curvature is given by

Ku, v =
< Ru, v u, v >

< u, u > < v, v > - < u, v >2
,

where u, v ϵ Tp M.

In this formula, R  represents the purely covariant Riemannian curvature tensor, a function
on tangent vectors that is completely determined by the gij.  Both R  and the gij  are treated
more thoroughly in the following section, as well as in [1]. Some immediate properties of
the curvature formula are that K  is symmetric in its two entries, K  is undefined if the vec-
tors  u  and  v  are  linearly  dependent,  and  K  does  not  change  when  either  vector  is  scaled.
Moreover, any two tangent vectors that define the same subspace of the tangent space give
the same value. This is important because curvature should only depend on the embedded
surface itself and not how it was determined.

While we are primarily concerned with Riemannian manifolds, it  is worth noting that all
calculations are valid for pseudo-Riemannian manifolds, in which the assumption that the
metric tensor is positive-definite is dropped. This generalization is especially important in
areas such as general  relativity,  where the metric tensors that  represent spacetime have a
different signature than that of traditional Riemannian manifolds. We explore this connec-
tion more in the section “Applications in Physics.”

■ Coordinate Systems and the Representation of the 
Metric Tensors
For  a  differentiable  manifold,  an  atlas  is  a  collection  of  homeomorphisms,  called  charts,
from open sets in Euclidean space to the manifold, such that overlapping charts can be made
compatible  by  a  differentiable  transition  map  between  them.  Via  these  homeomorphisms,
we can define coordinates in an open set around any point by adopting the coordinates in the
corresponding  Euclidean  neighborhood.  By  convention,  these  coordinates  are  labelled  xi,
and  unless  important,  we  omit  the  point  giving  rise  to  the  coordinates.  In  some  cases  of
interest, it is possible to adopt a coordinate system that is valid over the whole manifold. 

From such a coordinate system, whether local or global, we can define a basis for the tan-
gent  space  using  a  coordinate  frame  [5].  This  will  be  the  basis  consisting  of  the  partial
derivative operators in each of the coordinate directions, that is, ∂xi . Considering the tan-
gent space as a vector space, this set is sometimes referred to in mathematical physics as
a holonomic basis for the manifold. We use this expression then to define the symmetric
matrix G = gi j by the following expression for p ∈ M:

gij p = gp
∂
∂xi

, ∂
∂xj

.
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From here, we define one more tensor of interest for the purposes of calculating curvature.
Using Einstein notation, the Riemannian curvature tensor is

Rabcd = gae Rbcd
e ,

Rbcd
a = ∂

∂xc
Γbd

a - ∂
∂xd

Γbc
a + Γcs

a Γbd
s - Γds

a Γbc
s .

The various Γ are the Christoffel symbols, for which code is presented in the next section.
In light of these definitions, we recall sectional curvature once again from the introduction
as the following, now considering the special case of the tangent vectors being chosen in
coordinate directions:

K(∂xi , ∂xj ) = Riji j

∂xi 2 ∂xj  2-<∂xi , ∂xj>2 .

The  norm  in  the  denominator  is  the  norm  of  the  tangent  vector  associated  to  that  partial
derivative in the holonomic basis, which is induced by the associated inner product from G.

■ Sectional Curvature
We  now  create  functions  to  compute  these  tensors  and  sectional  curvature  itself.  These
values  depend on a  set  of  coordinates  and a  Riemannian metric  tensor,  so  that  will  be  the
information that serves as the input for these functions. Coordinates should be a list of coor-
dinate names like {x, y, z}, and MetricTensor should be a square symmetric matrix
whose size matches the length of the coordinate list. Some not inconsiderable inspiration for
the first half of this code was taken from Professor Leonard Parker's Mathematica notebook
"Curvature and the Einstein Equation," which is available online as a supplement to [6].

We can now define a function for the Christoffel symbols from the previous section. This
calculation consists of taking partial derivatives of the metric tensor components and one
tensor operation. In Mathematica, the dot product, typically used for vectors and matrices,
is also able to take tensors and contract indices.

In[10]:= Christoffel[coordinates_, MetricTensor_] := Module[
{n = Length[coordinates]},
Simplify[
Inverse[MetricTensor].(

1 / 2 Table[
D[MetricTensor[[s, j]], coordinates[[k]]] +
D[MetricTensor[[s, k]], coordinates[[j]]] -
D[MetricTensor[[j, k]], coordinates[[s]]],

{s, n}, {j, n}, {k, n}]
)

]
]
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We can now use the formulas stated in the second section to define both the covariant and
contravariant forms of the Riemannian curvature tensor.

