
The Mathematica®  Journal

Numerical Contour 
Integration
Applied to One- and Two-Dimensional 
Integrals over Distributions
Erickson Tjoa

We present a straightforward implementation of contour integration by 
setting options for Integrate and NIntegrate, taking advantage of 

powerful results in complex analysis. As such, this article can be viewed 
as documentation to perform numerical contour integration with the 

existing built-in tools. We provide examples of how this method can be 

used when integrating analytically and numerically some commonly 
used distributions, such as Wightman functions in quantum field theory. 
We also provide an approximating technique when time-ordering is 
involved, a commonly encountered scenario in quantum field theory for 
computing second-order terms in Dyson series expansion and Feynman 
propagators. We believe our implementation will be useful for more 

general calculations involving advanced or retarded Green’s functions, 
propagators, kernels and so on.

■ Introduction

It  is  well  known  that  we  can  integrate  analytically  a  large  class  of  functions  with  known

anti-derivatives  via  Integrate;  otherwise,  we  can  use  NIntegrate  for  numerical
results. There are various settings that one can use to evaluate integrals, depending on the
task  at  hand.  Crucially,  this  can  be  performed  even  if  the  integrand  is  complex  valued,

such  as  the  function  e i x.  In  some  cases,  when  the  integrand  is  a  distribution,  this  inte-

gration  can  also  be  done  analytically  by  setting  the  option  PrincipalValue,  for
example, or by imposing a regulator, which in physics is often called a UV cutoff. 

In this article, we are interested in a contour integral of the form


γ

F (z) dz, (1)
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where F(z) is a complex-valued function or distribution and γ is an integration contour, with
possibly  higher-dimensional  generalizations.  For  a  large  class  of  functions  F(z)  and  a
contour γ, this can be done in various ways, such as using powerful techniques in complex
analysis like Cauchy’s integral formula or the residue theorem. For many of these functions,

Integrate can provide answers immediately, sometimes involving special functions.

The motivation for this article is based on the observation that there is no good documen-
tation on how to perform explicit contour integration in Mathematica. It turns out that the
ingredients  necessary  to  perform  this  task  are  already  available  within  the  software.  We
believe  that  some  of  these  ingredients  are  already  used  elsewhere  for  different  purposes.
Our task is to synthesize these components in a coherent way to document how to perform
numerical  contour  integration,  using  only  built-in  commands  and  their  options.  We  will
show  by  way  of  examples  that  in  many  cases  this  method  proves  superior  to  direct  inte-
gration  with  i ϵ  prescription,  especially  when  the  integrand  is  complicated  or  when  the
integral is multidimensional.

■ Example 1: Simple Textbook Example—One-
Dimensional Contour Integral with Closed-Form 

Solutions

Consider the integral

I1 := ϵ 0+ 


ei k x

x - i ϵ
dx = π i + PV 



ei k x

x
dx = 2 π i, (2)

where ϵ > 0, k > 0, and γ is the entire real line. The first  equality comes from Sokhotsky’s
formula  [1]  and  the  second  equality  uses  principal  value  integration.  This  is  a  commonly
used “epsilon-regularization” in physics when evaluating certain apparently divergent inte-
grals,  which  has  to  do  with  the  distributional  nature  of  the  integrand  in  question  (see
Appendix A in [1] for examples).
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This integral can be solved using complex analysis instead of Sokhotsky’s  formula, based
on the observation that I1 can be computed using the following contour.

-R R
x

i ϵ

-i ϵ

γ

The  contour  is  the  horizontal  blue  segment  and  the  semi-circular  arc  γ.  The  integral  over

the  semi-circular  arc  vanishes  as  R  ∞  by  Jordan's  lemma  [2,  3].  The  contribution  from
the  closed  loop  can  be  calculated  in  various  ways,  such  as  the  residue  theorem.  The
residue theorem says that since the closed loop encloses the pole at x = i ϵ (using the stan-

dard  counterclockwise  convention  [2,  3]),  I1 = 2 π iRese
i k x  (x - i ϵ) = e-ϵ k.  Taking  the

limit as ϵ  0, we get the same result 2 π i as before.

There is indeed a built-in function for calculating residues.

Residue
Exp[I k x]

x - I ϵ
, {x, I ϵ}


-k ϵ

Another way to evaluate I1  is based on the fact that the “i ϵ prescription” is an instruction
to perform a specific contour integration (without an ϵ-regulator) in the sense that

I1 = 
γ

ei k x

x
dx = 2 π iRes

ei k x

x
, 0 = 2 π i, (3)

where γ  is a contour chosen to go from -∞ to ∞ but deformed near the pole x = 0 to the
lower complex plane. 

The i ϵ prescription in (2) shifts the pole at x = 0 to x = i ϵ in the upper half-plane, so that
we  can  integrate  over  the  real  line  and  then  take  the  limit  as  ϵ  ∞.  Consequently,  if  we
were to remove the ϵ-regulator, the deformation theorem [2] would require that we deform
the contour to the lower complex plane near x = 0 in order to obtain the same value of the
integral.  (The  deformation  theorem  [2]  in  complex  analysis  states  that  a  contour  integral
remains constant under deformation of the contour that does not cross any poles or branch
cuts.) For this contour, the residue is instead given by the following.

Residue
Exp[I k x]

x
, {x, 0}

1
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If  we  choose  ϵ < 0  instead,  the  integral  is  zero.  Here  is  an  explicit  computation  for  fixed
k = 2.

