
 

 

Hello, everyone! Welcome to another episode of Q&A about business, innovation, and managing 
life. 
And I see a bunch of, … Questions… Saved up here… 
One from Lana. How much of what you do now came from formal education versus self-
learning? 
Well, I'm an old guy, so the… just… the accumulation of years is vastly on the side of self-
learning. But also, I personally… 
Well, let's see. I kind of haven't been to kind of a formal class 
about anything, pretty much, since I was 16 years old, which is half a century ago now. … 
So, I've had an awful lot of time for self-learning, and not so much time for non-self-learning. If I 
ask myself, what things do I do today that I learned, sort of, from formal classes versus 
elsewhere. 
I would say… 
Well, I mean, I kind of learned basic math in formal classes long, long ago, and I use something 
that is a big tower on top of that today. I did learn writing, like English writing and so on. 
from, sort of, formal classes back in the day, and I certainly do that every day. I think 
In what I've done with writing, for example, I learned a certain style of writing when I was in 
school. 
And, … 
Then in my life, I've adopted a sequence of other styles of writing, like academic papers are one 
style, like writing software documentation, another style, like writing business communications, 
another style, like writing, sort of, blog-like writing pieces, another style. Each time, it's sort of 
been a bit of relearning of how I want to do things that I suppose is self-teaching. 
More than anything else. As far as other things are concerned that I kind of formally learnt, I… I 
mostly learned, for example, science kinds of things myself from books, not from kind of formal 
classes and so on. 
So, at least for me, the vast, vast majority of what I make use of on a daily basis is things that 
I've learned without not informal classes. How did I learn these things? 
I have a decently good memory, and so it helps that, you know, whenever I sort of run into 
something, so long as I'm kind of primed to be interested in it or remember it, I'll remember it, 
and still, you know, half a century later, I still remember it, and that's really useful. I think it's 
useful to have these frameworks into which you can put things that you learn. I think when I start 
hearing about things where I really have 
no framework. 
for sort of fitting in the things I'm hearing about. If it's some sort of advanced, abstract area of 
math about which I know nothing, and somebody's telling me fascinating facts in that area, it's 
hard for me to fit them into anything, and I probably won't remember them. 
If it's something… similarly, if it's about some industry about which I know very little, it'll again 
be very hard for me to fit that… fit those things into what I'm hearing. But I think, for me, the 
things that I tend to, to, … 
… to… I've tended to try and learn things myself. I learn a lot by doing. 
I would say that a large fraction of the things that I know now, I know because I did a project 
related to those things at some point in the past. For me, that's always a much better way to learn 
than to sit down and say, you know, I'm going to learn this subject, let me go read books about it, 
or watch videos about it, or whatever else. I've been, … I don't find that works very well for me. 
I kind of have 



 

 

to have something that I'm sort of already thinking about, some project, some purpose that I 
have, then I can learn things and fit them into things that I care about. 
I think, sort of the vision 
that you kind of learn everything you need to learn in school, and then you're sort of free-running 
for the rest of your life based on what you learned in school. It's certainly not a great vision for 
modern times. A lot of things in the world change, and so you kind of have to learn new things. 
Now, if I ask the question, things that I learned 
Back in the day, am I still kind of rerunning those same things that I learned, or not? 
When it comes to various technical areas. 
For example, I don't know, things in, let's say, math, even things in physics, those fields, they 
move, but they don't move that much. And the things I learned 50 years ago are still sort of 
perfectly valid things that I can make use of today. 
When it comes to, 
things, let's say, with computers, well, the things I learned by the end of the 1970s of, you know, 
how to type things into a Unix shell, for example, those are things that occasionally I'll still use 
today. 
And there are things where, you know, knowing how to use grep or something is something that, 
you know, I learned 
in the late 1970s, a really long time ago, and it's something I can still learn today. I didn't learn it 
in a formal class, but I learned it a long time ago. It's still sort of valid today. Many other things 
about using computers, for example, have changed completely, and sort of one has to, you know, 
learn them afresh and so on in modern times. 
I would say, in terms of, for myself, there are a lot of domains that I've become involved with 
over the years that I just didn't know anything about when I was, quotes, in school, and I just… I 
wasn't interested in them at the time, I didn't know anything about them, I've learned them 
subsequently. 
when it comes to, for example, things in business, that's mostly… that's really all learnt by doing. 
I remember when I was first back, oh gosh, now, 45 years ago, when I was first, my first 
company, I was kind of like, well, maybe I should learn things about managing companies from 
books. 
at the time, the books… now, admittedly, these were books from a university library, so who 
knows, maybe they were badly selected, but, the books that I found about management were 
absurdly bad. And, I'm sure the modern ones are better, I haven't looked at them, but these were, 
were, sort of, horrifically, you know, not… not useful. 
… 
And, so I didn't read them, so whatever I learned about doing business, I learned by doing it, so 
to speak. I mean, for myself, I happened to have experience for a while doing strategy consulting 
for tech companies, sort of between the time when I did my first company, beginning of the 80s, 
and the time when I did my current company, starting in the mid to late 80s. 
And that… that particular experience of seeing a bunch of different companies and, seeing sort 
of what was happening in them was… was very useful to me, and I think that, it was, 
No doubt, if you go to business school and you do case studies and so on, you might get some of 
the same exposure. For me, it was kind of a real-life exposure, because it's like, here's a 
company, here's what it's doing, it's like, what should it do next, type thing, or what, you know, 
how should you think about the strategy of what it's doing? 



 

 

