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Degree versus Dimension for
Rational Parametric Curves

Barry H. Dayton

Given a rationally parameterized curve P(r) = (p1(t) / A(D), ...,
pa(t)/ A(?) in R™ or C", where the p; and A are polynomials, we
find the dimension of the smallest linear subset of R” containing
the curve. If all the p; and A are of degree d or less, then it is
known abstractly that this dimension is d or less and rational
normal curves play a key role in the argument. We consider this
from a computational point of view with Transformation-.
Function playing an essential part in the discussion.

1. Introduction

The ancients were confused about the concepts of degree and dimension. As late as 1545 in
his famous book Ars Magna [1], Cardano, who did not hesitate to invent imaginary numbers,
in reference to his assistant Ferrari's solution of the quartic gives the following disclaimer:

Although a long series of rules might be added and a long discourse given about
them, we conclude our detailed consideration with the cubic, others being
merely mentioned, even if generally, in passing. For as the first power refers to
a line, the square to a surface, and the cube to a solid body, it would be very fool-
ish to go beyond this point. Nature does not permit it.

The distinction between degree and dimension was later resolved by Descartes's algebraic
notation. But, in the context of parametric curves, I recently noticed a simple linear alge-
bra proof of the following theorem:

Theorem A

Let P () = (p1(0), ..., pa(t), be a curve in R" or C* where the coordinate functions
pj(t) are polynomials of degree d or less. Then for any n >d, the curve lies in a linear sub-
set of R" or C" of dimension d.

This theorem, as well as many of the other facts in this article, is given in Joe Harris’s book
[2] from a projective geometry point of view. He also considers the degree versus dimension
issue in a number of other situations. We give the linear algebra proof in Section 2.
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2 Barry H. Dayton

Unfortunately, projective geometry is not computationally friendly. Instead we can view
these results from an affine point of view using the built-in function Transformation:-
Function [3], which we discuss in Section 3.

We then generalize and rephrase our result in Section 4 as Theorem B. The generalization
is to rational curves and we can give the dimensions of the smallest linear space contain-
ing the curve. Theorem B does clarify that, while the degree bounds the size of a linear
set, the curve may lie in a smaller dimensional linear set.

In Section 5 we observe that the rational normal curve in C¢ or R?, (¢4, 14-1, ..., £), is univer-
sal for rational curves. That is, every rational curve is a transform of a normal curve. This is
very easily seen via the TransformationFunction. This lets us rephrase Theorem B
in another useful form, where the TransformationMatrix can be found directly from
the expression of a rational function in the form

pi1(D) pa(D) pn(t))
A AW AR )

where p(?), p2(?), ..., pa(?) and the common denominator A(#) are all polynomials of degree
d or less written in descending degree. To simplify notation we generally work with coeffi-
cients in the real numbers R, but it should be understood that one could work in any subfield
of the complex numbers C as well. But, as immediately below, in some cases we must
consider parameter values in the algebraic closure of the subfield.

0@ = (

Sections 5 and 6 give two applications.

The first discusses the recognition problem: given a point ¢ € R", is g = P(#} for some
t € C? This is equivalent to the well-studied problem of finding a common solution of a
family of univariate polynomials, which we do not consider here. We show that modulo
the linear TransformationFunction, the recognition problem can often be solved
in a linear space of smaller dimension.

The second example is the implicitization problem for rational functions, which is to find
an implicit system that describes the ideal of the rational curve. We only sketch this, as
there is no room to carefully describe the routines in [4].

In fact, this article was motivated by the author’s work on implicitization of parametric
curves. I noticed that an unexpectedly large number of linear equations appeared in the
implicit systems.
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B 2, Special Case of Polynomial Parameters

In this article a linear subset of R" is a set defined by a system of linear equations, not nec-
essarily homogeneous. A linear subset is distinguished from a linear subspace, which is a
subspace of the vector space R” and defined with homogeneous equations. The big differ-
ence is that a subspace contains the origin (0, ..., 0). A linear subset is a coset of a linear
subspace under the operation of vector addition.

A polynomial parametric curve is a function P(¢) = (p1(?), ..., p,(t)) where each coordi-
nate function is a polynomial that we write in descending degree:

pi) = aj 9+ aip 1 -k a1 ¥ a0,

where d; is the degree of the coordinate polynomial. The largest such degree is the degree
of the parameterization. Note that P(0) = (aj 441, @24415 .-, @ja+1). This constant acts
merely as a basepoint; a different basepoint gives a curve that is a translation of the first.
Thus the basepoint does not affect the geometry. We say our parameterization is stripped
if P(0) =0 (or alternatively if each a;4,; = 0). Each polynomial parameterized curve is
then a translate of a stripped curve, so we first consider those. We strip a polynomial
parameterized curve by dropping all the constant terms.