□ Case 1

I1@a_ := Integrate
Exp[2 I x]

x - I a
, {x, -∞, ∞}

I1 /@ {1 / 10, 1 / 100, -1 / 10, -1 / 100}


2  π

1/5
,
2  π

1/50
, 0, 0

The zero values have a simple explanation in terms of contour integration: since the pole
is  now  shifted  to  the  lower  half-plane,  the  contour  does  not  enclose  any  poles,  which  by
Cauchy’s integral theorem guarantees that the integral is zero.

□ Case 2

This  is  a  good  place  to  introduce  the  numerical  contour  integration  scheme.  As  a  simple
example, we can use a rectangular contour.

I2[k_, a_] := Integrate
Exp[I k x]

x
,

{x, -∞, -a, -a - I, a - I, a, ∞}, Assumptions  k > 0

I2 @@@ {{1, 1}, {π, 1}, {π, 1 / 3}}

{2  π, 2  π, 2  π}

□ Case 3

For any k > 0 and a > 0, this calculation gives the correct answer,  as expected from direct
calculation using residues or textbook pen-and-paper calculations (see e.g. [3]). Varying a
does  not  change  the  integral,  as  a  consequence  of  the  deformation  theorem.  In  particular,
other contours also work, such as, for example, a triangular contour.

I3[k_, a_] := Integrate
Exp[I k x]

x
, {x, -∞, -a I, ∞},

Assumptions  k > 0
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I3 @@@ {{1, 1}, {1, 1 / 3}}

{2  π, 2  π}

□ Case 4

For  completeness,  let  us  show  that  in  this  simple  case  the  i ϵ  prescription  (which  is  com-
monly used in physics) can also be done. We  add the condition a > 0.

I4[k_, a_] := Integrate
Exp[I k x]

x - I a
, {x, -∞, ∞},

Assumptions  k > 0 && a > 0

I4[1, a]

2  
-a

π

The final  result involves e-a, which tends to 1 as a  0+. Therefore, in this simple exam-
ple,  all  the  methods  yield  good  results.  It  is  straightforward  to  show  that  many  common
textbook examples (see e.g. [3]) can be performed in this way.

□ Case 5

Finally,  our  main  goal  is  to  show  that  NIntegrate  can  also  perform  the  task  reliably.
First do the i ϵ prescription.

I5[k_, a_] :=

Quiet@NIntegrate
Exp[I k x]

x - I a
, {x, -∞, ∞},

WorkingPrecision  30

I5[1, 1 / 100]

0. × 10-29
+ 8.64997542233668860083260374951 

Here  we  see  the  first  instance  where  the  i ϵ  prescription  starts  to  fail:  when  performed
numerically,  the  most  basic  setting  does  not  work,  and  increasing  the  working  precision
does not help much. 

Remark: The  Quiet command silences all error messages and is used for readability.  In
practice,  in  order  to  discover  the  issues  and  possibly  infer  the  sources  of  problems,  it  is

useful to not use Quiet on a first try.
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□ Case 6: Numerical Contour Integration

Now do the contour integral using a triangular contour.

I6[k_, a_] :=

Quiet@NIntegrate
Exp[I k x]

x
, {x, -Infinity, -a I, Infinity}

I6 @@@ {{1, 1}, {1, 1 / 10}}

0. + 6.28319 , 4.44089 × 10-16
+ 6.28319 

The  contour  integration  works  as  is  without  further  modification.  The  size  of  the  contour
does not matter,  as long as it is not so small that it leads to numerical instabilities associ-
ated with small numbers.

We  refer to the numerical computation using NIntegrate that involves contour deforma-
tion in the complex plane as numerical contour integration. We  will see recurring examples
where  i ϵ  prescriptions, albeit  simplest  to  implement,  almost  never  work  when  needed  in
spite of optimizing various settings. Thus numerical contour integration is a highly competi-
tive technique to use.

■ Example 2: Two-Dimensional Integral on 2 over a 

Distribution

(Remark:  Some  of  the  discussion  here  was  briefly  outlined  in  [4,  5],  which  is  based  on
what this article contains.)

The  main  example  we  consider  in  this  article  involves  the  integral  over  a  distribution  or
bi-distribution of the form

J1(Ω, σ) := limϵ0+ 




e
-t2

2 σ2 e
-T2

2 σ2 e- Ω(t-T) W(t, x; T, x; ϵ) dt dT, (4)

where Ω ∈ , σ > 0, ϵ > 0 and W(t, T, ϵ) is a distribution or bi-distribution given by

W(t, x; T, X; ϵ) := -
1

4 π2

1

(t - T - i ϵ)2 - (x -X)2
. (5)

In  physics,  more  specifically  quantum  field  theory,  this  distribution  is  the  two-point  vac-
uum  correlation  function  (also  called  the  two-point  Wightman  function)  of  a  massless
scalar field in (3 + 1)-dimensional Minkowski space [6]. 

W(t, x; T, X; ϵ) = 0 ϕ(t, x) ϕ(T, X) 0 (6)
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The arguments of the two-point function are the coordinates of two spacetime events (t, x)
and (T, X), where x = (x, y, z) and X = (X, Y , Z) in Cartesian coordinates and ϵ. The  inte-

gral J1(Ω, σ) is evaluated at x = X and is thus independent of the spatial coordinates. The
i ϵ prescription tells us that the Wightman function is a distribution or bi-distribution [6].