I've kind of, in more recent times, I've… I've done a bunch of that. It's one of my sort of hobbies, 
is doing strategy consulting for tech companies now. It's very… always very interesting. I guess I 
pick interesting companies, and something that I find very educational, so to speak, but certainly 
it's not a traditional form of education, so to speak. I think one of the things that people 
sometimes imagine is 
I go to school, I learn what I need to learn, and then I don't need to… you know, I'm finished 
with learning. 
This is obviously a terrible mistake. 
And I kind of suspect that anybody who's watching this livestream doesn't have the point of view 
that they stopped learning at the point where they left school, so to speak. Because I think that 
not only does the world change, but also one's own interests change, and sort of the opportunities 
one might have change, and there's always new things to learn. 
Let's see… … Sylvia asks, how many patents do you have? 
I don't know. That's a good question. I'm sure it's easy to look up on the web. They stretch back 
into the 1980s. I have to say, I'm not a great 
I wouldn't say that… I don't think any patent I have, I've ever gotten any real benefit from. 
And, … 
I think they're kind of, things where one feels, yeah, you know, I invented this thing, and, you 
know, it's kind of like a cool thing, and I should get a patent on it. And sometimes I feel like, oh, 
you know, somebody… it's good to have patents in an area, because at least that establishes you 
invented it, and if somebody comes along and says, no, no, no, I invented it instead, you can say, 
no, no, actually. 
I got this patent in this area, so don't, don't hassle me about your… your version of what 
happened in this area. But I have to say, it's, it's been a thing where, generally. 
In what we do as a company, it's like we have software, there are some sort of trade secrets about 
how it works inside, but what you see on the outside, it's not, … there are occasionally things 
that seem like they're worth patenting, that are 
things about the way the software works on the outside. As I say, I don't believe we've ever 
gotten any substantial benefit, possibly some defensive benefit, from these things, but I don't 
think we've, we've ever gone and sort of said to somebody, oh, no, no, you're doing something 
that… that violates our patent. Maybe they never have. 
But, that's, it's not been… it's not been something where, we… where a lot of value, has been 
derived from… from patents. That doesn't mean the patents don't have value, it's just we haven't 
been able to derive it from them. 
Let's see… … Question from Caleb, is memorization so valuable in an age where knowledge is 
instantly searchable? 
Well… It's absolutely useful to know a lot of stuff. 
Is it useful to memorize, these are the amino acids, these are the whatever? Yeah, I mean, I think 
it's still somewhat useful, because the fact is, what you've memorized, you can integrate into 
your thought process. What you have to go look up is sort of an external thing. 
I mean, it's, … we kind of have an example of this, you know, we're slowly seeing this work 
better and better. LLMs can sort of know a certain amount of stuff intrinsically, and then they go 
use tools like our tech stack to go figure things out. 
And it's sort of a break in the thought 
to go and use the tool. It's pretty necessary for an LLM, as for a human, to go use the tool to 
actually get the right answer. But I think if you have to use that in a very fine-grained level every 



 

 

moment that you're thinking about things, it's a mistake. The other point is that there's sort of a 
discovery interface in the computer sense version of, if you know things intrinsically, then you 
can know what's there to know, so to speak. 
And that can be something that you integrate into the way you're thinking about things. If, for 
example, you know, you're thinking about something and you wonder, you know, is this a thing 
that is knowable or not? Well, in principle, you'd go search and find out if it's knowable and so 
on. But if you can immediately know that it isn't knowable, for example, or that is knowable, you 
can integrate that into your thought process. 
I think it's really… knowing things is super important to being able to think well. You know, you 
might imagine 
that, … well, I would say that there are things which are, sort of 
principles to understand, and there are facts to know. You might say, learn only the principles, 
don't learn the facts. I don't think that works. I think that the principles are sort of laid on top of 
facts, and you really need to know those facts. I mean, if you… 
were learning things about, I don't know, biology or biomedicine or something like this, and you 
just didn't know certain facts. 
about, oh, there are these ribosomes, and they work this way, and they deal with these kinds of 
genetic codes and so on, and there are triples in the, you know, in the base pairs relative to the 
amino acids, and so on. If you didn't have that sort of framework of knowledge, then 
then, you know, even learning some sort of general principle about how things work would… it 
just wouldn't… just wouldn't work very well. I think… so, I'm a great believer in, you know, 
there's sort of a base of facts that are worth knowing. 
Then on top of that, you can layer, sort of, principles to learn, and then with those principles, you 
have much more leverage, and you can figure out a lot more things. 
and new facts that come in fit in with those principles. But I think it's a mistake. I mean, there 
have been various theories in the history of education that, oh, facts aren't worth having 
anymore, everybody can just go look up the facts. I think this is a mistake. 
Now, you know, how much is worth memorizing versus sort of cold memorization? I'm… I… I 
haven't done cold memorization for a long time. It's, … that feels very, painful when one's doing 
it, but 
in many cases, it's awfully useful to have done it. I mean, I don't know, when I've, you know, I've 
learned… well, I… millions of years ago, so to speak, I, like, learned the Greek alphabet. That 
was, you know, I learned a bunch of ancient Greek, too, but… but that's, you know, it's a basic 
thing to know, and I had to sit down and learn it at some point. 
And, you know, I, I, … Now, I have to say. 
at times when I was a kid, learning, sort of trying to cold learn facts of history, like the date of 
the, you know, Battle of Hastings or something. Okay, every British school kid knows that, it's 
1066. But, you know, I have to say, I had a very hard time cold learning. I'm sure I have a good 
memory, and I'm sure, you know, I probably 
did well in the test of, you know, when was the battle of such and such. … 
But I found it a not very useful exercise, and I didn't remember most of those things. In 
subsequent times, there are things where I've made sort of an effort to remember certain anchor 
facts and so on, like a good date to know, 1642, the day, the date Newton was born and Galileo 
died. So, that's a relevant date in the history of science, so to speak. 



 

 

in a bunch of things that happened in an important period in science. But, you know, that's 
something that eventually I just sort of learnt one day. I would say that there are things that one 
sort of learns by osmosis, like 
an oldie like me knows American area codes. Like, I know that, you know, area code 212 is New 
York 312 Chicago, you know, I don't know, 415 San Francisco, things like this. It's sort of 
useless, but once you know that, it's kind of interesting when somebody gives you their cell 
phone number, and it has, you know, a, I don't know, an… 
an area code 202 prefix or something, you immediately know, oh, they come from, you know, 
the Washington, D.C. area, or whatever it is. And, that's sort of a mildly interesting thing to 
know, that knowing that fact lets you, lets you get. But I didn't, you know, I certainly haven't… I 
certainly never back in the day went and tried to memorize area codes. 
It's just that, one hears them enough times that one eventually remembers them. 
Let's see… … 
Elsie asks about learning. Do you still learn from textbooks? And if so, do you read them 
linearly, or go directly to the bits of immediate relevance to a current pursuit or project? I am 
horrible at reading them linearly. I have to say, I tend to try and extract knowledge 
where… of things I specifically need. Now, I have discovered that when you're trying to get 
some general idea about some field. 
that finding, sort of, an anchor textbook in that field, typically written by a major practitioner in 
the field, more so than a pure educator in the field, although there are probably exceptions to that. 
But find a book by, sort of, a major practitioner and read the introduction, because it's often a 
good piece of, kind of, orientation for how people think about things in that field. 
Because every field has a different way of thinking about things. And sometimes, you know, you 
jump into these fields, and you start seeing, you know, these are… it's kind of like there's an 
assumption about, kind of, the types of problems you're solving, and the way you're talking about 
those problems, that if you don't have that orientation, it's pretty hard to understand what's going 
on, or why one cares about things, and so on. 
But I'm… I tend to be very much a extract information. I'm… I'm not a patient reader from 
beginning to end. And, you know, occasionally I'll find a case where… where I start reading it, 
and I realize either I don't know enough, and I have to kind of go from the beginning, or 
sometimes I'm just like, this is actually a really well-written thing, I'm actually going to try and, 
Do my best to read through it from the beginning. 
Let's see… 
Elsie is asking about patents. Do you find value from patent writing as a forcing function of some 
kind about formalizing and generalizing things? I haven't really found that, partly because I'm 
often doing patents with other inventors. 
the company and so on, and they are usually the ones who are interacting with the attorneys and 
such like, and so I'm not usually the one who's at the front lines of, crispening up what's being 
said. Although I can remember a few cases where, sort of. 
Being pushed on, well, what kinds of things is this really about? 
caused me to have a bunch of new ideas, which probably made it into the patent, but I'm more 
interested in just the ideas themselves. 
Let's see … 
Jamie is asking, if you were designing a course called How to Think Computationally, what 
would the first assignment be? 



