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Peyton Cook

This article is intended to help students understand the concept of 
a coverage probability involving confidence intervals. Mathematica 

is used as a language for describing an algorithm to compute the 

coverage probability for a simple confidence interval based on the 

binomial distribution. Then, higher-level functions are used to 

compute probabilities of expressions in order to obtain coverage 

probabilities. Several examples are presented: two confidence 

intervals for a population proportion based on the binomial 
distribution, an asymptotic confidence interval for the mean of the 

Poisson distribution, and an asymptotic confidence interval for a 

population proportion based on the negative binomial distribution.

■ 1. Introduction

Introductory  courses  in  mathematical  statistics  present  the  rudimentary  concepts  behind
confidence  intervals.  The  creation  of  confidence  intervals  often  involves  the  use  of
maximum  likelihood  estimation  and  the  central  limit  theorem  along  with  estimated
standard errors.This is described in Casella and Berger [1, p. 497]. Consequently, the level
of  confidence  is  often  only  approximate.  This  is  particularly  the  case  when  continuous

probability models are used to approximate discrete probabilities. The probability that the
interval  surrounds  the  unknown  parameter  depends  on  the  value  of  the  unknown
parameter.  Such  a  probability  is  called  a  coverage  probability.  Confidence  is  defined  as
the  infimum  of  the  coverage  probabilities.  The  following  definitions  can  be  found  in
Casella and Berger [1, p. 418]. 

Definition (Coverage and Confidence)

Let X = (X1, X2, …, Xn) where the Xi are all independent from a distribution with probabil-
ity  density  (or  discrete  mass)  function  given  by  f (x; θ), x ∈ χ, θ ∈ Θ.  The  support  of  each

Xi  is χ and the parameter space is Θ. Let L(X) and U(X) be the lower and upper limits of a
confidence  interval.  Then  the  coverage  probability  of  the  interval  evaluated  at  θ  is
coverage(θ) = P(L(X) < θ < U(X); θ). The level of confidence is infθ∈Θ coverage(θ).
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Students are often confused about how to compute coverage probabilities. This tutorial is
intended to help students understand them. We give a detailed explanation of calculating
one particular coverage probability. This also allows one to perform the calculations with
a  minimum  of  distraction  involving  programming.  We  then  compute  coverage  proba-

bilities  using  higher-level  functions  Probability  and  NProbability  that  allow
specifying a function of a random variable along with its distribution. In both cases these
functions allow one to focus on the higher-level ideas rather than low-level nuts and bolts
of programming.

Coverage  probabilities  are  best  calculated  by  computer.  This  necessitates  the  choice  of  a
programming  language  and  programming  environment.  Statisticians  are  generally  familiar
with  one  or  more  statistical  programming  languages  such  as  SAS,  R  and  so  on.  Such
languages are necessary productivity tools due to their significant data handling capabilities
as  well  as  their  statistical  methods.  They  are  indispensable  to  the  statistician.  However,
they  are  not  as  useful  as  a  language  for  describing  algorithms.  Small  “bookkeeping”
matters  often  obscure  the  algorithm  or  method  to  be  calculated.  This  tutorial  uses  Mathe-
matica  as  a  language  to  describe  the  computation  of  coverage  probabilities.  With  a  little
additional  effort,  one  can  produce  graphs  of  coverage  probabilities  as  well  as  dynamic
demonstrations that use a slider to illustrate the effect of the sample size on the graph. The
Wolfram  Demonstrations  Project  website  contains  numerous  Demonstrations  involving  a
wide  variety  of  topics.  One  such  Demonstration  provided  by  Heiner  and  Wagon  [2]
involves coverage probabilities for a population proportion using a Wald approach as well
as a Bayesian approach. This article takes a different approach than Heiner and Wagon.

We illustrate the idea of coverage (and hence confidence) with several examples.

Section 2 describes two asymptotically justified confidence intervals for estimating a popu-
lation  proportion  based  on  the  binomial  distribution.  The  first  confidence  interval  is  a
simple  hand  calculation  interval  contained  in  many  textbooks.  We  present  a  step-by-step
algorithm  for  computing  the  coverage  probability  for  one  specific  value  of  the  population
parameter.  We  stress  clarity  of  computation  rather  than  efficiency.  The  approach  is  ade-
quate for a population described by a discrete distribution with a finite number of possible
values.  We  then  compute  the  coverage  probability  using  a  much  higher-level  function,

Probability,  to  automatically  compute  the  probability  associated  with  an  inequality.