Our  task  is  to  evaluate  the  integral  J1(Ω, σ)  in  (4).  This  is  a  two-dimensional  complex
integral over t and T  with a continuum of poles at t = T + i ϵ for any fixed ϵ > 0. In the liter-

ature, J1(Ω, σ) gives the transition probability (divided by a small coupling constant λ2) of
an Unruh–DeWitt  (UDW) detector consisting of a two-level quantum system (qubit) with
energy  gap Ω interacting with the massless scalar field  for a finite  duration prescribed by
the  Gaussian  function  with  timescale  set  by  σ  (see  e.g.  [7]  and  references  therein).  The
Gaussian  functions  in  the  integrand  ensure  that  the  interaction  between  the  detector  and
the  quantum  field  ϕ  is  adiabatically  switched  on  and  off  smoothly;  that  is,  the  Fourier
transform  of  the  Wightman  function  has  polynomial  tails  and  is  strongly  suppressed  by
the exponential tails of the Fourier transform of the Gaussians. This  guarantees that there
is  no  spurious  divergence  in  the  transition  probability  due  to  switching  on  the  detector
very sharply or suddenly,  such as with a switching function with discontinuity at an end-
point,  like  a  rectangular  function,  which  is  unphysical.  An  analogy  is  switching  on  a
lightbulb:  in  realistic  scenarios  the  current  in  the  circuit  does  not  simply  increase  from
zero to a constant value instantaneously, but rather smoothly over some short time interval.

The example in equation (4) is important for three reasons.

1.  It  is  one  of  the  simplest  examples  in  quantum  field  theory;  many  other  examples  in
physics  involve  distributions  that  take  similar  and  sometimes  more  complicated  forms

(e.g. different power laws (t - T - i ϵ)n where n ≠ 2 or (t - f (T) - i ϵ)2 for some function f ).

2.  It  is  one  of  the  simplest  examples  of  a  two-dimensional  integral  with  a  continuum  of
poles,  thus  going  beyond  standard  textbook  examples  (e.g.  in  [3]  all  the  examples  are
one dimensional).

3. Despite its somewhat complicated appearance, it admits a closed-form expression [7]. 

□ Benchmark Value for J1

In [7] it is shown that the exact closed-form expression is given by

J1(Ω, σ) =
1

4 π
e-σ

2 Ω2 -Ωσ π1/2 erfc(Ωσ), (7)

where erfc(x) is the complementary error function. We  want to show that numerically this
result can be obtained in a satisfactory way.  For this purpose, let us focus on a particular
numerical value by setting Ωσ = 1, so that

J1(Ωσ = 1) ≃ 0.0078827. (8)
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We  can then use this value as a benchmark for our methods. 

J1[Ω_, σ_] :=
1

4 π
Exp-Ω2 σ

2
 - Sqrt[π] Ω σ Erfc[Ω σ]

J1[Ω, 1 / Ω] // N

0.00708827

□ Direct i ϵ Integration

 Direct i ϵ  integration for J1 is given by the following command.

J2[Ω_, σ_, ϵ_, tmax_, minrecursion_] :=

-
1

4 π2
NIntegrateExp-

t2

2 σ2
 × Exp-

T2

2 σ2
 × Exp[-I Ω (t - T)]

1

(t - T - I ϵ)2
, {t, -tmax, tmax}, {T, -tmax, tmax},

MinRecursion  minrecursion // Quiet

The most modest settings yield poor results.

Module

{Ω = 1, σ = 1, tmax = ∞, minrecursion = 3},

TableForm

ParallelTable10.0-ϵ, J2Ω, σ, 10-ϵ, tmax, minrecursion,

{ϵ, 0, 3}



1. 0.00424507 - 2.3529 × 10-14


0.1 0.16067 + 2.67381 × 10-17


0.01 0.703251 + 0.190412 

0.001 1.91608 - 2.1148 × 10-15


Clearly, although the real parts are all positive (hence physically at least sensible for a tran-
sition  probability),  the  results  are  very  different  from  the  benchmark  value.  The  third
value is wrong because the  probabilities should be real (hence numerically the imaginary
part should be much closer to zero).
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Increasing MinRecursion as a first remedy does not help much, if at all.

Module

{Ω = 1, σ = 1, tmax = ∞, minrecursion = 6},

TableForm

ParallelTable10.0-ϵ, J2Ω, σ, 10-ϵ, tmax, minrecursion,

{ϵ, 0, 3}



1. 0.00424507 + 0. 

0.1 0.00244826 - 0.0000929703 

0.01 0.149596 + 0.00266373 

0.001 2.63054 + 0.0931637 

□ Restricting the Domain

Restricting  the  integration  domain  to  (-5 σ,  5 σ),  where  the  Gaussian  is  strongly  sup-
ported, improves the result, but not enough. (The negligible part of the integral associated
to Gaussian tails was ignored.) To  see that the behavior scales badly with ϵ, let us choose
a particular setting.

