Notes on Ito6 Calculus
Mine-tutorial by Mitchell Feigenbaum

Notes by Adam Prigel-Bennett

We consider a diffusion process described by the “Green’s function”
p(a’ |z, t)

If we consider Brownian motion then this could be interpreted as the probability
that a particle starting at a point = at time ¢ moved to a point z’ at time ¢'.
The Green’s function has the following properties

1. Conserves probability

/p(x/,t/|x,t) de’' =1 (1)

thus a particle starting at = at time ¢ must go somewhere. Note that
the integral over the past positions x does not conserve probability as
diffusion 1s not a phase space conserving process.

2. The process is Markovian

pa’ |z, t) = /p(x/,t'|€, T)p(€, T|e, 1) dE, t<r<t (2)

In addition to these two properties the fact that the Green’s function describes
a diffusion process implies

3. The particles only make small jumps
/p(a:/, |z, t)dz’ = o(t’ — 1) (3)
o/ —z|>¢

so the probability of moving a distance € or greater goes to zero as t' — ¢,
no matter how small we take e.

4. Sensible Moments Exist. The first two are
i) Drift
/(a:/ —xz)p(a’ |z, t)de’ = a(z,t) (' —t) +o(t' —t) (4)
|z —z|<e

where now ¢ 1s not necessarily small. Thus the particle can have a
net velocity a(z,t).

ii) Diffusion

/(a:/ — ) p(a Ve, t)da’ = b(x,t) (' —t) +o(t' —t) (5)

|z —z|<e

The particle diffuses with a diffusion coefficient b(x,1).

Note o(z) implies

lim 22 _ g
x—0 T
ie. o(z) goes to zero
strictly faster than x.

While O(z) implies

lim O(z) — 0

x—0



Remark 1 When considering very short times the diffusion appears
anomolously faster — that is a particle diffuses much faster than
its net velocity which would increase the second moment only as
(t' —t)? = o(t' —t). Remember however that diffusion results from
a large number of very small impulses. For example, in Brownian
motion a particle diffuses because of the tmpacts it receives from the
molecules of the liquid.

Higher moments fall off normally (i.e. as o(#' —1)).

From the Green’s function we can construct two functions u(z, ) and v(x, t)
which satisfy backwards and forwards diffusion equations respectively. We will
see that the function u(z,?) is mathematically easier to handle.

To construct u(x,t) we define a ball of final positions ¢(#) which we assume
is uniformly continuous and bounded with a bound B, say. For any ¢(z) we
can construct a function u(x,?) through the equation

u(z,t) = /qS(x’)p(x’,TM,t) dz’ (6)

where ¢t < T'. Note that this is a function going backwards in time. It will of
course depend on T and ¢(z).

Remark 2 Diffusion is an information lossing process — entropy increases
and phase space contracts — so a final state can result from many possible
wnttial states. Thus there is in general no well defined inverse for the diffusion
process. The function u(xz,t) is not the distribution of x at an early time. It is
simply defined through equation (6).

The function u(x,t) has the following properties

1. u(x, T) = ¢(x). The function u(xz,t) is identical to that of the initial blob
é(x) at time 7. This is intuitively obvious but we can prove it rigorously
by considering

u(e, 1) — olx) = / [6(2') — b(@)]p(a’, ']z, 1) da’
thus

ue— 6@ = [ 166 - o)’ e ) b’

|z —z|<e

+ [ el = elalata ety

o/ —z|>¢

But by continuity of ¢(z) we have for |’ — z| < € that |¢(2") — ¢(2)| < é
where we can make ¢ as small as we like by choosing e sufficiently small.
Taking this out of the integral and using the fact that p(z’,t'|z,?) is
normalized (property 1) we have that the first integral is smaller than é.
By the boundedness of ¢(z) we know that |¢(z') — ¢(z)| < 2B. Taking
this out of the integral and using the locality property of p(z’,¢'|z,1)
(property 3) we find the second term is o(t' —¢). Thus taking ¢ — ¢ the
second term vanishes so that |u(z,t) — ¢(2)| = 0 proving the ascertion.