We now create a stripped coefficient matrix M from the stripped polynomial. If d is the degree
of the polynomial, M is the nxd matrix with rows (a;;, ..., a;4). Consider the following
equation where points are column vectors.

tda11+ ld716112+ e +layg
ld6121+ td_1a22+ e Flayy
p@) = Zd031+ 141 axp+ ... ttazg | =

tda,,1+ td‘lan2+ e Ay
apy dpp ot aid td ar ap Aaid
ay Ayt Ayd -1 arq ar ard
az; azy ... azg |-| @42 | = I as |+ -1 az |+ - +t| azg
dnp Any - Apg t anl ann And

This shows that every point on the parameterized curve is in the vector space spanned by
the columns of the coefficient matrix. So Theorem A is true for a stripped parameteriza-
tion, but adding back the constant P(0) simply moves this subspace to a linear subset.
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To describe the smallest linear set containing a finite set of points in terms of a system of
equations, here is a short routine.

Inf1]= linearSet[P_, X_] := Module|[
{n, r, M, U, S, V, rk, eqo},
{n, r} = {Length[X], Length[P]};
M = Table][
Switch[
Length[P[[i]]],
n, Append[P[[i]], 1],
n+1l, P[[i]]
1, {i, r}l;
{U, S, V} = SingularValueDecomposition@N@M;
rk = Length@Select[Diagonal@S, # > 1.%"-10 &];
If[
rk >n,
{},
eq0 = Take[Transpose@V, rk-n-1, n].X;
eq0 - (eq0 /. Thread[X->P[[1]]])
]
1

A longer version of this with error detecting is 1inearSetMD in [4].
Example 1:
nz- Pl={2t+5, 3¢¥-7, 3t-6t%-1};
We know a linear set containing this curve must be of dimension no greater than three,
since this set is contained in R3, so it is generated as a linear set by four or fewer points.

Therefore it is enough to take four random points on this curve and calculate the smallest
linear set containing them.

Here are the four random points.
In[3]= pts = Table[Pl1 /. {t » RandomReal[{-5, 5}]1}, {4}]
out3= {{3.31739, -4.87661, -7.7707},

{13.026, 41.3121, -85.5852}, {3.93328, -6.14658, -4.30692},
{7.29616, -3.04575, -5.46426})

Here is the linear expression for the linear set.
Inf4):= First@linearSet[pts, {x, y, 2}]

Out/4]= 0.992916 -0.0661944 x+0.0882592y +0.0441296 z

A linear set defined by one linear equation in three variables is of dimension two. This
curve lies in the linear set defined by setting the linear expression to zero.
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B 3. Rational Parametric Curves via
TransformationFunction

The central concept in this article is the built-in Wolfram Language function
TransformationFunction. When we say transformation function we mean a function
given by TransformationFunction. Basically these are affine versions of projective
linear transformations, which can include translations along with the usual transformations
of linear algebra. They appeared in Lecture 2 of Abhyankar [5] and much of the author’s
work [4, 6] as fractional linear transformations; they are also known in the literature as
linear fractional transformations. Our major use of these transformations is to be able to
access projective geometry where points are cosets of (n + 1)-tuples, while working in affine
geometry where points are merely n-tuples, which are easy to manipulate computationally.

A transformation function R”™ —R” can be described by an (n + 1) X (m + 1) matrix. The
matrix of the associated projective linear transformation is called the transformation
matrix in the Wolfram Language. Thus the TransformationFunction of an
(n+ 1)x(m+ 1) matrix A takes an affine m-tuple, appends 1 to represent this in projective
m-space, applies the projective linear transformation defined by A and then specializes by
dividing by the (n + 1)* component.

Here is an example.

1 2 3
Inf5]:= TransformationFunction[ ( 4 5 6 ) ] [{x, v}]
-1 -2 -3

3+x+2y 6+4x+5y
Ouz‘[5]={ ’ }
-3-x-2y -3-x-2y

These transformations in the special case RZ—[R? are discussed in detail in Chapter 6 of
my book [4].