 

 

Well, I have to admit that about a year and a half ago, I started actually writing a book called 
Introduction to Computational Thinking, and I am about 4 chapters into it, and I really have to 
get back to it and finish it. But I can tell you that it's actually findable on the web somewhere. 
not advertised at this point, but it's… it's open out on the web, and probably somebody can find a 
link to it. … 
the way I started, I had sort of an introductory … chapter 
that's sort of what… what is the idea of computational thinking? What is this idea of formalizing 
the world in computational terms? What kind of thing does that involve? 
And then I had a chapter that's sort of an example of thinking computationally about things, 
and … the, … 
The example that I ended up using was names of numbers. 
So, in English, you know, it's 1, O-N-E, 2, TWO, etc. And in Waltham language, it's… it's trivial 
to generate all those names of numbers in many different languages, and it's kind of an 
interesting exercise in sort of data science and what you can compute. Just, for example, plot. 
The length of the name of every number 
for every number up to 100, let's say. And you'll find there are peaks, like, you know, 67 is a big, 
long peak, but, something like, I don't know, 60, well, that's… that's the… the every 10, it's 
going to be a dip, and so on. And you can start doing that in more generality. You can look at, 
you know, let's generate audio for those things, how long is the audio? 
Let's, … 
compare different languages, which language is sort of most compact at doing these things. It's 
just an example, but it's an example that allows one to start sort of wondering what kinds of 
questions can one ask when one kind of thinks about the world computationally, so to speak. I 
would say one thing that, … I don't know why I picked this question years ago, and I really need 
to think of others like it. 
Sort of a basic, what's the difference between computational thinking and computer science? 
And, let me give a typical, sort of, computational thinking type of question. 
It's a real question that came up for us in building Wolfman Alpha. You're going to make a map. 
You're given a lat long. You're asked to figure out how big should the map be for that lat long on 
the surface of the Earth. 
If the lat long lands in the middle of the Pacific Ocean, showing, you know, a 10-mile radius 
around that point is not very interesting. It'll just be blue. 
you probably want to show a 1,000 mile or more radius around that point. If that point lands in 
the center of Manhattan, you probably want to show, you know, a mile or two at most. 
Around that point. So the question is, how do you decide what that radius of how far you show, 
given a point on the Earth, should be? 
And you can start thinking, well, how would I compute that? What would I do? You can start 
thinking, well, let me retrieve the map, try and see how many features there are in the map at a 
certain scale. One thing you could do, you could ask, you know, how many people live within 
the radius that you're going to say. I want something where 
I'm going to have, some reasonable number of people who live within that region. Or you can 
think of lots of other criteria for, you know, how you decide what that, what that scale size 
should be. 
It's not a question that is a sort of traditional computer science question where, well, the field of 
computer science is a complicated one in terms of what it's really meant. I mean, it… back in the 
day, it meant a bunch of sort of theoretical algorithm kinds of things. How do you do sorting and 



 

 

searching and building compilers and things like that? That's what computer science as a thing 
you would do in college meant. 
up through, I think, pretty much through the 1980s. 
And then there was sort of this separate practical discipline of software engineering that had to 
do with how do you write code, how do you organize big systems, how do you think about 
source control, how do you do all these kinds of things to do with sort of managing the 
development of systems? 
And sometime, I think, in the 90s, there started to be a big demand for people who wanted to 
become software engineers, and so universities dramatically scaled up their computer science 
operations. Probably they overshot a bit, because at this point, there are, you know, huge 
computer science operations at many universities, and it's not… and what they are mostly 
teaching, in the end 
Is how to program. 
And what is becoming clear, I mean, people like me, for decades, have been trying to automate 
what computers do to the point where a lot of that detailed, low-level programming is just 
completely unnecessary. 
And that's being re-emphasized as we see, kind of, AI-generated programming, some of which I 
think is quite unnecessary, because the truth is that the thing that you say, write, okay, LLM, 
write out this piece of code. 
That big blob of code that the LLM might or might not get right is probably just one function in 
Wolfram language. 
we already automated that as a kind of a well-designed thing, rather than you having to say to the 
LLM, try and reproduce that thing that's roughly this. But in any case, whatever the reasons, kind 
of the level of automation of programming and the systems for programming is increasing to the 
point where, sort of, the need for kind of just, oh, I can write 
Basic code is going down. 
But there's still… I mean, there has been a sort of traditional belief that this is one of the, in the 
last, probably 20 years or so, this is one of the sort of the career tracks, is become a programmer, 
go into the tech industry, and, you know, it's a lifelong career type thing, as it would be if you 
were an accountant, or a lawyer, or a doctor, or whatever else. 
I don't know whether that's such a good bet, because I think that the… the amount of automation 
there is, is making that… there not be as need… need for as much, kind of, manual 
programming, as, as there has been. And I think, 
the, … I mean, that happens for many reasons. I mean, whether it's, that, you know, instead of 
having to write raw HTML for your website, you can use a good website-building tool. 
Or whether you're, you know, doing something where you're programming something 
algorithmic and it's just one Wolfram language function. Or whether you're creating, you know, a 
user interface where you use more and more frameworks for doing that, and so on. 
I think the, there's this question, then, of what will happen 
To this big build-out that's happened in computer science education, for example. 
What should it do? What will it do? I mean, I suspect, and I think this has already happened in 
recent… very recent times, that the… the number of, kind of, jobs for people, sort of, graduating 
from computer science degrees is going… going down, and, the, … 
That will presumably have an effect on the number of people who are going in to study computer 
science, but yet universities have tended to expand dramatically in terms of the professors and so 
on that they have in those areas. 