2. u(w,t) satisfies a diffusion equation running backwards in time. To
show this we consider

w(z,t) = /qS(x/)p(x/,TM,t)dxl

/ o(2")ple', TIE, 7)p(€, 7o, 1) dé da’

= /u(f, T)p(€, T|e,t) dé

where t < 7 < T. We used the Markov property of p(z’,t'|¢,t) (prop-
erty 2) to obtain the second line and the definition of u(x,t) to obtain
the final line.

We can rewriting this as
u(z,t—1) :/u(x',t)p(x/,ﬂx,t—r) dz’. (7)
Using the Taylor expansion of u(z’,t) around x
u(a! 1) = u(z, t) + (2 — v)ug(z, 1) + %(m' — &) uge(x + p(x’ — ), 1) (8)

where 0 < pu < 1, subtracting u(z,?) and using the normalization con-
dition and the definition of the moments (properties 1, 4i and 4ii) equa-
tion (7) becomes

1
wz,t— 1) —u(x,t) =7 |a(e,t) ug(z, ) + 51)(9:,15) Upe(2,1)
dividing through by 7 and taking 7 — 0 we find
1
u(@,t) + a(z, ) ug(z, 1) + 51)(1‘,15) Ugep(2,1) =0 (9)

This has the form of a diffusion equation going backwards in time.

We can also define the function
v(e,t) = /p(x,t|x/,t/)v(x/,t/) dz’ (10)

where now we integrate over the postions at time ¢’ and consider what happens
at future times. Because the properties of p(x,t|z’,t') apply to the future time
it is harder to derive the properties of v(z,t), however, we will show that it
satisfies a diffusion equation going forward in time. To see this we consider the
term

I= /u(x,t)p(x,ﬂx/,t—l—r) v(' t+ 7)de’ doe = /u(x,t) v(a, t)dx

by the definition of v(x,?). Expand u(z,t) about z, using equation (8) we find
1
I = / [u(x/,t) + (z — 2" Yuy (2’ t) + 5(1‘ — &) uge (2 + p(x — x/),t)]

xp(z,tle’ t +7)v(a',t + 7)da’ de

= / [u(a:/,t) —ra(z’ ) uy(2't) — %a(x',t) upg (2’ 1)| vt + 7)da’

What happened to the
p(z' — x) term?
— A. P-B.



where we have integrated over & and used properties 1, 4i and 4ii. Subtracting
the first term and dividing through by —r

/u(x’t) (v(x,t—l—T) —v(a:,t)) de —

/[a(x,t)ux(x,t)—l—%a(r,t)um(x,t) v(e,t + r)de

Integrating by parts and taking 7 — 0 we find

1
(i, 1) = 0 (alar, Dol 1) + L0 (b, (1) (1)
This is the Fokker-Planck equation. It has the usual form of a diffusion equation
going forwards in time.
Gaussian Processes

Gaussian diffusion processes are an interesting class of diffusion processes in
that they can be solved analytically. We consider a physical observable x(t)
which results from N (infinitesimal) random events

u(t —n7)O (t — nr) (12)

||F12

where u(t — n7) is an arbitrary function and ¢, are independent indentically
distributed random variables with zero mean and variance € (i.e. {€,) =0 and
(€n€m) = €bp m, we will assume all higher moments exist although technically
only the 2 + 6 absolute moment needs to exist for some § > 0). We denote
this distribution P(e,). For example, if u is a constant and €, is equal to
+e with equal probability then the observable z(¢) could be interpreted as the
accumulative result of a series of NV coin tosses, adding ue for a head and —ue
for a tail.

For this system we can calculate the probability distribution, p(zn (1)), for
the observable, zx(¢), and from this the Green’s function p(z,t|z’,t"). To do
this we first consider the generalized fourier transform of the distribution

i / Nt k() (1) dt

(k) = [ plav(o)e Dan(1) (13)

Since the zn(t)’s depend on the €,’s we can replace the integral over zn ()
weighted by p(xn(t)) with an integral over ¢, weighed by P(e,)

n

Nt
N-1 —i/ k() (t) dt
= H /P(en)e 0 de
n=0
Since the €,’s are independent by assumption the integrals all decouple. Thus

) = Jﬁl (emieat(m)