Module

{Ω = 1, σ = 1, tmax = 5, minrecursion = 3},

TableForm

ParallelTable10.0-ϵ, J2Ω, σ, 10-ϵ, tmax, minrecursion,

{ϵ, 0, 5}



1. 0.00424507 + 9.28979 × 10-15


0.1 0.00670271 - 2.23593 × 10-16


0.01 0.00704838 - 8.47189 × 10-16


0.001 -0.732931 - 9.03524 × 10-7


0.0001 -6.84952 - 1.52192 

0.00001 -27.3218 + 0.246437 

The first  two entries, while not accurate enough, are again at least physically valid results
because  the  imaginary  part  is  negligible  and  hence  can  represent  transition  probabilities.
In contrast, the last three values have negative real parts and are thus invalid by default.

We  leave  it  to  the  reader  to  verify  that  other  possible  settings,  such  as  increasing

WorkingPrecision or AccuracyGoal,  do not help, nor does changing the Method

setting from  GlobalAdaptive to  another.  There  may  be  some  combination of  settings
that makes this integration work, but if they exist then they are for our purposes not worth
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the time. We  will in fact show that the exact same setting that yields the bad results above
does work with numerical contour integration.

A possible reason for these issues is that i ϵ prescription changes the asymptotic behavior
at  t, T = ±∞.  Numerically,  we  are  evaluating  the  integral  from  t = -∞ - i ϵ  to  t = ∞ + i ϵ,

so NIntegrate has to deal with points at infinity that are shifted with a very small imag-
inary component.

□ Numerical Contour Integration

Here  J1  is  transformed  into  a  numerical  contour  integral,  J3.  In  contrast  to  the  previous
subsection, the ϵ-regulator now serves as a contour deformation near a reasonably shaped
contour. Hence the asymptotic behavior of the integral is not altered by varying ϵ.

J3(Ω, σ) := 


γ(ϵ)

e
-t2

2 σ2 e
-T2

2 σ2 e-iΩ (t-T) W(t, x; T, x; 0) dt dT, (9)

where γ(ϵ) is a contour along the real line but deformed around the poles of the Wightman
function. Here we have ϵ = 0 in the Wightman  function because we have converted the i ϵ
prescription into an instruction to perform contour integration, so the ϵ is now part of the
definition of the contour γ. 

Here  is  the  contour  γ(ϵ),  where  T = t  is  the  location  of  the  continuum  of  poles  for  every
fixed t.

T
t - ϵ t t + ϵ

t + i ϵ
γ(ϵ)

Since  many  contours  work,  let  us  first  choose  a  particularly  simple  one:  a  rectangular
deformation  near  the  poles.  If  we  integrate  over  T  first,  then  the  continuum  of  poles  is
located in the complex plane at t = T. Therefore,  the contour γ should be deformed to the
upper complex plane.

J3[Ω_, σ_, ϵ_, tmax_, minrecursion_] :=

-
1

4 π2
NIntegrateExp-

t2

2 σ2
 × Exp-

T2

2 σ2
 × Exp[-I Ω (t - T)]

1

(t - T)2
, {t, -tmax, tmax},

{T, -tmax, -tmax + t - ϵ, -tmax + t - ϵ + I, -tmax + t + ϵ + I,

-tmax + t + ϵ, tmax}, MinRecursion  minrecursion // Quiet
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Based  on  the  previous  subsection,  we  see  that  using  tmax = 5 σ  yields  a  better  answer,
since  more  than  99.99%  of  the  area  of  the  Gaussian  in  the  integrand  is  contained  in  the
interval  (-5 σ, 5 σ).  We  will  not set  tmax = ∞  in  what  follows.  Consequently,  the  parts  of
the  contour  from  -∞  to  -5 σ  and  5 σ  to  ∞  have  been  truncated  and  do  not  yield  signif-
icant error. This gives the following results.

Module{Ω = 1, σ = 1, tmax = 5, minrecursion = 3},

TableForm

ParallelTable10.0-ϵ, J3Ω, σ, 10-ϵ, tmax, minrecursion,

{ϵ, -1, 3}



10. 0.00708827 + 2.7874 × 10-12


1. -118.349 + 0.0394913 

0.1 -39.6743 - 0.00597572 

0.01 -63.5535 + 0.0846851 

0.001 -92.5487 + 0.113553 

This result may look undesirable, but the first  value is numerically the same as the bench-
mark  value  up  to  very  small  imaginary  part.  This  suggests  that  in  the  neighborhood  of
ϵ ≈ 10 there is a good range that we can use to get a numerically accurate result; we will
show that the result is invariant under smooth deformation of the contour.  For example, if

we zoom in between ϵ ≈ 101 and ϵ ≈ 102, we get the following results.

Module[{Ω = 1, σ = 1, tmax = 5, minrecursion = 3},

TableForm[

ParallelTable[{ϵ, J3[Ω, σ, ϵ, tmax, minrecursion]},

{ϵ, 10, 50, 5}]]

]

10 0.00708827 + 2.7874 × 10-12


15 0.00708827 + 2.30492 × 10-12


20 0.00708827 + 2.01536 × 10-13


25 0.00708827 + 4.3746 × 10-12


30 0.00708827 + 1.21304 × 10-12


35 0.00708827 - 2.3751 × 10-12


40 0.00708827 + 1.23849 × 10-13


45 0.00708827 - 1.92872 × 10-12


50 0.00708827 + 2.79498 × 10-12

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That  the  results  are  unchanged  as  we  vary  ϵ  (only  the  negligible  error  changes  a  little)  is
what we expect from the deformation theorem in complex analysis, since the deformation
does not cross any singularities. This  invariance under contour deformation is very useful
because  it  is  one  of  the  consistency  checks  we  can  do  (or  perhaps  need  to  do)  in  the
absence of exact closed-form expressions and other cross-validation. Direct i ϵ integration
does  not  allow  this,  because  every  ϵ  yields  different  values  (because  the  asymptotics  are
also shifted by i ϵ). Furthermore, numerical contour integration is also remarkably fast. 