 

 

I think it is sort of… 
well, there's a question of, sort of, what should computer science be, and then what should 
computational X be, and how does it… is it distinguished from computer science? I mean, I have 
thought for a number of years that just as one might teach a CS101 class, there really is a CX101 
class, which is really about computational thinking. 
not about 
quotes computer science. Now, when I say quotes computer science, in practice, that often means 
programming in some low-level language. 
That's… well, okay. It often means that at a certain level of university. At a lower level, it can 
mean learn to create a website, learn to use basic 
productivity office-type tools. I mean, that is something people sometimes call computer science. 
What the academic discipline of computer science 
traditionally was, was sort of the theory of how computers… how you can do things with 
computers, and the theory of algorithms, data structures, things like this. Not sort of the 
practicalities of engineering programs, and certainly not, sort of, the experience of using 
application programs as application programs, and so on. 
is… 
there… there is a strand in most university… high-end university computer science departments, 
there is a strand of, sort of, theoretical computer science, which is somewhat close to 
mathematics. There are… it's a fascinating field. It's mostly not that relevant. 
to the practicality of programming and software engineering, as I say, I think it's a fascinating 
field. It's important for the future, it's been important in the past, but it is something quite 
separate from the practicalities of things. 
But what's sort of missing from… then in computer science departments, there are some add-ons 
that have been sort of inserted over the years. I mean, there's… there's cryptography. 
machine learning to some extent, then things like robotics are sometimes sort of an add-on in the 
computer science department. Sometimes some things closer to sort of the systems engineering 
side of things, of, things about, sort of, the hardware of computers, things which might be in 
other places, and sometimes more closer to electrical engineering, and so on. 
But, you know, machine learning has thrown a curious kind of, kind of, I don't know, sort of 
spinning thing into the whole area of computer science, because to 
computer science has been becoming less and less mathematical, perhaps for good reason. I 
mean, it's not really necessary to learn calculus to write code that kind of does some basic IT 
functionality. 
So, and that, it might be more interesting to learn statistics or something like this for that 
purpose, but it's probably not that important to learn how to sort of figure out an integral 
algebraically by hand. It's not going to come up in doing basic database programming or 
something of this kind. So there's been sort of a migration of computer science departments away 
from these more mathy things. 
And now, along comes machine learning. Machine learning is quite mathy. If you try and 
understand it at a foundational level at all. 
It's kind of a great application of multivariate calculus. Now, the next question is, do you need to 
understand it at that level? It's a weird level, actually, to understand machine learning at. 
Because when it comes to the really foundational questions of why does machine learning work. 
Those are questions nobody knows the answer to. I've worked a bunch on those questions, I have 
a bunch of scientific things to say about them, but I would say that the kind of science that's 



 

 

needed to answer those foundational questions is yet a different thing from the kind of thing you 
get from something like multivariate calculus. 
There's a layer of thinking about machine learning where things like multivariate calculus are 
relevant. 
Then there's a layer of, it's just a bunch of black boxes, let's use them. The truth is that the open it 
up and think about multivariate calculus is becoming less and less relevant in practical machine 
learning. 
It's the same type of thing as saying, well, back in the day, in computer science, everybody 
would learn how to write a compiler. 
But the truth is, the number of people who write compilers in the world is unbelievably small. 
Even compared to the number of people who use, explicitly or implicitly, compilers. So knowing 
how to write a compiler is not that important of a thing. Knowing how to create some new 
activation function with different kinds of layers and back-propagate through it and so on in 
machine learning is also becoming a deeply specialized thing. 
And when it comes to practical systems that are deployed, you're really just dealing with, there's 
this black box, let me put it to, you know, I've got a big LLM, I'm just gonna do things with the 
LLM. It's about how do you use that thing as a tool? 
So, the idea of machine learning as a kind of an academic-type subject gets pretty weird pretty 
quickly. There have been a lot of trends, they go up and down as the months go by, of sort of 
poking at machine learning to try and sort of make it academic, so to speak. 
And it's… it's been pretty tough, I would say. I mean, it's… I would say that it's something where 
It's more reminiscent of, kind of, you know, people are sort of hoping for a theory, just as they 
might hope for a theory of neuroscience. But the fact is, most of what is done in neuroscience is 
sort of descriptive science, empirical descriptive science. 
And one could do that for machine learning as well. It feels a bit weird to do it in that case, 
because it's on a thing that is much more, kind of, transitory than our brains, which, you know, 
have been the same for the time of our species, so far as we can tell, whereas, kind of like, I 
study this particular LM, 
oh, actually, somebody retrained it and made a new LLM. Oops, you know, I've got to rethink or 
made a new architecture, slightly new architecture for the LLM. I've got to redo all my analysis 
type thing. 
It's, … so… 
it's a sort of complicated area that's… that has a weird interaction with computer science, 
because, you know, there are endless papers people write where they're doing what amount to 
psychology experiments on things like LLMs, saying, you know, does it manage to do this? How 
does it think about that? 
Some of that, if it's done 
well enough will be interesting. It's pretty hard to do it well. 
I think… and I think that the, … so, you know, how that really will intersect with computer 
science is still, I think, a little bit unclear. 
But the question then is, well, what about this computational thinking stuff? 
Well, that's really important in a zillion different fields, because what that's about is taking the 
great formalism that we now have in the world, namely thinking about things in terms of 
computation, and applying it to everything. In the past. 
Great success was had by applying mathematics as a formalism to the places where that was 
successfully applied, particularly in the physical sciences, in a few other areas. 



 

 

But computation is a much more broadly applicable thing, and the question is, how do you learn 
how to apply it? If you're… if you're thrown into, I don't know, doing forestry, or doing, 
archaeology, or doing, … 
some… some… lots of different fields. How can you use computational thinking in those fields? 
How can you use, kind of, this way of structuring your thinking 
in computational terms in those fields. And, of course, the great thing about computational 
thinking is once you've structured your thinking in a computational way, you can immediately 
get… well, if you have the right tools, at least you can get a computer to sort of amplify your 
thinking, to work through the consequences of whatever you've formulated. I mean, my big goal 
with Waltham Language over the last, I don't know, 40 years or so, has been to build that kind of 
computational notation for talking about the world. 
A sort of notation in which you can formalize the things you're thinking about in computational 
terms 
And then the practical system and language to go take that formalization and work out the 
consequences of it, and be able to sort of deploy what you're doing. 
And it's a tremendously powerful thing, which I think is still very… it's understood in corners of 
the world, but it is not nearly as broadly understood as it should be. And that's, I think, the real 
power for the future, is sort of formulating things in all areas, computationally. 
then… 
then getting the computer to assist you in working with that stuff. So now the question is, well, 
how do you learn to think computationally about things? Well, I think one thing that helps is 
seeing examples of how you think computationally about a bunch of different domains, whether 
that's about things about geography, whether that's about things about, sort of optimizing things, 
whether that's things about 
graphical presentation, whether that's things about, sort of, human perception. There are all sorts 
of different areas, whether they're things about, sort of, data about the world, and so on. There 
are all sorts of areas which you can think computationally about. 
And learning how to do that is… is, I think, an incredibly powerful thing. It's not a thing that's 
being taught right now. 
It's CX101, not CS101, but there isn't yet a CX101. 
that's been well-defined. I think it's sort of a… probably a responsibility for me to try and do this, 
because I've sort of worked on this whole idea of computational thinking for such a long time, 
and have built sort of the primary tool that I think is powerful to use for that. And so it's probably 
incumbent on me to write such a thing, and I wish I had more time to do it. 
But in any case, the kind of… the goal there is to take whatever you're thinking about. 
And know how to take that thing Formalize it computationally. 
And then, hopefully, it's pretty easy to go from your computational formalization that you have 
in your mind to the Wolfram language code and get it run. 
the notebook assistant that we have now that's based on a lens and with a whole bunch of, kind 
of, computational assistance. 
is, is a pretty decent way of taking that vague thing you're thinking about and having that turned 
into, sort of, the closest piece of precise computational formalization in our computational 
language, in Wharton language. 
that sort of the closest approach to that that you can imagine. It does surprisingly well at that. 
And I think that's one way to, sort of, one part of the on-ramp to kind of computational thinking. 