A transformation function is affine if the last row is (0, ..., 0, 1); the denominators are
always 1, the upper-left n X m submatrix gives a linear transformation and the first n
entries of the last column describe a translation.
1 2 3
In[6]:= TransformationFunction[ ( 4 56 ]] [{x, v}]
001

outlel= {3+x+2y, 6+4x+5y}
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In particular, the domain of an affine transformation R” —[R" is all of R™. Otherwise we call
the transformation function projective. If the last row of the transformation matrix is
(@n+115 ---» Ane1 me1), then the hyperplane of R™ given by a,,411 X1 + *++ + @uym Xm + Qpii e =0
is not in the domain of the transformation function. In the context of an affine transformation, it
is understood that the equation 1 = 0 defines the empty set.

In this article we assume that a rational parametric curve has coordinates that are quotients
of two polynomials in 7. We insist that the parametric curve be given with a common
denominator A(?), so, for example, is of the form

pi®) p20) Pn()

Q(t)=( , ) (D
A A®@) A(n)

for polynomials py, ..., p,, A. The degrees of p;(r) may be greater than, equal to or less

than the degree of A(f). In particular, A(¢) could be the constant polynomial 1, in which
case Q(t) is a polynomial curve that we can treat as a special case of a rational curve. The
degree of Q(7) is the largest degree of py, ..., p,, A.

The advantage of writing polynomials in the parameter ¢ in descending degree is that writing
a transformation matrix for a rational function is easy. Suppose in equation (1) that
Dj = aj; M. +ajgt+ajgy for j=1,...,d+1, where we write A = p,,;. Then the trans-
formation matrix for Q[f] is

ayg ajpp 0 dAlg aj1+d
azg dyy 0 A4 A 1+d
; ; X ) (2)
Al4n) Al+n2 *° Alend Al+nl+d
Example 2.
t3-2t%2+4t-3 4t2-4 -t%2+2 8
Inf7]= Q = { 1 ’ r }7
t2+1 t2+1 t2+1 t2+1

Here is the transformation matrix.

mgl-= (QA = MatrixForm[{{1, -2, 4, -3}, {0, 4, 0, -4},
{ol ‘11 OI 2}/ {ol OI ol 8}/ {OI 1! 0, 1}}]) //

MatrixForm
Out[8]//MatrixForm=

1 -2 4 -3

0 4 0 -4

0 -1 0 2

0 0 0 8

0 1 0 1
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This is the curve.

o)~ TransformationFunction[QA] [{t3, t2, t}]

1 -2 4 -3
0 4 0 -4
out[9g)= TransformationFunction{ 0 -1 0 2 } Ht3, t?, tH
0O 0 0 8
0 1 0 1

Both [2] and [5] mention the fact that every rationally parameterized curve is a projective
transformation applied to a polynomially parameterized curve. In particular, [2] notes that
this polynomial curve can be the rational normal curve of degree d.

H 4. Theorem B

Before we state Theorem B, we note that every linear transformation can be factored into a
projection on some coordinates followed by an embedding. This is accomplished in a spe-
cial way using Mathematica by the following matrix reduction algorithm we call
rankDecomposition. This takes an n X d matrix A of rank r and outputs an n X r matrix
L and an r X d matrix R consisting of rows of A such that L R = A. This implies that » rows
of A are what the Wolfram Language calls UnitVectors; that is, L contains an r X r iden-
tity matrix as a submatrix.

In the code, the functions pivotrows and nonpivotrows defined in the Do state-
ments invert the lists pivots and nonpivots viewed as functions from their index
sets. The IntegerQ tests whether k is in the domain of pivotrows.

Inf10].= rankDecomposition[A_] := Module|[
{n, prenulls, pivots, nonpivots, pivotrows, nonpivotrows,
R, L},
n = First@Dimensions@A;
If [MatrixRank@A == n, Return@ {IdentityMatrix[n], A}];
prenulls =
Map [Reverse, RowReduce@NullSpace@Transpose@Reverse@A];
pivots = Flatten@Map[FirstPosition[#, 1, 1] &, prenulls];
nonpivots = Complement [Range@n, pivots];
Do[pivotrows@pivots[[i]] =i, {i, Length@pivots}];
Do[nonpivotrows@nonpivots[[j]] =3,
{j, Length@nonpivots}];
R =A[[nonpivots]];
L = Table[
If[
IntegerQ[pivotrows@k],
LinearSolve[Transpose@R, A[[k]] ],
UnitVector [Length@nonpivots, nonpivotrows@k]
1/
{k, n}1;
{L, R}
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We can now state and prove our main theorem; we write p,,1(¢#) = A(#). It may seem coun-
terintuitive that we can strip the constant off the denominator, in particular for polynomi-

ally parameterized curves A(f) = 1 (so stripping it gives A = 0). But projectively the de-
nominator is just another coordinate so we can still do that. So if A is the matrix from the
previous section and P(f) = F((#¢, ..., 1)), where F is the TransformationFunction
of A, then the projective stripped coefficient matrix of P is just the submatrix of A with the
last column removed.