€n

The o absolute mo-
ment of a distribution

P(z) is defined by

[ el Payas

The logarithm of the
fourier transform is a
generator for the cu-
mulants, k, of a dis-
tribution

log[on (k)] = Y ()%

n=1



where

Expanding the exponential

€n

_ T 62 <3>3
- n:O( _E + 3! I()+ )
= exp{ ZZIZ < >Z_:[3(n)_|_}

We take N — oo and replace the sum by an integral
N-1
1 oQ
PP / dt
n=0 TJo

to obtain a non-trivial limit we require that ¢ and 7 go to zero in such a way
that €2/7 go to a constant, o2 say. In this limit all the higher cumulants <€Z> /T
will go to zero so we are left with

o
log [pck(t))] = —7/ / dtl/ dtgu(ty —t) u(ts —t) k(ty) k(t2)
0 t t
Changing the order of integration

log [pck(t))] :—%/ dtl/ dto k(t1) k(ta) K(t1,12)

0 0

where
min(ty,t2)

K(ty,t2) = Uz/u(tl —t)u(ty —t)dt (14)

This defines a Gaussian process where K(11,12) is the variance of the Gaussian.
The fourier transform, p(k(t)), acts as a generating function for the moments

. Op i —
YOO | (@) =0

9%p B o

" RO |y~ TN =KL

Putting k(t) = k1 6(¢t1 —¢) and taking the inverse fourier transform we find

e L —2?/(2K(t1))
(1) ITK(L,1)

note that K(0,0) = 0 so that this describes the diffusion of a particle diffussion
from a point z = 0 at time ¢ = 0, thus i1t 1s equal to the Green’s function



p(2,t0,0). We want to know the Green’s function p(xs,t2|®1,t1) which we can
obtain from the identity

p(xa,t2;21,1110,0)
p(x1,11]0,0)
where p(x2,%2;21,11|0,0) is the probability for a particle starting at # = 0 at

time ¢ = 0 to pass through the point =’ at time ¢’ and then through a point =
at time t. To calculate this probability we put

plea, talz, 1) =

k() = ky6(t — 11) + kab(1 — 1)

into the fourier transform for the probability distribution, p(k(¢)). Doing this
we obtain

(2 — K2(t1, 1)/ K (1, 1))
o2 (K (ta,12) — (K2(t1, 1) /K (1, 11))x1)

V27 (K(ts, t2) = K2(t1, 1)/ K (11, 11)

This is the Green’s function for a Gaussian diffusion equation. The correspond-
ing backwards diffusion equation is

(e, 1) + (a(t) + xﬁ(t)) ug(x,t) + y()uge(z,t) = 0. (16)

This is the most general form of a backwards diffusion equation satisfied by a
Gaussian diffusion process.

(15)

plza, taley, 1) =

Ito Calculus

[to calculus gives rules for transforming equation involving infintesimal random
variables

dw = VAN (0,1) (17)

where N (pt, o) means a random normally distributed variable with mean p and
standard deviation o. We call this infinesimal “d Wiener” since it is the element
of a Wiener process. Equations involving dw are called Stochastic differential
equations; for example,

de = adt + bdw (18)

the first term defines a drift while the second term defines a diffusion. All diffu-
sion equations can be written in terms of such stochastic differential equations
whatever the underlying mechanism causing the diffusion. The normal rules
of calculus do not apply to stochastic differential equations since the functions
involved are not sufficiently smooth. Nevertheless it is possible to define a
consistent calculus. Various different calculuses can be constructed, the most
useful 1s [t0’s calculus.

To get a feel for what is involved let us consider integrating equation (18)
for a very short time. Taking the expectation we find

(dz) = (' — x) = adt + (bdw)

for this to be a diffusion process we expect (¢’ — #) to be equal to adt + o(dt)
by property 4i of the Green’s function, thus (bdw) should vanish. Similarly if
we consider

<(dx)2> = <(x' — x)2> = az(dt)2 + 2 {abdw) dt + b2 di

Is this right?



where we have use equation (17). By property 4ii of the Green’s function we ex-
pect this to be proportional to 52 dt, the first term vanishes being proportional
to (dt)?, thus we require {(abdw) = 0. Thus the solution to these stochastic
differential equations will also be solution to the diffusion equation provided
we can insure that