 

 

But there's certainly a lot of basic things to know to help one to think computationally about 
things. Whether that's where, kind of, the big, sort of, computer science… well, let me make the 
following point. I mean, you know, if you go to computer science school, so to speak. 
and you go to it, to learn how to do programming, that's one thing. Just like you might go to law 
school to learn how to be a lawyer. 
you could go to law school just for interest when you're thinking about becoming an 
archaeologist or something. Maybe there's legal relevance in doing urban archaeology or 
something, but… but the point is, people don't generally go to those… to law school, for 
example, for the purpose of just sort of general interest, to apply, kind of, legal thinking in lots of 
other areas. 
they'll typically go there because they want to be a lawyer. And in computer science schools, so 
to speak, people right now, I think, are mostly thinking they're doing that because they want to 
be programmers and so on. 
I would say that, it's people, they're… you know, the idea of liberal arts education, for example, 
is you learn stuff just because it helps you think better about everything, not because you want to 
be a professional philosopher when you do those philosophy classes, or whatever else. 
And I think there is a version of computer science which is more this computational thinking 
thing, which is more like liberal arts. It's more like 
The computational formalization of things is part of the sort of the canon of modern knowledge 
and modern thinking, and a thing that's worth people getting, even if they're not going to go on 
and be programmers. 
And I think some people sort of get that point and sort of take computer science classes for the 
sake of sort of understanding something about computers. What they often get in those classes 
are things that are very inappropriate, I would say, in the wrong direction for getting that broad 
understanding of the idea of computation and computational thinking. That's something that I 
think still has to be built in the future. 
Maybe some of the kind of exodus of actual programming jobs, for example, will stimulate more 
of that trend towards sort of teach computational thinking, not computer science and 
programming, so to speak. 
And I'd like to think that the tools we built and, lots of the things around them are really sort of 
prime, sort of anchor, things to be… to be leading that effort in moving towards computational 
thinking away from sort of raw computer science and raw programming. 
Let's see… … 
Boy, so many questions here. Lots of interesting questions. 
… 
Hilzer is asking about my kids. Do my kids do computational thinking more naturally from 
osmosis for me, or direct instruction? I would say I have 4 kids. Three of them, I would say, are 
pretty serious computational thinkers, and … I don't think 
… at best, they've learned things by osmosis from me. I would say that, … 
It's, … it's interesting, because somehow, … 
I don't know whether… I've been surprised by how naturally 
they seem to manage to use Wolfram language, for example, and seem to understand fairly 
complicated thing… abstract things there. I have no idea whether that's an apple falls close to the 
tree, whether that's an osmosis effect. It is almost never a, let me directly explain to you how to 
do this type thing. 
And I can think of only a very… 



 

 

Fairly small number of examples of that. 
So, I don't know, you can go look up their websites, and you can see their, their various, 
computational thinking efforts and so on. 
Let's see… … Have a very… Long question here from Carlos. 
Let's see if I can parse this out. 
It says, I was an undergraduate physics student. 
Ready to finish my bachelor's degree in 2020. 
… And saying they've now been working as a data analyst. 
But their true passion is studying physics and becoming a researcher. 
And, … wanting to continue their science degree, finishing science career, finishing degrees, and 
so on. 
Let's see. The question is really, if you're 29 years old, can you pivot from being a practical data 
analyst and so on, to become a science researcher? 
Absolutely, yes. 
I mean, I think the reason you see less pivoting of people later in life has to do with just the 
practicalities. If somebody says, well, I've, you know, I'm doing this job, I'm making a good 
living here, I've got a mortgage, I've, you know, whatever, I can't go back to school and start 
you know, making no money and just go learn things for a few years. If you're in a position to do 
that, there is nothing, I think, to be about kind of, oh, you know, you're too old, your brain cells 
have been… have decayed to the point where you'll never be able to learn these things. It's really 
often a matter of personal circumstances. 
And sometimes a matter of, sort of, personal motivation. I mean, I think it… sometimes, there 
is, … the best… I will say that the best time to go to school and learn things is when you're really 
enthusiastic about going to school and learning things. 
Unfortunately, most people get to go to school at times when they're not necessarily that 
enthusiastic about learning things. I mean, the people who take a couple of years off, and then do 
this, and then do that, and they know why they're going to school, and they're very enthusiastic 
about what they're learning, because they're there not because they sort of have to be there, or 
because that's the natural thing that you do when you're 18 years old, or whatever else. 
But because they're like, well, I decided I'm gonna do this. And then, you know, they'll have a 
much better experience than if they're just doing it as a matter of, well, that's just the way the 
path leads right now. 
I mean, I think that's… so I would say that it's a… it's really a win. The only challenge tends to 
be a matter of personal circumstances, and just having locked into certain aspects of life, and 
then being like, oh, I can't break out of that to go into a more kind of student-y, less 
professionally kind of, kind of, direction. But yeah, I think I… I would say that it's a… 
It's even a better situation, you know, if you're enthusiastic about studying something, then so 
long as you can practically do it, that's a great thing to go off and do. 
Let's see… Sylvia is asking, should philosophy departments ramp up with regards to ethical risks 
of AI? 
I have been telling a bunch of professional philosopher friends of mine that this is… that these 
times are a great moment, a great opportunity for philosophy. There are things that are coming 
up in the world, among them AI ethics. 
Where a lot of the traditional questions of philosophy are becoming of practical importance. 
There are things which one could debate forever about how political philosophy might work, but 
in a situation where there really can be a change. 