Theorem B

Let P(t) =(p1()/A@®), ..., pp(t)] A(t)) be a parametric curve in R" of degree d.
Suppose the projective stripped coefficient matrix of P has rank r. Then there are r compo-
nents of P defining a stripped polynomial parametric curve p(t) :(j)il s Digs oo i’i,) in R" and
a transformation function F : R"—R" taking p(t) to P (¢).

Proof

We apply the algorithm rankDecomposition to the (n + 1) X d projective stripped
coefficient matrix M of P, obtaining a list of r rows forming a basis Ry, of the row space of
M and a matrix Ly, of size (n+ 1) X r, where the rows corresponding to this basis are re-
placed by rows of the r X r identity matrix. Multiplying R,; by the vector (¢4, -1, ..., )
gives the parametric function p(f). Appending a last column to Ly, with the constant terms of
the original P(#) gives a transformation matrix L4. By the above comments it is easy to see
that the TransformationFunction F defined by L4 takes p(#) to P(z).

One can paraphrase this theorem as: Given a parametric curve P (t) of degree d, there is
an r < d, a stripped parametric polynomial curve p in R” and a Transformational-
Function F so that the following diagram commutes.

R”"

Rl’l
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We ask the reader not to take this diagram literally in the case of a rational parameteriza-
tion, as the domains of p, F, P may not be the full spaces indicated. But if P is a polyno-
mial parameterization, then the domains are the full spaces and F is an embedding.

Example 3: We illustrate this proof by fully working out the following degree-two
curve in R3.

mf11):= P1 = {2t+5, 3t2-17, 3t-6t2-1};

2 0
Inf12]:= M1 = (3) —36 ;
0 0

The decomposition can be easily done by hand.

In[13]:= MatrixForm /@ ({LM1, RM1} = rankDecomposition[M1])

1 0
ouns {3 5| (29)]
0 0

So we add the constant row; remember that the constant in the last row is 1.

n14= pl = {2t, 3t"2};
(LAl = Join[LM1, {{5}, {-7}, {-1}, {1}}, 2]) //

MatrixForm
Out[15]//MatrixForm=

1 0 5

0o 1 -7

2.2 -1

2

0 0 1

inf16]:= F1 = TransformationFunction[LA1l]

out/16]= TransformationFunction

Theorem B tells us the composition of F1 and p1 is P1.
Inf17]:= F1[pl]

out[17)= {5+2t, -7 +3t2%, —1+3t—6t2}

The Mathematica Journal 22 © 2020 Wolfram Media, Inc.
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inf18]= forml = linearSet[Fl /e {{0, O}, {1, 0}, {0, 1}}, {x, v, 2}]
out/18)= {0.992916 - 0.0661944 x+0.0882592y +0.0441296 z}

So this curve is contained in a plane.

In[19]:= Show][
ContourPlot3D[forml == 0, {x, 3, 8}, {y, -7, 5},
{z, -10, 0}, Mesh » None, ContourStyle -» Opacity[.2]],
ParametricPlot3D[P1l, {t, -1, 2}, PlotStyle -> Thick]
1

Out[19]=

-5

Example 2 (continued): We now consider the rational parameterization Q of example 2.

4

—3+4t-2t%2+t3 -—4+4t2 2-+¢2 8
Inf20]:= Q ={ ’ 14 14 }
1+t2 1+t2 1+t2 1+¢2

In[21]:= (oA = ({1, -2, 4, -3}, {O, 4, O, -4}, {0, -1, O, 2},
{o, o, o, 8}, {0, 1, O, 1}}) // MatrixForm

Out[21]//MatrixForm=
1 -2 4 -3
0 4 0 -4
0 -1 0 2
0O 0 0 8
0 1 0 1
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Infe2].= QM = Take[QA, All, 3]

outzz= {{1, -2, 4%, {0, 4, 0}, {0, -1, 0}, {0, O, O}, {0, 1, O}}

Inf23]= QAO = Take[QA, All, -1]

oufzs= {{-3}, {-4}, {2}, {8}, {1}}

Inj24)= {LM, RM} = rankDecomposition[QM]

Outi24)= {{{1, 0}, (0, 1}, {o, 7%}, (0, 0}, {o, %}},

({1, -2, 4}, {0, 4, 0}}}
Inj25]= LA = Join[LM, QAO, 2]
Uf[25]: {ll OI 73}1 {OI ll *4}1 OI 7£I 2 4 {Ol Ol 8}! OI il ]-
? 4 4

Inje6l= Qo = RM.{t"3, t°2, t}

out[26]= {4t—2 t2 143, 4 tz}

Injz71:= TransformationFunction[LA] [Qp]

—3+4t-2t%2+t3 -4+4t%2 2-+t2 8
Out[27]= { r ’ r }

1+t2 1+t2 1+t2 1+t2?
We check that this lies in a two-dimensional plane in R4.