We  also  use  Probability  for  subsequent  calculations.  We  produce  a  typical  graph  of
coverage probabilities found in some textbooks. The second confidence interval for a popu-
lation  proportion  (again  based  on  the  binomial  distribution)  is  more  complicated  but  has
gained popularity. Naturally, it will be seen that coverage probabilities are generally higher
than the level of confidence when approximations are used to create a confidence interval.
This is illustrated in the examples below.

Section 3 presents an asymptotically justified confidence interval for the mean of a popula-
tion described by a Poisson distribution. The Poisson distribution has infinitely many possi-

ble  observable  values.  The  function  Probability  used  to  evaluate  coverage  probabili-
ties automatically takes this into account.
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Section  4  presents  a  graph  of  coverage  probabilities  based  on  an  asymptotically  justified
confidence interval for estimating a population proportion based on the negative binomial
distribution.

Section 5 presents a summary.

■ 2. A Population Proportion and the Binomial Distribution

□ The Simplest Confidence Interval

A  population  has  a  proportion  p  of  members  with  a  given  characteristic.  In  order  to  esti-

mate  p,  one  randomly  selects  n  members  of  the  population  with  replacement,  say

X1, …, Xn,  where  the  Xi  are  independent  and  identically  distributed  random  variables,
each with a Bernoulli distribution with parameter p. If X  is the number of members in the

random  sample  possessing  the  target  characteristic,  that  is,  X = X1 + X2 +…+ Xn,  then  X
has  a  binomial  distribution  with  parameters  n  and  p.  The  sample  proportion  of  members

with  the  characteristic  is  p

= X / n.  Two  large  sample  confidence  intervals  for  p  are  typi-

cally  given.  We  start  with  the  simplest.  A  large  sample  confidence  interval  of  size  1 - α

for p is given by

p

± zα/2 p


1 - p


  n , (1)

where zα/2 is the upper α / 2 part of the standard normal distribution.

Let se(p

) = p


1 - p


  n , the standard error of p


. So, we may shorten (1) by writing it as

p

±zα/2 se (p


). (2)

One  can  find  the  confidence  interval  in  expression  (2)  in  virtually  any  statistics  book;  in
particular,  see  Devore  and  Berk  [3,  p.  396].  Also,  coverage  probabilities  for  this  confi-

dence  interval  are  described  in  Brown,  Cai  and  DasGupta  [4].  The  derivation  of  the
interval leads one to believe that the level of confidence is 1 - α. However, two approxima-
tions are used to derive the interval in expression (2). One approximation uses the central
limit theorem. A second approximation uses an estimated variance for the sampling distri-
bution of the sample proportion p. We want to compute the actual coverage probability for

any possible value of the true population proportion p. The coverage probability is

coverage(p) = Pp

- zα/2 se (p


) < p < p


+ zα/2 se (p


); p, (3)

where p

= X / n. Books are sometimes vague about whether or not to include the endpoints

in the inequality. We exclude the endpoints in order to be consistent with typical hypothe-
sis testing methods.

The  definition  of  coverage  confuses  many  students.  For  a  given  value  of  p  with

0 < p < 1, one must determine the set values of X  satisfying the inequality in expression
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(3) and compute the probability of observing such values of X. We will describe how to
determine  the  set  of  values  and  then  compute  their  probability.  Once  we  know  what  is
actually being computed, we will move on to higher-level functions that perform the com-
putations automatically.

We  use  an  example  with  n = 10. A  plot  will  show  how  bad  the approximation  can  be  and
also displays the output of each step of the algorithm. We will compute the coverage proba-
bility  for  p = 0.5.  The  input  and  output  are  presented  in  a  conversational  style  with  some

editorial comments along the way.

We  wish  to  determine  the  upper  2.5  percentage  value  from  the  standard  normal  distribu-

tion.  The  variable  zc  is  often  called  a  critical  value  for  the  standard  normal  distribution.
The  result  will  be  a  floating-point  number,  which  restricts  the  accuracy  and  precision  of
all calculations that use it; the result of this calculation is a floating-point number. 