{(f(w)dw) =0 (19)

that is the expectation of any function of Wiener d Wiener is zero. This will
be the case if we can construct the function f(w) so that it is independent
of dw — since then we can average over dw separately which gives zero by
equation (17). This is the condition that b is “non-anticipatory”. When this
holds we can immediately write down the corresponding backwards diffusion

equation
2

b
Uy + aug + 5 Use = 0. (20)

Using the correspondence between the stochastic differential equation and
the backwards diffusion equation we can derive the rules of Ito calculus for
the stochastic differential equation. This will then allow us to make coordi-
nate transformation and find how they transform the diffusion equation. We
consider a change of variables

Y= y(l‘,t)

where z satisfies the stochastic differential equation (18). The corresponding
solution to the diffusion equation is u(x,t) (note that this is a smooth function
which obeys the normal rules of calculus). Writing u(z,t) interms of y

u(x, t) = U(@/(% t)’ t)

then
Ut = UyYt
Uy = UyYz
_ 2
Upy = VUyyYe + Vy¥Yss

using equation (20) we find v(y,t) satisfies the equation

2

b 1
vt + (yt + ayy + nyx)vy + §(byx)vyy =0.

This has the form of a backwards diffusion equation so we can write down the
corresponding stochastic differential equation

b2
dy = (v + ays + Eym) dt + by, dw. (21)
But using equation (18) this is just
2

b

The first two terms are the usual terms you would expect from a coordinate
transformation; the last term is a new term coming from the invariance of the
diffusion equation — 1t 1s called [t6’s lemma.



As an example let as consider
dr = dw and y=u
then by Tt6’s lemma (using yps = 2)
dy =2z de +dt = 2/ydw+ dt
and thus the corresponding backwards diffusion equation is
Uy + Uy + 2y uy, = 0.

(Note that if we are given such a diffusion equation we could perform the inverse
coordinate transformation and solve the much easier equation dw = dz, we then
have an answer for y in terms of w. This is the typical form of the solution
given by It6’s method.)

We can ask whether we can define a sensible integration procedure for solv-
ing stochastic differntial equations. Taking the last example if we assume that
2(0) = 0 so that # = w then from

dy = dw? = 2z dz + dt = 2wdw + dt

we deduce ) )
wdw = §dw2— §dt

the last term arising from It6’s lemma. Integrating we would have

we 1 1
dw = —w?(t) — =t
Auww Qw() 5

The expectation is thus equal to zero; this is what we expect from equation (19)
— if we did not have the extra [t6 term then this would not be true. Let us
consider taking integration in the Riemann sense (we could and probably should
use measure theory to do this properly but then the subject becomes too dull).
The integral is just approximated by a sum

N

[ M ) () = )

n=1

For a sufficiently smooth function the result would be independent of where
we choose the 7,,’s — this will not be true in this case as w 1s not a smooth
function. To evaluate the sum we separate it into three terms Iy + Is 4+ I3 where

L = w(tn—l) (w(tn) _w(t”—l))

3
1
-

I, = 2

=

(w(rn) — w(tn_l))

3
1
-

(w(tn) = w(m)) (w(m) = w(tn-1))

=

I3 =

3
1
-

We consider I, first. We know that

((Aw)?) = ((w(m) = w(ta-1))*) = 7

to t1 B

T1 T2

Iy

--"EN



but we would like to make the stronger statement (dw)? = dr. To show this is
indeed the case we consider the expected variation

<((dw)2 - dr)2> = ((dw)*) — 2dt ((dw)?) + (dt)* = 3(dt)? = 0

Thus
N

I2 = Z(Tn _tn—l)

n=1

when 7, —tp_1 = a(ty — t,—1) then I = at. The term I3 can be written as

N
1 2 42 p2

n=1

where
A = (wlt) —w(m)  Ba = (w(m) = wlta_1)
But using (dw)? = dr we find

N
1
13 = §;tn —tp_1 — (tn - Tn) - (Tn _tn—l) =0

To evaluate I; we use summation by parts. Thus Summation by parts
N ZnNzl an—1 (bn - bn—l)
L= > w(teoy) (w(tn) = w(tn-1))
n=1 = ZnNzl an—lbn
N
N-1
= = w(ta) (w(tn) — w(ta_1)) +wh — w =2 nmo @nbn
n=1 N