Injes;= QPts = Table[Q /. {t » p}, {p, RandomReal[{-6, 6}, 5]}]

outfzg}= {{-5.7033, 2.9341, -0.600287, 1.0659},
{-7.88708, 3.72568, -0.89713, 0.274321},
{-8.30167, 3.76652, -0.912445, 0.23348},
{3.26564, 3.65326, -0.869973, 0.346738},
{-6.97704, 3.58161, -0.843102, 0.418394}}

Inj29]= linearSet[QPts, {x, y, z, w}] // Chop

Outf29]= {-0.821813 +0.149354w+0.317651y+0.448792 z,
0.462848 -0.222283w+0.0974295y+0.852566 z}
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The step in the proof of Theorem B where we use Ry, to obtain the curve p from the ratio-
nal normal curve can also be done by using an affine transformation function obtained by
adding the row and column (0, ..., 0, 1) to Ry,;. In Example 2 we have the following.

Inf30}= RA = Join[Append[RM, {0, 0, 0}], {{0}, {0}, {1}}, 2]

Out[30]= {{11 _21 4! O}I {Ol 4! Or 0}! {OI Or Ol l}}

inf31)= TransformationFunction[RA][{t"3, t"2, t}]
out[31]= {4 t-2t2+4¢3, 4 tz}

This gives:
Theorem C

Let P: R—R" be a rational (or polynomial) curve parameterization of degree d.
Suppose the projective stripped coefficient matrix of P(t) has rank r. Then the transforma-
tion function F in Theorem B can be decomposed into transformation functions F, oF; as
in the following diagram.

[Ra'

Fy

Rr

Theorem B

F

Rn

Here F, is an affine transformation function of R¢ onto R" and F, is a possibly projective
transformation of R" into R". In particular, the parametric curve given by P lies in a lin-
ear subset of R" of dimension less than or equal to the minimum of n, r, d.

Construction

As in Theorem B, we let M be the projective stripped matrix of P(f) and apply
rankDecomposition to M to get (L, Ry) of sizes (n+ 1) xr and rXd, respectively.
Appending a row of zeros and then a column of zeros with last component 1
to make Ry, into an affine transformation matrix Ry 4 of size (r+1)x(d+1), let F,
be the TransformationMatrix of Ry 4. Appending the column of constants to
Ly, we get a transformation matrix Lyr of size (n+1)X(+1). Then F, is the

TransformationMatrix of Ly 7. One can check that P(r) = Fo(F1((#, 1471, ..., 1)).
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This recovers the known result [2] that every rational parameterization is a projective lin-
ear transformation of the rational normal curve, but here we have a constructive approach.

Example 4: For an easy but nontrivial (i.e. not conic) example we use the piriform [7].

14

1-¢¢ 4t }

Inf3z]= P3 = { ’
1+2t2+¢% 1+2t2+¢4

Here d = 4, n = 2. Here is the stripped projective matrix.

-1 000
nE3=M3=1 0 0 O 4]|;
1 020

A trivial application of rankDecomposition in that M3 is of full rank gives the
following.

Inf34]= MatrixForm /@ ({LM3, RM3} = rankDecomposition[M3])

1 00 -1 000
Out[34]= { o010], 0 0 0 4 }
0 01 1 020

Inf35]= (ARM3 = Join[Append[RM3, {0, O, O, 0}], {{O0}, {0}, {0}, {1}},
2]) // MatrixForm

Out[35]//MatrixForm=
-1 0000
0 00 40
1 02 00
0 0001

inj36]:= F1 = TransformationFunction [ARM3]

Dimensions: 4> 3

Outf36]= TransformationFunction{ :
visel Type: Affine

nf37)= (TLM3 = Join[LM3, {{1}, {0}, {1}}, 2]) // MatrixForm

Out[37]//MatrixForm=

1 001
0100 ]
0011
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Inf38]= F2 = TransformationFunction[TLM3]

Out[38]= TransformationFunction{

|

1 00]1
0 10|0
00 1]1

9= F2@Fle{t"4, t°3, t*2, t}

1-t4 4t
Out[SQ]:{ , }
1+2t2+t4 1+2t2+t4

Notice here that n = 2, r = 3 and d = 4. In this case, the curve lies in R2, a two-dimensional
space. The numbers n, r, d are important values in describing a rational parameterized curve.
Even though the transformation matrix for F, contains the 3 X 3 identity matrix, it is not
injective, which is typical in the case of a rational parameterization, even when n = r, but
this does not occur for a polynomial parameterization.