 

 

Or are those even potentially forced to be a change? 
This is the moment when those are things that the people who've studied those things for a long 
time can really help and make a difference. So I think… I think it's kind of the, you know, the 
great opportunity hasn't been around for a few hundred years, actually, where sort of philosophy 
and the way that it's been done 
can sort of, I think, make a difference. I think the challenge is, and I have friends who are in the 
situation of being chair people of philosophy departments and so on, and somebody told them, 
go hire a bunch of AI ethics people. 
Problem is, where do you find them? 
Because it's… it's something where… and what kind of background does such a person need to 
have? 
Because it's… the… there probably will be a time… 
when, sort of, AI is so… and the things about computation are so taken for granted in our culture 
that, sort of, having special education in those areas 
is not important, not so important for doing philosophy in those areas. Maybe that's true, maybe 
it isn't true. I certainly know there's been a… for example, in philosophy of Science. 
it… 
is, I think, increasingly the case, that people really want to know the science to do philosophy of 
science, which is a good thing. 
Although, if you know the science too much. 
and you know kind of the contours of how the science works and how people talk about the 
science, you don't get to break out of it and do the kind of bigger thinking that is what 
philosophy should lead you to do. So, it's like you have to know enough of the science that 
you're kind of fluent in understanding what the issues are, but not so much that you're kind of 
drowning in the way that things are thought about, sort of, in the pure technical science. 
And I'm sure the same is true in, kind of, the AI ethics, AI philosophy type area, that if you are 
immediately thinking, oh, that ethical question, I'm going to turn that into reinforcement learning 
that uses this particular learning policy and, you know, et cetera, et cetera, et cetera, I think 
you're going too deep into the weeds too quickly. 
On the other hand, if you're, like, … if your view of the AI is it's just a piece of magic. 
I don't think that will make you the best philosophy. So, for example, one thing that I think is 
pretty important in AI ethics is this idea of computational irreducibility that I talk about a lot, that 
even when you know the rules by which some computational system operates, the actual 
consequences of those rules you can really only find out by running the rules and seeing what 
happens. 
So, why is that relevant for things like AI ethics? Well, in a sense, in an AI, you have a 
computational system where you might know the rules, you might not quite precisely know the 
rules, but let's say you know the rules. 
it's still the case that to see what the system is going to do, you have to, like, let it just run and 
see what happens. If you say, well, I want the system to act ethically according to my particular 
code of ethics, and I want to constrain the system so it will never do the wrong thing. 
then you can't have computational irreducibility. Computational irreducibility means there will 
always be unexpected things that happen that you can only find out by running the system and 
seeing what happens. If you insist on saying, I never want to be surprised in this particular kind 
of way, then you're forcing computational reducibility on the system. 



 

 

So what? Well, if you force computational reducibility on the system, you're limiting the 
computational abilities of the system. 
So you have this complicated trade-off between, sort of, the idea of… between letting the system 
do what is the maximum it can computationally do, and making the system act predictably in a 
certain way to you. 
understanding something like that, that kind of trade-off, that does require a bit of, kind of, 
formal knowledge of… and thinking about things like computational irreducibility, which are 
getting integrated by now into, sort of, sort of the more science-oriented end of philosophy, I 
have to say. 
But, it's taken 40 years or so, but it is definitely happening. But I think that the, … 
the… the… so, you know, I don't think just AI is a magic is not a good start if you're going to do 
AI philosophy. And I think that it is a challenge right now to see, sort of, who fits in to this space 
of know enough about the technology 
and know enough about the philosophy, and merge those two things together. I think it's a great 
opportunity for people. I think that there will be AI psychologists, AI philosophers, and so on, 
and I mean philosophers of AI, psychologists of AI, not AIs acting like psychologists. Well, 
maybe they'll get somewhere with that. AIs acting like philosophers, I'm not too hopeful about 
that one. 
So, … … 
Yes, it's a… it's a… it's a great opportunity for philosophy departments, I think, right now. I 
mean, one of the things that I find interesting is 
philosophy, traditionally, is sort of this way of sort of thinking about things, teaching how to 
think about things. Learning philosophy is kind of a way of learning how to think in a certain 
pattern of thinking, of asking questions and kind of thinking what sort of logically follows 
And not… not so much based on facts, but based on the structure of arguments and so on. It's 
a… it's a good kind of discipline of formalizing your thinking. 
What I think is quite interesting is that computational thinking is surprisingly close to that. It 
happens to be a formalism that is as precise as mathematical formalism, but it is a formalism that 
you can kind of apply it as broadly as you can apply kind of a philosophical formalism, and I 
think some of the kind of ways to sort of drill down to the essence of things and understand 
what's going on 
Is something quite similar between philosophical thinking and computational thinking. 
Mathematical thinking also has similarities, but it's in a much narrower area. There's a much 
narrower set of things to which it can be applied, to which it's successfully applied, and it's 
something where there's also the actual practical development of these things. The tower of ideas 
that have developed in mathematics is taller than the tower of ideas that have developed in… 
well, because it's a formalized tower. 
you can kind of develop further than you can, I think, in philosophy, where you can, you know, 
you're still going back to what did Socrates say type thing, you know, 2,500 years later. 
Rather than in mathematics, you're not going back to say, you know, what did Archimedes say? 
You're building on many layers on top of that. So it's a slightly different thing. 
Let's see… … 
Caleb asks, is the real future of programming about writing code or about designing the goals for 
AI systems? I think the real future is doing computational thinking. I think that's what you need 
to define a meaningful goal. If you just sort of vaguely say, hey, do roughly this thing, you're not 
going to get the thing you really want. 



 

 

you have to be… you have to crispen up your thinking to the point where it is sufficiently precise 
that, yes, you can just use Wolfram language to make the code, you can use some AI to help 
make that code, but the real focus is on, well, what do you actually want? 
And for that, you have to have some structure to formalize this question, what you actually want, 
and that's the story of computational thinking. 
Let's see… … Memes is asking. 
What's the best way to get folks with similar ideas to collaborate? 
Hmm. 
Well… there's in the world at large, and there's within a company, for example. 
… I would say, you know, it's a funny thing. In the world at large. 
For example, in the intellectual kind of world, sometimes people who are very closely aligned 
almost repel each other. 
And they sort of see themselves as competitors, because they're sort of close, but one's gonna 
win and one's not gonna win type thing. And sometimes they're like, hey, let's chat about this, 
let's all be friends type thing. 
How does one get to the, let's all be friends, … 
in… you know, I think there's a certain amount of the ecosystem around what's going on that 
affects whether it's the let's all be friends or let's compete with each other type thing. I think if I 
look at fields that I've known, there have been fields that have been very collaborative, and there 
have been fields that have been very cutthroat. 
And what's the difference between these? I would say the collaborative ones tend to be the ones 
where it's a very wide-open field. 
Where there's… there's a lot to do, and not very many people in it. The cutthroat ones, and it's 
probably not surprising, are ones where there's perceived to be only a very narrow set of things 
one can do, and everybody's rushing to get to… to be the one who gets to do that particular thing. 
And I think that that's, you know, in general, the… the, kind of, 
Having, having the… you know, when people… 
Well, when people are going to do things together. 
Sometimes they all are going for the same goal. 
Sometimes, they'll do a thing together, but they'll each get a different thing out of it. 
You know, let's say people are collaborating on some project. Somebody wants to be the person 
in charge managing the project. Somebody else wants to be the programmer. They all got their 
various niches, and they're all happily working in those niches. 
as… or everybody is, like, so keen together on getting to the final goal that that sort of pulls 
them… them through. I think… 
in, … 
You know, I have to say, my own experience with, sort of, collaborative projects, and maybe this 
is a piece of egotism or something on my part, is somebody always has to be in charge, and 
usually with things I'm dealing with, I'm the one who ends up being in charge. 
Not necessarily because I want to be, but because somehow I'm used to being in charge, and I 
know a certain amount about being in charge, and I get frustrated with seeing nobody in charge, 
and so I wind up being in charge, so to speak. 
But I think most things end up working better if it has, you know, if there's definite leadership, 
usually one person, maybe two, but not… not a whole committee of people. You know, I think… 
in terms of people working on, sort of, related things, I would say that one of my important 
functions, CEOing our company. 