□ A Different Contour

Here is a different contour. The width is fixed but the height toward the imaginary axis varies.

-tmax tmax
T

i ϵ

γ(ϵ)

J4[Ω_, σ_, ϵ_, tmax_, minrecursion_] :=

-
1

4 π2
NIntegrateExp-

t2

2 σ2
 × Exp-

T2

2 σ2
 × Exp[-I Ω (t - T)]

1

(t - T)2
, {t, -tmax, tmax},

{T, -tmax, -tmax + ϵ I, tmax + ϵ I, tmax},

MinRecursion  minrecursion // Quiet

Module{Ω = 1, σ = 1, tmax = 5, minrecursion = 3},

TableForm

ParallelTable10.0-ϵ, J4Ω, σ, 10-ϵ, tmax, minrecursion,

{ϵ, -1, 5}



10. 1.78612 × 107 + 3.83932 × 106 

1. 0.00708827 - 2.63646 × 10-19


0.1 0.00708827 - 3.77893 × 10-18


0.01 0.00708827 - 5.03938 × 10-16


0.001 -0.73201 + 0.0000108048 

0.0001 -6.84891 + 1.52209 

0.00001 -27.3215 + 0.246435 
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This  choice  of  contour  highlights  that  while  contour  integration  is  much  more  powerful
than  the  direct  i ϵ  integration  method,  one  should  avoid  numerical  issues  associated  with
values  of  ϵ  that  are  either  too  large  or  too  small;  sometimes  different  contours  yield
different  stability.  Nonetheless,  the  main  takeaway  is  that  we  have  found  that  there  is  a
large  enough  range  of  ϵ  for  which  the  contour  can  be  varied  but  still  yields  the  correct

value (in this case, ϵ ≈ 10-2 - 1). In this range, we can vary ϵ and the answer is invariant.
The  correct  range  of  ϵ  that  provides  reliable  results  must  however  be  found  empirically
and  depends  strongly  on  the  integrand.  For  completeness,  we  show  the  results  for
zooming into the range of ϵ (except that this time we need this to be ϵ ≈ 0.01 - 1).

Module{Ω = 1, σ = 1, tmax = 5, minrecursion = 3},

TableForm

ParallelTable{N[ϵ], J4[Ω, σ, ϵ, tmax, minrecursion]},

ϵ, 10-1, 1, 10-1




0.1 0.00708827 - 3.77893 × 10-18


0.2 0.00708827 + 8.7223 × 10-18


0.3 0.00708827 - 3.60317 × 10-18


0.4 0.00708827 - 1.06076 × 10-16


0.5 0.00708827 - 8.36374 × 10-15


0.6 0.00708827 + 2.94409 × 10-15


0.7 0.00708827 + 2.23166 × 10-15


0.8 0.00708827 - 3.47624 × 10-15


0.9 0.00708827 + 2.98312 × 10-15


1. 0.00708827 - 2.63646 × 10-19


A significant advantage of numerical contour integration over direct i ϵ integration is that it
allows for robust consistency check: if we can find a range for ϵ in which the integral is con-
stant (up to small numerical errors like a small imaginary part), then the integral is likely to
be  correct. This  is  an  extremely important necessary condition, especially when  a  closed-
form expression is not available. Of course, if there are other ways to check the correctness
of the value (as in this example where we know the exact closed-form expression or if there
are physical arguments to back it up), we should always also perform these other checks.
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■ Example 3: Two-Dimensional Integral over a Distribution 

Containing the Heaviside Step Function

Next, we consider a more complicated integral,

K1 (Ω, σ) := - limϵ0+ 




e
-t2

2 σ2 e
-T2

2 σ2

eiΩ(t+T)(θ(t - T)W(t, x; T, X; ϵ) + θ(T - t)W(T, X; t, x; ϵ) ) dt dT,

(10)

where Ω ∈ , σ > 0, ϵ > 0, θ(z) is the Heaviside step function and the two-point Wightman
function  W(t, x; T, X; ϵ)  is  given  in  equation  (5).  This  integral  differs  conceptually  from
Example 2 in two respects: 

(1) the additional Heaviside step function in the integrand

(2) we also allow for x ≠ X and changed the sign on the phase

The Heaviside step function appearing in the integrand naturally arises in physics calcula-
tions where a Dyson series expansion is involved (i.e. where the notion of time ordering is
necessary). In particular, this occurs in various time-dependent perturbation theory calcula-
tions  within  quantum  mechanics  and  quantum  field  theory.  The  specific  integral  in  (10)
appears  as  part  of  the  calculation  of  the  nonlocal  part  of  the  joint  two-detector  density
matrix of two qubits interacting with a massless scalar field  in the so-called entanglement
harvesting protocol [7, 8].

Perhaps somewhat surprisingly, this integral admits a closed-form solution [7], given by

K1(Ω, σ) =
i σ

4 π 1/2 L
e
-Ω2 σ2-

L2

σ2 1 + erf i
L

σ
, (11)

where L = X - x . As  before, we can assume that the coordinate system is aligned so that
X - x = (X - x, 0, 0) = (L, 0, 0).