In[1] := zc = Quantile[NormalDistribution[0, 1], 0.975]

Out[1]= 1.95996

Define se.

In[2] := se =
1

n
x / n ( 1 - x / n ) ;

Here is the confidence interval inequality for sample size 10 and general x.

In[3] := inequality[x_] = (x / n - zc se < p < x / n + zc se /. n  10)

Out[3]=
x

10
- 0.195996 1 -

x

10
x < p <

x

10
+ 0.195996 1 -

x

10
x

The support of the random variable X  is the set of values x for which the probability mass
function is positive. They also represent the observable values of X  for a discrete random

variable. We represent the support of X with the programming variable xs.

In[4] := xs = Range[0, 10]

Out[4]= {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10}

This tests whether the inequality is true for each value of X and probability 0.5.

In[5] := TF = inequality /@ xs /. p  0.5

Out[5]= {False, False, False, True, True,

True, True, True, False, False, False}
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These  are  the  positions  that  yield  True;  Flatten  eliminates  one  level  of  parentheses.
We wish to compute the probabilities of X at those positions and sum them.

In[6] := positionsTrue = Flatten[ Position[TF, True] ]

Out[6]= {4, 5, 6, 7, 8}

These are the appropriate values of the variable X.

In[7] := XTrue = xs〚 positionsTrue 〛

Out[7]= {3, 4, 5, 6, 7}

Now one computes the probabilities for the individual values of X  satisfying the inequal-

ity.

In[8] := PDF[BinomialDistribution[n, p], XTrue] /. {n  10, p  0.5}

Out[8]= {0.117188, 0.205078, 0.246094, 0.205078, 0.117188}

Finally, the values of the individual probabilities are summed to create the actual coverage
probability for p = 0.5.

In[9] := Total@%

Out[9]= 0.890625

The  steps  have  been  broken  down  so  that  students  can  easily  understand  what  is  needed.
A large sample justification leads us to believe that this number should be about 0.95. The
coverage probability is about 0.89 rather than 0.95.

Here  is  a  much  more  transparent  manner  in  which  to  compute  the  coverage  probability.
We  may  use  a  system  function  for  evaluating  the  probability  of  expressions  of  a  random
variable.  Apparently,  the  system  function  automatically  tests  each  possible  value  of  the
random  variable  to  determine  the  ones  that  satisfy  the  inequality.  (This  works  quite  well
for  a  discrete  random  variable  with  a  finite  number  of  observable  values.)  The  relevant
probabilities are then summed. This approach is not efficient in cases with infinitely many
observable  values  of  a  random  variable.  However,  it  is  straightforward  and  easy  for  a
student  to  understand.  We  evaluate  the  probability  of  an  expression  involving  the
binomial  random  variable.  The  expression  of  the  binomial  random  variable  is  the  confi-
dence interval inequality.
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Let us define a function that constructs the inequality more explicitly.

In[10] := binomialInequality1[x_, n_, zc_, p_] :=

With

se =
1

n
x / n ( 1 - x / n ) ,

x / n - zc se < p < x / n + zc se



Define the function that computes the coverage.

In[11] := coverage1[n_, zc_, p_] := Module[

{X},

Probability[

binomialInequality1[X, n, zc, p],

X  BinomialDistribution[n, p]

]

]

We now plot the coverage probabilities for a range of values of p in Figure 1  below. We

also create a horizontal line at a level of 0.95 for comparison purposes. The graph is sym-
metric  due  to  properties  of  the  binomial  distribution  and  the  large  sample  approximation
involved in the confidence interval justification.

In[12] := ListPlot[

Table[{p, coverage1[10, zc, p]}, {p, 0, 1, 0.002}],

AxesLabel  {p, "coverage"},

Prolog  {Red, Line[{{0, 0.95}, {1, 0.95}}]}

]

Out[12]=

0.2 0.4 0.6 0.8 1.0
p

0.2

0.4

0.6

0.8

1.0
coverage

▲ Figure 1. Coverage plot for first binomial confidence interval, n = 10.
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Examining Figure 1 indicates several points. First, the coverage probabilities are in general
not  equal  to  the  nominal  level  of  confidence—namely  .95.  Moreover,  coverage  probabil-
ities near p = 0 and p = 1 are effectively zero. Finally, the coverage probability function is

discontinuous.  All  this  with  a  minimum  level  of  programming.  In  fact,  the  programming
statements presented are simply a good description of the algorithm.