 

 

is just pointing out, you know, I'm the node on the tree to which everything else supposedly 
connects. And so that means that I have some idea what all the different parts of the company are 
doing. And it's a regular thing. I mean, it happens pretty much every day that I'm saying to 
somebody. 
you know, they're saying, we're doing this, and I'm saying, have you talked to or looked at this 
other thing that somebody else is doing? Being the connector, so to speak, bringing together 
these different, these different pieces that are similar. And I would say in science, also. 
and in technology, for that matter, I've… because I have a pretty large network of people and 
things that I know, it's, … I've often found myself in the position of being, oh, you should talk to 
so-and-so, or you should look at this thing. Being, you know, being the connector, so to speak. 
And I would say that, generally, that's a very valuable thing to be. And what ends up happening, 
not every time when I say, go talk to this person, do they come back saying, yeah, we figured out 
something great to do together, but I would say. 
I don't know if I'm… to put a number on it, I would say it's a solid half the time I'll introduce 
people, they'll… they'll end up… something definite will end up coming out of it. 
And that seems to be, sort of, that's step one in making collaborative things happen. I mean, 
within a company, you can have this situation where there are three parallel projects running that 
are all basically the same thing, or should be cooperating, and nobody knows it. 
And that's a… that's an issue of management structure. I mean, for example, in our company, 
something I've been pushing for hard for many years, and we're finally in pretty good shape on it, 
is this thing we call the Global Project List, which is just a list of the few hundred projects that 
are project-like things that we're doing. 
And as you look at that project list, it becomes fairly clear 
That, sort of, there's this thing here and that thing there, and they're really the same thing. 
We also have a process list of things that are ongoing. I mean, projects, as far as I'm concerned, 
are beginning, middle, end. 
type activities. Processes are never-ending things that will keep on going, whether it's 
maintaining a piece of code, doing, you know, doing events every so often, whatever else it is. 
Those are processes, as opposed to a project where there'll come a moment where it's finished. 
Tie it in a bow, have the rap party, we're done. 
you know, it goes into a… there's a process, perhaps, of maintaining it, but the project is done. I 
would say an interesting problem in our company is we have lots of groups in the company, and 
we had previously sort of organized our global project list according to the groups that we have. 
This turns out not to work perfectly, because a lot of non-trivial projects span many groups, and 
it's kind of like, who really owns this project? Oh, it's in this group, or you don't even find it, 
because it's in that subsection of the notebook that's about that particular group. 
And we don't even notice it. So we're kind of refactoring that right now, and maybe what will 
end up happening is, when projects are big enough and turned into processes, they will define 
new groups. So something that was a cross-group type thing, because it was being sort of put 
together to make a project, if it's a big enough thing, that sort of cross-group thing will just 
spawn its own group. 
And I think we'll end up seeing that happen a bunch. 
Let's see… … 
Maybe one or two more. 
Questions here… 



 

 

ABF asks, how do you synthesize a quantitative mindset with the more abstract stresses of life 
and business? 
you know, I think… I… 
tend to be a… you know, I've done a lot of analytical thinking, so to speak. I've done a lot of, sort 
of, quantitative, you know, practical, precise things 
And I also am exposed to many things in business, life in general, that, on the face of it, don't 
seem very analytical-oriented. 
things about people and companies, and I was just mentioning, sort of, reorganizing pieces of our 
company and so on. And, you know, that seems not like, kind of, writing code or something, but 
it is. 
If you… if you choose to think of it that way. I mean, for me, some of these things about, sort of, 
structuring companies, thinking about processes in companies, all those kinds of things, those 
things, the more you can think about them formally. 
the more… and not by writing down some weird flowchart of this, that, or the other. I'm just 
thinking about… thinking about them in an organized way, and that will turn into organized 
documents of this, that, and the other, where things are put in organized buckets, and so on. 
But I'm saying that the mindset of thinking about things analytically is super useful. 
I mean, there are things where some question will come up, and I will immediately kind of feel 
like I know the answer. I sort of intuitively know the answer. And that's fine when that works. 
But as soon as I don't intuitively know the answer, I have to figure out the answer, and that 
requires some kind of, in a sense, formalism of figuring it out. 
And that's where, kind of, analytical thinking really becomes very, very useful. I would say the 
same is even true in dealing with people. I'm a person who likes people, I work with lots of 
talented people, sometimes I work with people idiosyncratic, with idiosyncratic features of many 
kinds, and it's kind of like, how do you deal with these people and things? And I have found that, 
sort of. 
Thinking about people, at least implicitly, in a rather analytical way, is super helpful. 
I mean, partly that sort of pattern matching of, this person reminds me of this person I knew 30 
years ago. 
And this is how I think about that. But I think… I don't think I have a formalism that I could 
write down for thinking about people, but I certainly have something that I consider sort of a 
structured way of thinking about things, and particularly that's things like 
here's a person, here are some possible projects, jobs that they might do, are they a fit? You 
know, what are the attributes of this person that I can kind of 
formalize, in some sense, informally formalize, like, this is a person who's really got a short 
attention span, they're really good for very short projects, don't send them off on a 6-month 
project, it won't work well. Or this is a person who is, going to be, I don't know, very, very good 
at dealing with people. 
and good at sort of interacting with the world, whereas this is a person who really should be 
sitting in a cubicle and writing code type thing, and that's what will make them happiest and 
most productive, and so on. So these are things where you can be sort of informally formalizing 
these things, and that's a super useful thing to do. 
Now, you know, there are situations that are less 
sort of where kind of one's structured analytical thinking gets frustrating, and many of those 
situations I try not to put myself in. So, for example, one is kind of consensus development of 
various kinds. I mean, in, you know, being on a committee. 