B 5. The Recognition Problem

The recognition problem is: given a parameterized curve P : R— [R" and a point q in R",
is q in the curve; that is, does there exist ¢ with P(¢) = ¢?

There are two obvious methods to solve this problem. The first is to directly solve the over-
determined system P(f) = g using NSolve [P - q]. This works surprisingly well, failing
mostly with poorly conditioned systems for which the other methods following may not
work well either. The biggest problem with this approach is that when it does not work, it
gives a false negative to the recognition problem. One can, of course, solve component by
component and see if any solutions are numerically close.

Example 2 continued.

t3-2t2+4¢t-3 4t%2-4 -t2:2 8
Q= { ’ ’ ’ }7
t2+1 t2+1 t2+1 t2+1
ql = {1.2616272901771202", 2.75550189053762",
-0.5333132089516074°, 1.2444981094623802"}
q2 = {0.9328657844018655", 3.6099079667742315",
-0.0055749054767041395", 0.3132677134420798"}

Inf40]:=

outf41)= {1.26163, 2.7555, -0.533313, 1.2445}

Outf42)= {0.932866, 3.60991, -0.00557491, 0.313268}
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Inf43].= NSolve[Q -ql]

outf43]= {{t - 2.32987}}

Inf44]:= NSolve[Q - q2]

outf44]= {}

So the first point P[gl] is on the curve but the second point P [g2] is not. In general,
finding a common zero of a set of polynomial or rational equations is an interesting prob-
lem, but we do not consider that here.

The second method is to find a system of equations whose solution set is the Zariski clo-
sure of the point set {P(7) : teR}. All that then needs to be done, in principle, is to evaluate
this system at g and check that the value is 0. We consider this issue in Section 5.

As we have seen, a parameterized curve in R” may lie in a linear subset of dimension less
than n. Using Theorem C and the 1inearSet algorithm, we can get some additional
information about the problem and perhaps reduce this to a problem in a smaller R”.

Example 5.
2-3t+2t%2+t3 -4+22-2¢3 -2-3t+t2-t3
Inf45]:= P4 ={ p
1+t2+2¢3 1+t2+2¢3 1+t2+2¢3
—1+t—t2+t3}
1+t2+2¢3

We would like to find out which, if any, of the following points are on this curve.

5
r _};
21

We first find the transformation functions. Here is the projective stripped coefficient

matrix.
1 2 -3
-2 1 0
Inf49]= M&=|-1 1 -3]1;
1 -1 1
2 1 0

infs0)= cond = {{2}, {-4}, {-2}, {-1}, {1}};

15
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Apply rankDecomposition.

Inf51):= MatrixForm /@ ({L4, R4} = rankDecomposition[M4])

1 0 0
0 1 0 1 2 -3
Out[51]= { 11 01 ‘11 ’ [2 1 0 ]}
3 T2 % 2 10
0 0 1

Augment these matrices to get transformation matrices.

Inf52]= (R4a = Join[L4, con4, 2]) // MatrixForm

Out[52]//MatrixForm=
1 0 0 2
0 1 0 -4
1 0 -1 -2
1 1 1
3 "7 05 1
0 0 1 1

inj53= (L4a = Join[Append[R4, {0, O, 0}], {{0}, {0}, {0}, {1}}, 2]) //

MatrixForm
Out[53]//MatrixForm=

1 2 -3 0

-21 0 O

2 1 0 O

0 0 0 1

Inf54]:=
F41 = TransformationFunction[L4a]

out/54]= TransformationFunction

Inj55]= F42 = TransformationFunction[R4a]

Dimensions: 3 4

Out[55]= TransformationFunction{ . A
vl Type: LinearFractional

56~ Simplify[F42@F4le{t"3, t°2, t}]