More is available. We wish to be able to change the plot by varying the sample size with

a  slider.  A  dynamic  demonstration  can  easily  be  created  with  the  Manipulate  func-
tion. The manipulate variable is the sample size n, which you can vary with a slider from
5 to 100.

The  graph  is  in  Figure  2.  The  computer  processing  time  increases  with  the  value  of  the
sample size n because the inequality must be tested for each possible value of X. The ini-
tial sample size is n = 50.

In[13] := Manipulate[

ListPlot[

Table[{p, coverage1[n, zc, p]}, {p, 0, 1, 0.005}],

PlotRange  {0, 1},

AxesLabel  {p, "coverage"},

Prolog  {Red, Line[{{0, 0.95}, {200, 0.95}}]}

],

{{n, 50}, 5, 100, 1, Appearance  "Labeled"},

SaveDefinitions  True,

TrackedSymbols  {n}

]

Out[13]=

n 50

0.0 0.2 0.4 0.6 0.8 1.0
p

0.2

0.4

0.6

0.8

1.0
coverage

▲ Figure 2. Coverage plot as a function of sample size.
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A larger sample size improves the coverage probabilities as one expects. After all, the con-
fidence interval formula is justified by a large sample argument. However, it is very clear
that  the  coverage  probability  is  small  when  p  is  close  to  either  0  or  1  even  with  n = 50.

For some sample sizes it is even more obvious that this function contains discontinuities.

□ A Better Confidence Interval for a Population Proportion

This  subsection  presents  coverage  probabilities  for  an  improved  confidence  interval  for  a
population proportion. The improvement makes coverage probabilities generally larger.

Devore  and  Berk  [3,  p.  395]  give  a  better  large  sample  confidence  interval  for  a  popula-
tion proportion. This interval was previously presented in Agresti and Coull [5]. Based on
the  same  assumptions  as  expression  (1),  a  sample  confidence  interval  of  size 1 - α  for  a
population proportion p is given by

p

+ z

α/2
2  2 n

1 + z
α/2
2  n

± zα/2 × p

1 - p


  n + zα/2

2  4 n2  1 + zα/2
2  n. (4)

This confidence interval is based on solving the following inequality for p:

-zα/2 < p

- p  p(1 - p) /n < zα/2. (5)

This defines the new inequality accordingly.

In[14] := binomialInequality2[x_, n_, zc_, p_] :=

With

ptilde =
x / n + zc^2 / (2 n)

1 + (zc^2 / n)
,

s =

x / n (1 - x / n) / n + zc2  4 n2

1 + zc2  n
,

ptilde - zc s < p < ptilde + zc s



Just as with the previous kind of inequality, define coverage2.

In[15] := coverage2[n_, zc_, p_] := Module[

{X},

Probability[

binomialInequality2[X, n, zc, p],

X  BinomialDistribution[n, p]

]

]
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Figure 3 is the corresponding plot, again with n = 10. 

In[16] := ListPlot[

Table[{p, coverage2[10, zc, p]}, {p, 0, 1, .005}],

AxesLabel  {p, "coverage"},

Prolog  {Red, Line[{{0, 0.95}, {200, 0.95}}]}

]

Out[16]=

0.2 0.4 0.6 0.8 1.0
p

0.2

0.4

0.6

0.8

1.0

coverage

▲ Figure 3. Coverage plot for the better confidence interval, n = 10.

The inequality in (5) is supposed to have a probability of approximately 1 - α before sam-
pling  the  population.  We  can  of  course  compute  the  true  probability  with  respect  to  the
correct binomial distribution. The Mathematica code follows along with a dynamic graph
in Figure 4.
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In[17] := Manipulate[

ListPlot[

Table[{p, coverage2[n, zc, p]}, {p, 0, 1, .005}],

PlotRange  {0, 1},

AxesLabel  {p, "coverage"},

Prolog  {Red, Line[{{0, 0.95}, {1, 0.95}}]}

],

{{n, 50}, 5, 100, 1, Appearance  "Labeled"},

SaveDefinitions  True,

TrackedSymbols  {n}

]

Out[17]=

n 50

0.0 0.2 0.4 0.6 0.8 1.0
p

0.2

0.4

0.6

0.8

1.0
coverage

▲ Figure 4. Coverage probabilities for the superior asymptotic confidence interval for a population 

proportion.
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Figure 5 contains the code and plot for the dynamic version of the plot. This plot allows for
an easy comparison of the coverage probabilities for the two types of confidence intervals.