In[11]:= RiemannContravariant[coordinates_, MetricTensor_] := Module[
{n, c},
n = Length[coordinates];
c = Christoffel[coordinates, MetricTensor];
Simplify@Table[

D[c[[i, j, l]], coordinates[[k]]] -
D[c[[i, j, k]], coordinates[[l]]] +
(c.c)[[i, k, l, j]] - (c.c)[[i, l, k, j]],

{i, n}, {j, n}, {k, n}, {l, n}
]

]

We perform one more tensor operation using the dot product to transform our partially
contravariant tensor into one that is purely covariant. Both of these will be called at vari-
ous points later.

In[12]:= RiemannCovariant[coordinates_, MetricTensor_] :=
MetricTensor.RiemannContravariant[coordinates,

MetricTensor]

The full function to return the sectional curvatures consists of computing a scaled version
of the covariant Riemannian metric tensor.

In[13]:= SectionalCurvature[coordinates_, MetricTensor_] := Module[
{n, R, listRiemannCovariant, K},
n = Length[coordinates];
R = RiemannCovariant[coordinates, MetricTensor];
listRiemannCovariant = Table[

R[[i, j, k, l]],
{i, n}, {j, n}, {k, n}, {l, n}

];
K[u_, u_] = 0;
K[u_, v_] := Simplify[

listRiemannCovariant[[u, v, u, v]] /
(MetricTensor[[u, u]] × MetricTensor[[v, v]] -

MetricTensor[[u, v]]^2)
] /; u ≠ v;

Table[K[u, v], {u, n}, {v, n}]
]

The output consists of a symmetric matrix with zero diagonal entries representing curvatures
in the coordinate directions. These diagonal values should not be taken literally, as curvature
is undefined given two linearly dependent directions. While this of course does not give all
possible sectional curvatures, one may perform a linear transformation on the basis in order
to obtain a new metric tensor with arbitrary (linearly independent) vectors as basis elements.
From here, the new tensor may be used for computation.
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The output consists of a symmetric matrix with zero diagonal entries representing curvatures
in the coordinate directions. These diagonal values should not be taken literally, as curvature
is undefined given two linearly dependent directions. While this of course does not give all
possible sectional curvatures, one may perform a linear transformation on the basis in order
to obtain a new metric tensor with arbitrary (linearly independent) vectors as basis elements.
From here, the new tensor may be used for computation.

Here is an example with diagonal entries that are functions of the last coordinate.

In[14]:= SectionalCurvature[{x, y, z},
{{F[z], 0, 0}, {0, G[z], 0}, {0, 0, H[z]}}]

Out[14]= 0, -
F′[z] G′[z]

4 F[z] × G[z] × H[z]
,

F[z] F′[z] H′[z] + H[z] F′[z]2 - 2 F[z] F′′[z]

4 F[z]2 H[z]2
,

-
F′[z] G′[z]

4 F[z] × G[z] × H[z]
, 0,

G[z] G′[z] H′[z] + H[z] G′[z]2 - 2 G[z] G′′[z]

4 G[z]2 H[z]2
,


F[z] F′[z] H′[z] + H[z] F′[z]2 - 2 F[z] F′′[z]

4 F[z]2 H[z]2
,

G[z] G′[z] H′[z] + H[z] G′[z]2 - 2 G[z] G′′[z]

4 G[z]2 H[z]2
, 0

Any good computation in mathematics must stand to scrutiny by known cases, so we evalu-
ate  our  function with the input  of  hyperbolic  3-space.  The two in the exponent  should be
imagined as the squaring of the exponential function.

In[15]:= SectionalCurvature[{a, b, c},
{{Exp[-2 c], 0, 0}, {0, Exp[-2 c], 0}, {0, 0, 1}}] //

MatrixForm

Out[15]//MatrixForm=
0 -1 -1
-1 0 -1
-1 -1 0

Checking with [7] verifies that this is indeed a global metric tensor for hyperbolic 3-space.
As such, we know that it has constant sectional curvature of -1 (recall the diagonal entries
do not represent any curvature information).
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■ Applications in Topology
Continuing with the hyperbolic space metric tensor, it is a well-known result in hyperbolic
geometry that one is able to scale these first two dimensions to vary the curvature and pro-
duce a pinched curvature manifold.