□ Benchmark Value for K1

For benchmarking, assume Ωσ = 1 and set L = σ. This gives

K1(Ωσ = 1, L = σ) ≈ -0.0248507 + 0.0404108 i. (12)

Here is the calculation.

K1[Ω_, σ_, L_] :=
I σ

4 Sqrt[π] L
Exp-Ω2 σ

2
-

L2

4 σ2
 1 + Erf

I L

2 σ


K1[1, 1, 1.0]

-0.0248507 + 0.0404108 
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This is an alternative if one prefers arbitrary σ in the expression.

K1σ-1, σ, σ // N

-0.0248507 + 0.0404108 

This number is complex, so we no longer have the benefit of verifying our numerical calcu-
lation by requiring that the imaginary part be small (which we used in Example 2).

Let us now evaluate K1(Ω, σ) numerically. We  will not bother with the i ϵ prescription any-
more  because  it  does  not  work;  this  is  not  surprising  since  the  Heaviside  step  function
only complicates the integral compared to Example 2. However, we will evaluate this inte-
gral  in  two  ways,  both  using  numerical  contour  integration,  with  the  two  methods  differ-
ing in how they handle the Heaviside step function.

□ Absorbing the Heaviside Function into the Upper Limit

We  rewrite the integral K1 as:

K2(Ω, σ) := -
-∞

∞


-∞

t

e
-t2

2 σ2 e
-T2

2 σ2 eiΩ(t+T) W(t, x; T, X; ϵ) dT dt -


-∞

∞


-∞

T

e
-t2

2 σ2 e
-T2

2 σ2 eiΩ(t+T) W(T, X; t, x; ϵ) dt dT

(13)

By suitable relabeling, the two integrals are equal (this property is used in [7, 8]), but we
will not need this fact, since in more general situations the two integrals are different. (See
e.g. [5, 9], where the upper limits differ  slightly by a “relative redshift” factor.)  Although
equation (13) is written in the notation of an i ϵ prescription, this is merely a shorthand for
performing the numerical contour integration, since we already know that direct i ϵ integra-
tion does not work.

Pick  a  rectangular  contour  and  set  it  so  that  X - x = (X - x, 0, 0) = (L, 0, 0).  For  this
choice,  the  two  integrals  have  a  continuum  of  poles  at  T = t - L  and  t = T - L,  respec-
tively. The contour will be chosen so that it does not cross any poles as ϵ varies.

-tmax

tmax + i ϵ

t
T

t + i ϵ

γ(ϵ)
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We  can then write the following integral command.

K2[Ω_, σ_, ϵ_, x_, X_, tmax_, minrecursion_] :=

-QuietNIntegrateExp-
t2

2 σ2
 × Exp-

T2

2 σ2
 × Exp[I Ω (t + T)]

-
1

4 π2

1

(t - T)2 - (x - X)2
, {t, -tmax, tmax},

{T, -tmax, -tmax + ϵ I, t + ϵ I, t},

MinRecursion  minrecursion -

QuietNIntegrateExp-
t2

2 σ2
 × Exp-

T2

2 σ2
 × Exp[I Ω (t + T)]

-
1

4 π2

1

(T - t)2 - (X - x)2
, {T, -tmax, tmax},

{t, -tmax, -tmax + ϵ I, T + ϵ I, T},

MinRecursion  minrecursion

The most modest settings yield good results.

Module{Ω = 1, σ = 1, L = 1, tmax = 5, minrecursion = 3},

TableForm

ParallelTable

10.0-ϵ, K2Ω, σ, 10-ϵ, 0, L, tmax, minrecursion,

{ϵ, -1, 5}



10. -55229.3 - 1.26222 × 107 

1. -0.0248507 + 0.0404108 

0.1 -0.0248507 + 0.0404108 

0.01 -0.0248507 + 0.0404108 

0.001 -0.0248507 + 0.0404108 

0.0001 -0.0246624 + 0.0414845 

0.00001 -0.0287788 + 0.0299646 

The contour parameter ϵ is good in the range 10-3, 1 and starts to deviate at around 10-4.

Remarkably,  we  can  compute  this  result  very  well  despite  the  extra  complications,  with

nearly no additional settings beyond MinRecursion  3. 
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□ Approximate Heaviside Step Function

The integral in equation (9) is actually written in a more useful form than the upper limit
form  in  equation  (12),  in  the  sense  that  it  accommodates  a  more  general  scenario  where
the  two-point  functions  may  not  be  simple  functions  of  t  and  T.  In  general,  the  poles  of
the  Wightman  functions  for  the  problem  at  hand  can  be  located  at  t = f (T),  where  f  is

some  function  that  does  not  have  a  simple  inverse.  In  such  a  situation,  the  upper  limit  of
the integrals is not simply t or T and may have to be worked out numerically.