2-3t+2t2+t3 -—4+t2-21¢3 2+3t-t2+¢t3 —1+t—t2+t3}

Out[56]:{ 2 r r [
1+t2+21t3 1+t2+2t3 1+t2+2¢3 1+t2+2t3
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Generate some random points.
inf571.= pts3 = RandomReal[{-1, 1}, {4, 3}];
nj58)= 1in41l = linearSet[F41 /@pts3, {x, y, 2}]

outf58]= {}

Inf59]= 1in42 = linearSet[F42 /@pts3, {x, v, 2z, w}]
out/59)= {0.481932 -0.481932w-0.562254x-0.240966y+0.40161 z}

This says F41 is not contained in any proper subspace, but the image of F42 lies in a
three-dimensional subspace of R4,

injeoj:= 1in42 /. Thread[{x, y, z, w} » q41l]

outf60)= {—3 .05311 x 10*16}

Inf61]= 1in42 /. Thread[{x, y, z, w} » q42]

oufer- {-1.66533 x 1016}

Inf62j= 1in42 /. Thread[{x, ¥, 2z, w} » q43]

outfezl= {-0.722897}

The points g41 and g42 do lie in the image of F42[F41], so may be points on the
curve, but we can eliminate g4 3. We find the fibers (preimage) of g41 and g42 in R3.

nj63)= form42 = Simplify@F42@{x1l, x2, x3}

2 +x1 -4 +x2 -2+x1-x3 _6_2X1_3XZ+X3}

Out[63]= { 14 14 ’
1+x3 1+x3 1+x3 6 (1+x3)

Inje4]= soll = {x1, x2, x3} /. First@Solve[form42 == q41]

outje4]= {10, -12, 20}

Inje5]:= sol2 = {x1, x2, x3} /. First@Solve[form42 == q42]

outfes]= {4, -10, 14}

17
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These conveniently are singleton points. Thus we have reduced this rational recognition
problem in R* to a polynomial problem recognition problem in R3.

neel= p = F4le{t*3, t°2, t}

oufeel- {-3t+2€2+t3, t2-21¢3, t2+2¢7}

Inf67].= NSolwve[p - soll]

outfe7l= {{t > 2.}}

Inj6s]:= NSolve[p - sol2]
outje8l= {}

Soqg41l == P4[2] but g42 is not on the curve.

6. Implicitization of Rational Parametric Space Curves

As mentioned, the motivation for this article is my work on implicitization of rational para-
metric space curves. In this section I only sketch my algorithms; details are in [4]. The
key here is that by the material discussed, especially Theorem C, every such curve is sim-
ply a fractional linear transformation of the rational normal curve.

By implicitization 1 mean describing these parametric curves by way of algebraic equations.
A problem that arises is that while one expects a curve in R” to be given by n — 1 equations,
this is often not enough to fully describe the curve pointwise or algebraically. The standard
counterexample is the twisted cubic, which is just the rational normal curve of degree three,
T5(t) = (£, 2, 1). A system of three equations in the variables x, y, z describing the twisted
cubic, given in [2],is (xz—y%, x —yz, y — z%). An exercise in [2] is to show that the zero set
of any pair of these three equations contains not only the twisted cubic, but also a line, but
note that the extra line in the last pair lies in the infinite plane of projective three-space.

Any implicitization problem has infinitely many possible answers, but the best answers are
systems of equations that form an H-basis. This idea goes back to F. S. Macaulay in 1916,
who was studying homogeneous equations, hence the “H”; basically in our context it means
that any equation f of total degree d containing the parametric curve in its zero set is a poly-
nomial combination f = gy h; + -+ + g i, where the h; are in the H-basis and the g; are poly-
nomials so that each term g; k; has total degree at most d. Thus for an H-basis, the ideal
membership problem reduces to linear algebra.
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If one has a system S with zero set describing the parametric curve P(f), then the Grobner
basis with respect to a degree ordering is an H-basis, perhaps larger than necessary. In prac-
tical terms one can simply use the following format.

Inj69]:= H = GroebnerBasis[S, MonomialOrder -» DegreeLexicographic];

In the case of the rational normal curve of degree d, Harris [2] claims that using quadratic
equations is sufficient, so we can proceed as follows: we first give a procedure finding the
total degree d of a polynomial of several variables.

Inf70].= totalDegree[f_, X_] :=
Max [Total /@Keys@CoefficientRules[f, X]]

Then we use the following code, say for d = 3.

Inf71]= With[{d = 3},
S = Table[x[i] -x[d]~(d+1-1i), {i, d-1}]]

oufri= {x[1] -x[3]3%, x[2] -x[3]?}

This defines H.