In[16]:= pinchedcurvature = {{Exp[-2 a z], 0, 0}, {0, Exp[-2 b z], 0},
{0, 0, 1}};

If we allow for new constant coefficients in the exponents for positive real numbers a and
b, then we should see explicit bounds on the curvatures.

In[17]:= SectionalCurvature[{x, y, z}, pinchedcurvature] //
MatrixForm

Out[17]//MatrixForm=

0 -a b -a2

-a b 0 -b2

-a2 -b2 0

In this vein, the Riemannian structure for complex hyperbolic space  is similar to the real
case, except for a modification to allow for complex variables.

In[18]:= complexhyperbolic =
(2 z)^-2 {

{4 (z + y^2), -4 x y, 0, -2 y},
{-4 x y, 4 (z + x^2), 0, 2 x},
{0, 0, 1, 0},
{-2 y, 2 x, 0, 1}

};

In this  setting,  a formula for the metric tensor valid over the entire manifold is  available
from [8], among other places.

In[19]:= SectionalCurvature[{x, y, z, w}, complexhyperbolic ] //
MatrixForm

Out[19]//MatrixForm=

0 -
x2+y2+4 z

x2+y2+z
-

4 y2+z

y2+z
-1

-
x2+y2+4 z

x2+y2+z
0 - 4 x2+z

x2+z
-1

-
4 y2+z

y2+z
- 4 x2+z

x2+z
0 -4

-1 -1 -4 0

One  can  verify  that,  although  not  constant,  the  entries  in  the  upper-left  block  are  always
bounded  between  -1  and  -4  for  positive  z.  This  result  agrees  with  sectional  curvature  in
complex hyperbolic  space,  and so serves  as  an example of  sectional  curvature  computation
where  the  underlying  tensor  is  not  diagonal.  A  careful  review  of  [8]  reminds  us  that  this
metric  is  only  well-defined  up  to  rescaling,  which  can  change  the  values  of  the  sectional
curvature. What does not change, however, is the ratio of the largest and smallest curvatures,
which are always exactly 4. The introduction in [9] takes considerable care to remind us that
definitions change between curvatures in [-4, -1], [-1, -1 / 4] and even [-2, -1 / 2].
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One  can  verify  that,  although  not  constant,  the  entries  in  the  upper-left  block  are  always
bounded  between  -1  and  -4  for  positive  z.  This  result  agrees  with  sectional  curvature  in
complex hyperbolic  space,  and so serves  as  an example of  sectional  curvature  computation
where  the  underlying  tensor  is  not  diagonal.  A  careful  review  of  [8]  reminds  us  that  this
metric  is  only  well-defined  up  to  rescaling,  which  can  change  the  values  of  the  sectional
curvature. What does not change, however, is the ratio of the largest and smallest curvatures,
which are always exactly 4. The introduction in [9] takes considerable care to remind us that
definitions change between curvatures in [-4, -1], [-1, -1 / 4] and even [-2, -1 / 2].

■ Applications in Physics
Perhaps  the  most  interesting  applications  of  differentiable  manifolds  and  curvature  to
physics lie in the area of relativity. This discipline uses the idea of a Lorentzian manifold,
which  is  defined  as  a  manifold  equipped  with  a  Lorentzian  metric  that  has  signature
(- + + +)  instead  of  the  (+ + + +)  signature  for  four-dimensional  Riemannian  manifolds.
As noted in the introduction, however, this has no impact on the computations of sectional
curvature.  Examples  of  such  Lorentzian  metrics  include  the  Minkowski  flat  spacetime
metric; c is the familiar constant speed of light. 

In[20]:= flatspacetime = {{c^2, 0, 0, 0}, {0, 1, 0, 0}, {0, 0, 1, 0},
{0, 0, 0, 1}};

Justifying  the  name  of  flat  spacetime,  our  curvature  calculation  guarantees  all  sectional
curvatures are identically zero.

In[21]:= SectionalCurvature[{x, y, z, t}, flatspacetime] //
MatrixForm

Out[21]//MatrixForm=
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

More generic Lorentzian manifolds may have nonzero curvature. To this end, we examine
the  Schwarzschild  metric,  which  describes  spacetime  outside  a  spherical  mass  such  that
the gravitational field outside the mass satisfies Einstein's field equations. This most com-
monly is viewed in the context of a black hole and how spacetime behaves nearby. More
details on the following tensor can be found in [10].