More  specifically,  in  the  context  of  quantum  field  theory  in  curved  spacetimes,  the
Wightman  function  in  equation  (5)  is  given  in  flat  spacetime  in  terms  of  the  Minkowski
coordinates,  and  the  integrals  we  computed  thus  far  correspond  to  two  Unruh–DeWitt
(UDW) detectors separated by proper distance L, both of which are at rest relative to this
coordinate  system.  When  the  detectors  are  in  motion,  we  have  to  replace  t - T  with
t(τ) - t(Τ), where t is Minkowski coordinate time and τ and Τ are the proper times of each

detector,  which  take  the  roles  of  t  and  T  in  the  previous  sections.  Similarly,  we  have  to
replace  x -X  with  x(τ) - x(Τ),  where  now  x  takes  the  role  of  Minkowski  spatial  coordi-
nates.  In  this  case,  in  general  it  is  not  true  that  τ  is  a  simple  function  of  Τ,  so  it  may  not
always  be  possible  to  find  an  upper  limit  version  similar  to  equation  (12).  The  static
detectors (at rest relative to Minkowski coordinates) correspond to the special case where
t(τ) - t(Τ) = τ - Τ,  which  can  then  be  rewritten  as  t - T.  This  complexity  occurs  more
generally when the spacetime is not flat,  such as when we consider two-dimensional trun-
cation of Schwarzschild spacetime [5].

For this reason, it is useful to try to integrate equation (10) using the Heaviside step func-

tion  directly.  Since  the  built-in  function  HeavisideTheta  is  not  defined  for  complex
numbers, we approximate it with a smooth function. For example, the Heaviside step func-
tion is a limit of a logistic function:

θ(z) = k∞

1

2
× (1 + tanh(k z)), (14)

provided that we define  θ(0) =
1

2
. We can thus define  an approximate Heaviside step func-

tion for any fixed k > 0 by

θk(z) :=
1

2
× (1 + tanh(k z)). (15)

Any other function used in computing a cumulative probability distribution would work.

Our integral K2 now becomes

K3(Ω, σ, k) := -


γ(ϵ)

e
-t2

2 σ2 e
-T2

2 σ2

eiΩ(t+T)(θk(t - T)W(t, x; T, X; ϵ) + θk(T - t)W(T, X; t, x; ϵ) ) dt dT,

(16)
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again  with  the  rectangular  contour  of  Figure  2.  The  task  now  is  to  manually  find  k  and  ϵ

that  yield  good  results  by  trial  and  error.  Again  we  set  X - x = (X - x, 0, 0) = (L, 0, 0)  so
that X - x = L.

We  define θ and K3.

θ[k_, z_] :=
1

2
× (1 + Tanh[k z])

K3[Ω_, σ_, ϵ_, k_, x_, X_, tmax_, minrecursion_] :=

-QuietNIntegrateExp-
t2

2 σ2
 × Exp-

T2

2 σ2
 × Exp[I Ω (t + T)] ×

θ[k, t - T] -
1

4 π2

1

(t - T)2 - (x - X)2
, {t, -tmax, tmax},

{T, -tmax, -tmax + ϵ I, tmax + ϵ I, tmax},

MinRecursion  minrecursion -

QuietNIntegrateExp-
t2

2 σ2
 × Exp-

T2

2 σ2
 × Exp[I Ω (t + T)] ×

θ[k, T - t] -
1

4 π2

1

(T - t)2 - (X - x)2
, {T, -tmax, tmax},

{t, -tmax, -tmax + ϵ I, tmax + ϵ I, tmax},

MinRecursion  minrecursion

The  results  are  promising,  since  there  is  a  range  of  ϵ  that  gives  a  result  very  close  to  the
benchmark K1 = -0.0248507 + 0.0404108 i, but we can do better.

Module{Ω = 1, σ = 1, L = 1, tmax = 5, minrecursion = 3},

TableForm

ParallelTable

10.0-ϵ, K3Ω, σ, 10-ϵ, 5, 0, L, tmax, minrecursion,

{ϵ, -1, 5}



10. 1.5052 × 107 - 1.77699 × 106 

1. -0.0248507 + 0.00731934 

0.1 -0.0248507 + 0.0404071 

0.01 -0.0248507 + 0.0404071 

0.001 -0.0248416 + 0.0403968 

0.0001 -0.0244954 + 0.0300156 

0.00001 -0.0343124 + 0.0127622 
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The  key  is  to  set  k ≈ ϵ-1  so  that  k ϵ = O(1).  For  example,  for  k = 5,  a  good  choice  of  ϵ  is
1/5  but  not  1  or  1/12.  The  only  difference  in  the  next  command  from  the  last  is  in  the

fourth argument of K3, where k is 10ϵ instead of 5. The results are slightly better.

Module{Ω = 1, σ = 1, L = 1, tmax = 5, minrecursion = 3},

TableForm

ParallelTable

10.0-ϵ, K3Ω, σ, 10-ϵ, 10ϵ, 0, L, tmax, minrecursion,

{ϵ, -1, 5}



10. 9.43585 × 106 + 6.25012 × 107 

1. -0.0248507 + 0.0307766 

0.1 -0.0248507 + 0.0404108 

0.01 -0.0248507 + 0.0404108 

0.001 -0.0248462 + 0.0404048 

0.0001 -0.0248537 + 0.029866 

0.00001 -0.0367152 + 0.0189248 

 We  can study this relationship better for a smaller set of values of k and judge the quality.