In[18] := Manipulate[

ListPlot[

Transpose@

Table[{{p, coverage1[n, zc, p]}, {p, coverage2[n, zc, p]}},

{p, 0, 1, 0.005}],

PlotRange  {0, 1},

AxesLabel  {p, "coverage"},

Prolog  {Red, Line[{{0, 0.95}, {1, 0.95}}]}

],

{{n, 50}, 5, 100, 1, Appearance  "Labeled"},

SaveDefinitions  True,

TrackedSymbols  {n}

]

Out[18]=

n 50

0.0 0.2 0.4 0.6 0.8 1.0
p

0.2

0.4

0.6

0.8

1.0
coverage

▲ Figure 5. A comparison of coverage probabilities for the two binomial intervals.

The coverage probabilities for this improved confidence interval for a population propor-
tion  are  indeed  superior  to  the  simpler  interval.  In  particular,  the  coverage  probabilities
are  quite  large  when  p  is  close  to  0  or  1.  One  can  see  this  even  with  a  sample  size  of

n = 10,  for  which  the  large  sample  approximation  is  not  appropriate.  The  difference  in
coverage probabilities with the simple interval (displayed in Figure 2) and this improved
interval is striking.
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■ 3. The Mean of the Poisson Distribution

We now turn our attention to the Poisson distribution.

The book by Devore and Berk [3, p. 400] presents a homework exercise for determining a
confidence interval of size 1 - α for the mean θ of a population described by a Poisson dis-
tribution. Let X1, X2, …, Xn, where the Xi  are independent and identically distributed with
a Poisson distribution with parameter (mean) of θ. Ideally, we must solve the inequality

-zα/2 < X - θ  θ /n < zα/2 (6)

to obtain the desired confidence interval. However, if we have a large enough sample, we
may  replace  the  true  standard  error  in  the  denominator  with  its  estimate.  Again,  this  pro-
duces a less than ideal result.

The  resulting  simple  confidence  interval  of  approximate  size  1 - α  for  the  mean  θ  is
given by

X - zα/2 X / n < θ < X + zα/2 X / n , (7)

which  has  an  approximate  level  of  confidence  of 1 - α.  The  parameter θ  in  the  denomi-
nator  was  replaced  by  the  sample  mean.  Figure  6  contains  the  code  and  graph  for  the

coverage  probabilities.  We  use  n = 50.  We  let  X = Y / 50  where  Y = ∑
i=1

50
Xi  has  a  Poisson

distribution with a mean of 50 θ. In principle, the inequality must be tested for each of the
infinitely many possible values of Y . Coverage probabilities are evaluated at a discrete set
of points in order to save computational time. 

In[19] := Module

{n = 50, X, θ, zc},

zc = Quantile[NormalDistribution[0, 1], .975];

ListPlot

θ = Range[0, 3, .01];

#, Probability

Evaluate

X / n - zc / n X < # < X / n + zc / n X ,

X  PoissonDistribution[n #]  & /@ θ,

AxesLabel  {"θ", "coverage"},

PlotRange  {{0, 3}, {0, 1}},

Prolog  {Red, Line[{{0, 0.95}, {3, 0.95}}]}




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Out[19]=

0.0 0.5 1.0 1.5 2.0 2.5 3.0
θ0.0

0.2

0.4

0.6

0.8

1.0
coverage

▲ Figure 6. Coverage probabilities for the confidence interval for the Poisson mean n = 50.

Unless θ is close to zero, this large sample approximation is quite good for n = 50, which
is easily seen in Figure 6. Given the two approximations used, it is not surprising that the
coverage probability is small when θ is close to zero.

■ 4. The Population Proportion and the Negative Binomial 
Distribution

This section addresses the situation of estimating a population proportion when the nega-
tive binomial distribution is appropriate.