In[22]:= SchwarzschildMetric = {
{-(1 - 2 G m / (r c^2)), 0, 0, 0},
{0, 1 / (1 - 2 G m / (r c^2)), 0, 0},
{0, 0, r^2, 0},
{0, 0, 0, r^2 Sin[θ]^2}

};
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In the following, r, ϕ and θ are standard spherical coordinates for three-dimensional space
and t  represents  time.  With this  setup,  we can calculate the sectional  curvature of  space-
time for areas outside such a spherical mass.

In[23]:= SectionalCurvature[{t, r, θ, ϕ}, SchwarzschildMetric] //
MatrixForm

Out[23]//MatrixForm=

0 2 G m

c2 r3
- G m

c2 r3
- G m

c2 r3

2 G m

c2 r3
0 - G m

c2 r3
- G m

c2 r3

- G m

c2 r3
- G m

c2 r3
0 2 G m

c2 r3

- G m

c2 r3
- G m

c2 r3
2 G m

c2 r3
0

This  result  indicates  that  the  sectional  curvature  is  directly  proportional  to  the  mass  and
inversely proportional  to the distance from the object.  In particular,  there is  a singularity
at  r = 0,  indicating  that  curvature  “blows  up”  near  the  center  of  the  mass.  Indeed,  these
results are in line with Flamm's paraboloid, the graphical representation of a constant-time
equatorial slice of the Schwarzchild metric, whose details can be found in [11].

In[24]:= ParametricPlot3D[{r Cos[t], r Sin[t], ((r - 1))^(1 / 2)},
{r, 1, 10}, {t, 0, 2 Pi}, Boxed → False, Axes → False ]

Out[24]=
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■ Ricci Curvature
In  fact,  the  calculations  we  have  done  already  allow  us  to  compute  one  further  object  of
interest  for  a  Riemannian  or  pseudo-Riemannian  manifold:  the  Ricci  curvature.  The  Ricci
curvature is a tensor that contracts the curvature tensor and is computable when one has the
contravariant Riemannian curvature tensor.  Below we use a built-in function for tensors to
contract the first and third indices of the contravariant Riemannian curvature tensor to obtain
a matrix containing condensed curvature information (see [12] for more information).

In[25]:= RicciCurvature[coordinates_, MetricTensor_] :=
Simplify@TensorContract[

RiemannContravariant[coordinates, MetricTensor],
{{1, 3}}]

The values 1 and 3 above refer to the dimensions we are contracting. In general, the corre-
sponding  indices  must  vary  over  sets  of  the  same size;  here  all  dimensions  have  indices
that vary over a set whose size is the number of coordinates. We compute the Ricci curva-
ture for some of the previous examples.

In[26]:= RicciCurvature[{x, y, z}, pinchedcurvature] // MatrixForm

Out[26]//MatrixForm=

-a (a + b) ⅇ-2 a z 0 0

0 -b (a + b) ⅇ-2 b z 0

0 0 -a2 - b2

In[27]:= RicciCurvature[{x, y, z, w}, complexhyperbolic] //
MatrixForm

Out[27]//MatrixForm=

-
6 y2+z

z2
6 x y

z2
0 3 y

z2

6 x y

z2
-

6 x2+z

z2
0 - 3 x

z2

0 0 - 3

2 z2
0

3 y

z2
- 3 x

z2
0 - 3

2 z2
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In[28]:= RicciCurvature[{t, r, θ, ϕ}, SchwarzschildMetric] //
MatrixForm

Out[28]//MatrixForm=
0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

The  fact  that  the  Ricci  curvature  vanishes  for  the  above  solution  to  the  Einstein  field
equation is a consequence of its types of symmetries. In general, the Ricci curvature for
other  solutions  is  nonzero.  Notice  for  the  pinchedcurvature  example  (and  the
SchwarzschildMetric,  trivially),  all  information  from  the  Ricci  tensor  is  con-
tained  in  the  diagonal  elements.  This  is  always  the  case  for  a  diagonal  metric  tensor
[12]. As such, we may sometimes be interested only in these values, so we take the diag-
onal in such a case.

In[29]:= Diagonal@RicciCurvature[{u, v},
ParameterizedSurfaceMetric[SphereParameterization[u, v],
{u, v}]]

Out[29]= Sin[v]2, 1

In[30]:= Diagonal@RicciCurvature[{x, y, z}, pinchedcurvature]

Out[30]= -a (a + b) ⅇ-2 a z, -b (a + b) ⅇ-2 b z, -a2 - b2
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