Module{Ω = 1, σ = 1, L = 1, tmax = 5, minrecursion = 3},

TableForm

ParallelTable

k, K3Ω, σ, k-1, k, 0, L, tmax, minrecursion,

{k, 5, 21, 2}



5 -0.0248507 + 0.0404071 

7 -0.0248507 + 0.0404107 

9 -0.0248507 + 0.0404108 

11 -0.0248507 + 0.0404108 

13 -0.0248507 + 0.0404108 

15 -0.0248507 + 0.0404108 

17 -0.0248507 + 0.0404108 

19 -0.0248507 + 0.0404108 

21 -0.0248507 + 0.0404108 

Thus we have obtained a good range of ϵ where the deformation theorem clearly works. We
need to work with k ϵ = 1 because the smooth approximation of the Heaviside step functions
introduces  infinitely  many  new  poles  in  the  complex  plane,  since  θk(z)  has  (countably)
infinitely many poles along the imaginary axis. This can be easily seen by rewriting θk as:

θk(z) =
1

2
+
1

2
tanh(k z) =

1

1 + e-2 k z
. (17)
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Therefore the choice of k must depend on ϵ so that the contour does not cross extra poles,
making  the  integral  gain  spurious  contributions.  Nonetheless,  finding  the  right  k  that
works  is  an  empirical  process,  especially  when  the  Wightman  function  is  very  compli-
cated. Our examples thus far are simple enough that they can be easily cross-validated and
evaluated without much effort.

■ Further Applications

The above examples have been used by the author to calculate the density matrix elements
of Unruh–DeWitt  detectors interacting with massless scalar fields  for various background
spacetimes,  where  the  calculations  require  time-dependent  perturbation  theory  involving
Dyson  series  expansions.  Starting  from  the  calculations  in  [4]  where  a  primitive  version
was first used to study entanglement harvesting in two-dimensional spacetimes with accel-

erating mirror (see the Appendix  in [4]), the technique was subsequently improved (using
a  full  rectangular  contour  that  is  not  close  to  the  poles)  for  the  entanglement  harvesting
problem  in  Schwarzschild  and  collapsing  shell  spacetimes  [5].  In  [5],  the  derivative-cou-
pling  functions  (strictly  speaking  they  are  not  Wightman  functions  but  the  proper  time
derivatives  of  the  Wightman  functions)  are  so  complicated  that  it  is  somewhat  surprising
the upper-limit  technique outlined above worked very well across large parameter spaces.
The  author has  verified  that  the approximation  of the  Heaviside step  function  works well
for  calculations  in  [5],  although  with  the  caveat:  when  the  derivative-coupling  Wightman
functions can be expressed as a sum of distinct terms, the part of the derivative Wightman
function  that  contains  u - u '  and  U -U '  requires  relatively  small  k  but  the  part  that  con-

tains  v - v '  or  V - V '  may  need  very  large  k ≈ 10-3.  This  highlights  the  need  for  empiri-
cally testing the choice of k before proceeding with physical calculations.

We  extend  the  results  of  [5]  for  harvesting  of  correlations  by  two  quantum-mechanical
detectors  interacting  with  a  quantum  field  in  [9],  where  we  consider  more  complicated
detector  trajectories.  In  this  context,  the  authors  verified  that  the  upper-limit  form  anal-
ogous  to  equation  (12)  proved  numerically  unstable  in  physically  relevant  regimes,  thus
making  indispensable  the  approximate  Heaviside  step  functions  as  a  way  to  calculate  the
nonlocal  correlation  term  in  entanglement  harvesting  contexts.  In  that  setting,  the  calcu-
lation  of  the  nonlocal  term  involves  an  integral  similar  to  K1  in  equation  (10,  but  with
much  more  complicated  numerical  calculations  than  in  [5];  in  particular  the  upper  limits
are not simply affine  functions of τ or τ '. We  will explain the technicalities specific  to the
problem at hand when invoking the techniques outlined in [9].

In quantum field theory in generic spacetimes (flat or curved), there are many situations of
computing integrals over distributions. Our techniques should be general enough to use in
such contexts, where correlation functions take a form similar to Wightman  functions. For
example, we have verified  that our techniques work for computing field  commutators [5]
and  in  (2 + 1)-dimensional  rotating  BTZ  black  holes  [10,  11].  We  are  also  able  to  repro-
duce  the  computations  of  transition  rates  as  done  for  example  in  [12]  (also  see  Appendix
of [4]), which are fundamentally simpler because they are one-dimensional integrals over
the Wightman functions.
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■ Conclusion

In  this  article  we  have  presented  a  straightforward implementation of  contour  integration

using  the  Integrate  and  NIntegrate  commands,  taking  advantage  of  powerful
results in complex analysis. The goal is to provide a systematic example-based implemen-
tation  of  contour  integration  that  does  not  require  any  user-defined  functions  and  only
requires setting options. We  provide explicit examples of how this can be used when inte-
grating analytically and numerically some commonly used distributions, such as Wightman
functions  in  quantum  field  theory.  We  also  provide  efficient  approximation  schemes  to
compute quantities involving time-ordering operations where Heaviside step functions are
required.  Our  examples  are  geared  toward  research  in  relativistic  quantum  information,
where  finite-dimensional  quantum  systems  interact  with  a  quantum  field  on  a  possible
curved  background  spacetime.  We  believe  our  implementation  will  be  useful  for  calcu-
lations  involving  various  Green’s  functions,  propagators,  integral  kernels  and  so  on  for
both  students  and  researchers  in  fields  requiring  numerical  evaluations  of  integrals  over
distributions without resorting to unnecessary or excessive approximation schemes.
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