Inj72j= With[{d = 3},
Select|
GroebnerBasis[S, MonomialOrder - DegreelLexicographic],
totalDegree[#, Table[x[i], {i, d}]] ==2 &
1
1

Outf72)= {-x[l] +x[2] “x[3], -x[2] +x[3]%, -x[2]%+x[1] x[3]}
Likewise we get the following for d = 4, 5.

nza= {-x[1] +x[312, -x[2] +x[3] ~x[4], -x[1] +x[2] ~ x[4],
-x[3] +x[4]%, -x[2]2+x[1] ~x[3], -x[2] ~x[3] +x[1] ~x[4]};

mzap= {-%[2] +x[4]%, -x[1] +x[3] ~x[4], -x[3]%+x[2] ~x[4],
-x[3] +x[4] ~x[5], -x[2] +x[3] ~x[5], -x[1] +x[2] ~x[5],
-x[4] +x[5]%, -x[2] »x[3] +x[1] ~x[4], -x[2]%+x[1] ~x[3],
-x[31%+x[1] ~x[5]};

The size of the H-basis H; is 44D " \which gets much larger than d — 1. The numbers

2
d(d-1)
2

not contain Hy, so there is no obvious recursive construction of these bases.

are binomial coefficients and can be enumerated recursively; however, H;,; does

19
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In [4] I construct, for the fractional linear transformation given by an (n + 1) X (m + 1) trans-
formation matrix A, a transformation FLTMD [F, A, k, X, Y, tol]. This takes the
system F in R™ with variables given by the list X to a system in R” with variable list Y such
that for a solution x0 of F then TransformationFunction[A] [x0] is a solution of
G. Unfortunately, this works numerically and the user must provide a number k that bounds
the degrees of the polynomials used and a small tolerance tol, but for an appropriate
choice of these parameters the system G is often an H-basis if F is.

Thus, a possible method for finding an implicit system describing the rational parame-
terized curve P(t) is to write it in the form P(f) = F(A) (¢4, ..., 1)), where F is a
TransformationFunction, and use FLTMD [Hd, A, d, X, Y, tol].

We use Example 4 to illustrate this.

Example 4 continued; define A3 and so on.

In[75]:= A3 ;

-1 0001
0 0040
1 0201

Inf76]= P3 = TransformationFunction[A3][{t"4, t"3, t"2, t}]

1-t4 4t
Out[76]= { ' }
1+2t2+t% 1+2¢t2+tt
inj771:= With[{d = 4},
S4 = Table[x[i] -x[d]~(d+1-1i), {i, d-1}];
H4 = Select|
GroebnerBasis[S4, MonomialOrder -» DegreeLexicographic],
totalDegree[#, Table[x[i], {i, d}]] =2 &
]
1

oufrzj- {-x[1] +x[3]?%, -x[2] +x[3] x[4], -x[1] +x[2] x[4],
-x[3] +x[4]%, -x[2)%+x[1] x[3], -x[2] x[3] +x[1] x[4]}

Then we get the implicitization directly using a related function FLTMD (fractional linear
transformation, i.e. TransformationFunction) that takes not points to points but
equation systems to equation systems. In [6] this is simple, because all transformation matri-
ces used are invertible. In this context the 3x5 transformation matrix is not invertible, so
finding the equation system for the image of a transformation function becomes quite in-
volved. Essentially this is the subject of all of Chapter 2 in [4]. For instance, in this case we
are compacting six equations into one.

The following non-executable code and result are copied from [4, Section 3.1]. For exe-
cutable code, see the GlobalFunctionsMD .nb notebook of [4].

G = FLTMD [H4, A3, 4, {x[1], x[2], x[3], x[4]}, {x, vy}, 1.%"-12]

{1.+2.x72.x371.x471.y2}
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Once this is done we can check that this works.

Inj78]= piriform=1+2x%x-2x"3-x"4-y"2;
Show[ContourPlot [piriform =0, {x, -2, 2}, {y, -2, 2},
ContourStyle -» Orange],
ParametricPlot[P3, {t, -6, 6},
PlotStyle » Directive[{Black, Dashed}]]]

S — T 1
-
,/ \\
1 /7 R
/ \
// \
/ \
/7
L ,/ |
L 1 4
Out[79]= 07 N |
N\, I
\\ I
\\ 1
1k N\ [l il
N /
S
-2 ) 1 PR - 1 1]
-2 -1 0 1 2

H Summary

We have shown how the Wolfram function TransformationFunction simplifies
the study of rational parameterized curves.
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