Let X1, X2, …, Xn, where the Xi are independent and identically distributed with a geomet-
ric distribution with parameter p. It is well known that X = ∑i=1

n Xi has a negative binomial

distribution  with  parameters  n  and  p,  (see  Kinney  [6],  p.  127).  Consequently,  we  use  the

negative  binomial  distribution  for  estimating  a  population  proportion.  There  are  many

ways to define the negative binomial distribution. We use the version described in Kinney
[6, p. 125]. Conduct independent success/failure trials, each with a probability of success

p.  Let  X  be  the  total  number  of  trials  needed  to  obtain  n  successes.  The  probability  mass

function for X is given by

f (x) =
x - 1

n - 1
pn(1 - p)x-n, x = n, n + 1, …, (8)

where 0 < p < 1.

Some  authors  count  the  number  of  trials  before  the nth  success.  Other  authors  count  the

number  of  failures  before  the  nth  success.  There  are  other  possibilities  still.  Mathematica

uses Y , the number of failures before the nth success. Consequently, Y + n = X.
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Casella and Berger [1, p. 496] describe large sample confidence intervals based on maxi-

mum  likelihood.  It  is  easily  shown  that  the  maximum  likelihood  estimator  for  p  is

p

= n / X.  Moreover,  the  asymptotic  variance  of  this  estimator  is  the  reciprocal  of  the

Fisher  information,  Var(p

) = p2(1 - p)  n.  Fisher  information  is  described  in  Casella  and

Berger [1, p. 388]. This variance expression is not useful for creating a confidence interval
for p since it depends on p. So, we estimate the large sample variance by replacing p with

p

. This leads to the large sample confidence interval:

1 - α ≈ Pp

- z α

2
p
 2
1 - p


  n < p < p


+ z α

2
p
 2
1 - p


  n . (9)

In  order  to  conveniently  perform  the  calculations,  we  note  that  p

= n / X = n / (Y + n).  We

evaluate the coverage probability for 0.2 < p < 0.99 in steps of 0.01. We based the calcula-

tions on n = 20. The calculation can take some time depending on the computer. When p

is  small,  values  of  X  or  Y  are  extremely  unlikely.  This  makes  the  internal  algorithm  take

quite  a  while.  We  can  help  speed  up  the  calculations  by  using  NProbability  rather

than the symbolic Probability. The speedup occurs by reducing the required number
of digits in calculations. Even so, this calculation takes some time (about four minutes on
the author’s computer). A graph of the coverage probabilities is contained in Figure 7.

In[20] := Module

{zc, n, se, p, X},

zc = Quantile[NormalDistribution[0, 1], .975];

n = 20;

se =
n

X + n

1 -
n

X+n


n
;

p = Range[.2, 1, 0.01];

ListPlot

#, NProbability

n

X + n
- zc se < # <

n

X + n
+ zc se,

X  NegativeBinomialDistribution[n, #] & /@ p,

AxesLabel  {Style["p", Italic], "coverage"},

PlotRange  {{0, 1}, {0, 1}},

Prolog  {Red, Line[{{0, 0.95}, {1, 0.95}}]}




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Out[20]=

0.0 0.2 0.4 0.6 0.8 1.0
p0.0

0.2

0.4

0.6

0.8

1.0
coverage

▲ Figure 7. Coverage probabilities for the confidence interval for a population proportion on the nega-
tive binomial distribution, n = 20.

We see from Figure 7 that the approximation is quite good for values of p close to 0.2. We

infer that the approximation is also quite good if p is close to 0. The approximation gener-

ally gets worse as p increases (though not monotonically). A large sample approximation

was used. Also, an approximate standard error was used. One sees that the coverage proba-
bility is essentially zero when p is close to 1.

■ 5. Summary

Large sample confidence intervals are often quite easy to derive. This is particularly true
when using an estimate for the standard error of an estimator. However, the actual proba-
bility  of  surrounding  the  parameter  value  (coverage)  can  be  quite  different  from  the
nominal  value.  It  is  helpful  to  graph  the  coverage  probabilities  to  see  this.  Mathematica
is  particularly  useful  in  performing  these  calculations  and  providing  a  language  for
describing the algorithms.
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