 

 

is something I… I really avoid doing. 
And, because I… I find that that isn't 
you know, maybe there's a logic to committees, which I just don't understand. I think there is, I 
just don't understand it very well. But to me, things happen, and they're just like, this is crazy, 
and I'm trying to convince people, and they have all sorts of issues, and so on. 
And it's like, this is something where I can see this is the right thing to do. You know, if you say, 
what should we do? It's like, I know what we should do, it's this. 
But then it's like, oh, but we all have to discuss it, and we've all got our points of view, and this, 
that, and the other. 
That I find frustrating, and so I tend not to put myself in those kinds of positions if I can help it, 
and I usually can help it. 
Let's see… As a question, sort of related to this, … 
from Caleb again, how can computational thinking help avoid decision fatigue in everyday life? 
I'm not completely certain I know what you mean by decision fatigue, but, you know, for 
somebody like me, I make many, many decisions every day. 
And their decisions about technology, their decisions about business issues and structure and so 
on, their decisions about strategy for doing things in science, their decisions about what project 
to work on, and so on. 
I don't know, I find that the more decisions I make, the better I get at making decisions. 
And also, the bigger the number of decisions I have to make. 
the less I agonize and worry about how, oh, if I make this mistake on this one decision, you 
know, because I've got… if I've got 10 decisions to make, it's like, well, probably you'll get one 
of them wrong, but we're going to make 10 of them, and so I'm not going to be so wound up on 
the one I might get wrong, so to speak. 
And I think… so, to me, it's… it's kind of, … I don't think there's a sort of an automation 
to making decisions that's going to be very good, like, go ask my chatbot, so to speak, what I 
should do. I don't think that will end well in many cases. Although maybe… maybe if it learnt so 
much from you, it will be like, well, you should obviously do this, because that's what you did 
every other time. But you probably know that. You probably don't need a chatbot to validate that. 
Maybe… maybe it's psychologically useful. 
to have a chatbot validate it, just like it might be psychologically useful to, you know, ask some 
expert or consultant or whatever, and have them tell you the thing that you already wanted to do. 
But it's still, I think, … 
I don't see that… so that kind of structure. I think what is… what is useful in making decisions 
unstressfully, so to speak, is having made a lot of decisions, and being able to feel that… that 
you can 
that you have confidence that you're going to get it right most of the time, because you've always 
gotten it right most of the time. And also, the fact is, the more that when you hear a question, and 
the more you can say, oh, I know what we should do. 
The more you… it's instant. 
the more you feel, I think, confident about it. And the less it's like, well, I have to figure out this 
and that and the other thing. I mean, sometimes you have to unpack it and know you've got to 
think about this and this and this. So I suppose in that sense, the fact that I tend to think 
in a fairly structured way about… and the structure is mostly, what is the essential point? That's 
usually the questions being asked. Somebody says, should we do this thing? 
And it's like… and nominally, the thing is… I don't know what it might be. Should we… 



 

 

… do this… make this technology decision. And… 
then the first question is, well, what actually is the decision you're talking about? I mean, it's like, 
you've got a bunch of words, and you're asking me, can you decide, are we going to do A or B, 
and they're a bunch of words, and I don't even necessarily know what all the words mean. So the 
first question is, what do you actually mean? 
what does this actually mean? And then there are sort of drill-down questions about, okay, what 
consequences does this have, how does this connect to this, et cetera, et cetera, et cetera. 
They're a kind of, … but I think it is a lot easier… maybe I should say this. 
To me, one of the reasons that I find it fairly easy to make lots of decisions is because I feel like 
I'm making these decisions on bedrock, so to speak. That is, I really understand 
what the decision is that's being made. Maybe I don't know what its consequence is, maybe 
there's some computational irreducibility thrown in there, but 
the, you know, I really… I'm not sort of floating at the level of people asking me things where I 
don't really understand what they are, and I'm just sort of, oh yeah, that sounds right and that 
doesn't sound right. I find myself, sometimes, one thing that happens to me. 
is people will show me something, I don't know, a draft of a web page, let's say. 
And, or… and I'll sort of look at it, and I'll kind of look at it superficially, and say, looks like it's 
nicely designed, it looks like this, that, and the other. Kind of the vibes are right, and I'll just be 
like, yeah, yeah, it looks okay. But I didn't really dig in and really look at it. 
And… 
for me personally, I tend to, and I, you know, it's something I like to figure out better, I tend to be 
a bit bimodal. That is, I'm either just sort of glancing at the top and getting the vibe and saying 
that's okay or not, or I'm diving deep, and I'm reading every word, and I'm thinking about every 
word. What does this mean? Does this actually mean the right thing, etc. I find it rather difficult 
to be in between those two things. Maybe everybody does. 
But it's something where I think one doesn't want to fool oneself about where one is, so to speak. 
It's either, like, the light touch, where it's like, you know, do I have an immediate gut reaction 
that's like, this is a really bad way to do it? And sometimes I do, or am I really digging deep 
and feeling like I know everything about what's going on. 
That, in that second case, when I feel like I'm sort of working on bedrock, I feel much more 
confident about making that decision, and it's… it's… I guess it's much less stressful to do that, 
because I'm not just sort of floating freely and trying to sort of… 
pick up the wind of this direction or that direction. I'm also not relying, this is another, I suppose, 
important point. So often, when you make decisions, it'll be somebody tells you this, somebody 
else tells you that. But… but you're kind of making a decision, like, yeah, what you're saying 
makes sense to me, let's do it. 
Even though you don't really know what that thing is, because that person is the supposed expert 
who's telling you this or that thing. And for me. 
I really insist on understanding what that person is telling me. I really don't accept 
the… the kind of, oh yeah, I'm an expert, so I'm telling you this, you should decide to do this. I… 
I really insist on kind of being able to drill down. And that, for me, is… it really helps in making 
correct decisions. It helps in… in feeling like it is… it's not… 
There's such an arbitrary, people-oriented. 
kind of thing. It's… I mean, obviously, you have to trust people at some level, but you've kind of 
get to know them, and you know what they're saying, and you know how it connects to other 
things you know. 



 

 

And I think that's probably… that's probably the real answer for me, is that the, you know, being 
able to think sort of foundationally about things makes it a lot easier 
to sort of solidly make decisions without kind of stressing about those decisions, because you're 
not worried that there's something that you don't know about the foundations of this decision that 
is going to upset the whole thing. It's like, yes, I really know what this is anchored on, I really 
know what I'm deciding. It really, it really helps, I think. 
Talking of which, it looks like it's time for me to go back to my day job, and … probably… what 
am I doing next here? Oh boy, yes, lots of decisions to make. This is a, … I am about to jump 
into a meeting which will be rife with many, many decisions to be made. 
So I get to, take whatever, 
I don't know, comments I'm making here, and try and actually apply them in practice, and make 
sure that they actually work. 
Anyway, thanks for lots of interesting questions and comments, and … 
Thanks for joining me, and I'll, talk to you another time. 
Bye for now. 
 