= - Zn:l bn(an - an—l)
+anby — aobo

2 = -— Z (w(tn) — w(tn_l))z + wjz\, — wg

= —t—i—wjz\f—wg

Thus putting together these results we find
t
1 t
/ wdw = —(wk —wi) — =+ at
0 2 2

where o depends on where we place 7, in the interval between ¢,, and ¢, 1. In
the It6 calculus we take o = 0 so that 7, is at the beginning of the interval
(thus insuring f(w) and dw are independent). The choice & = 1/2 gives the
Stranonvich integral which makes the calculus look like normal calculus but
then adds the complication that equation (19) is not satisfied.

We saw above (equation (21)) that making a change of coordinates from x
to y(z,t) where x satisfies the equation (18) then y satisfies

b2



Suppose we want to solve the backwards diffusion equation

2

b
yt‘i‘ayx‘i‘iyxx =0

T T
/ dy:/ by, dw
t t
</byxdw>:0

(y(z(T),T) — y(z,t)|z,t) =0

that is starting from z at time ¢ the expectation of y at a later time is the value
of y at the time { — a process with this property is known as a Martingale. A
typical example of such a process is a random walk where the expectation for
the position of a particle is just the last measured position. This then provides
an interpretation of the backwards solution of the diffusion equation

y(l‘,t) = <y(l‘(T), T)|l"t>

it is the expected value of y(x(7'),T) starting from a point z at time ¢.
To use Ito’s calculus we need to know how to transform from ones set of
coordinates, y(x,t) say, to another, z(z,t). Suppose that

this tells us that

but we know that

by equation (19) thus

dz = pdi4+odw
dy = adf+bdw
dz = adt+Bdw
then by It6’s lemma
d(yz) = dt(yez +yz) + de(yer + yze) + %2 dt(Yro 2 + Yooo + 2 20)

= ydz+z2dy+ oclyyze dt

This then provides us with the rule to make the coordinate transform w — yz.
Example 1. We consider the equation
o2

Yt 1Y+ S Yos = r(x, t)y(t)

we know from equation (21) that this is just equivalent to the stochastic dif-
ferential equation
dy = rydt + oy dw

where z satisfies the stochastic differential equation
dz = pdt + odw

Now to solve the stochastic differential equation for y we make the coordinate
transform y = uz where u satisfies the differential equation

du = rudt

10



(note that this is not a diffusion equation). Solving this differential equation

we find .
u(z,t) = exp (/ r(a:,t')dt')
0

since u does not have a diffusion term dy = d(uz) has the simple form
dy = zdu + udz = rydt + udt.
Thus

0Ys

U

()= 2}

Thus z = y/u is a Martigale so that

dz = dw

and

y(a,1) = <y(x(T),T)e_ ftTTdf'|x,t>

This is known as Black Shaol’s Fquation.
As a very simple example we consider

Example 2.
de = o(t)dw
making the change of variables
dt
dw =1/ —dw;
w R
and putting
¢ 1
ds o)

then so that .
5= / Uz(t/)dt/

then
/dx =2(t)—2(0)= N [0, /Ot o2(1)dv

As a final simple example we consider
Example 3.
de = (a(t) + xb(t)) + o(t)dw

introducing the integrating factor
eft b(t)dt!
then

d (x ef b(tl)dtl) = ef b(tl)dtl(dx + badt) = ef b(tl)dtl(a(t)dt + o(t)dw)

aborbing the integrating factors into the functions a(t) and o(¢) we obtain an
equation with the familiar form of a diffusion equation.

11

Is this right?



There 1s one class of problems which cannot be solved by path integral
techniques because they do not describe Gaussian diffusion — the distribution
of x 1s non-analytic. This is the class

dx = (a(t) + xb(t)) + (A(t) + l‘B(t)) dw

If B(t) = 0 this would be of the form of Gaussian process. To solve this we
first consider the simpler equation (with a(t) = A(¢) = 0)

d—x:bdt—l—Bdw
z

But ] ]
dln(z) = —dz + — + BZz? dt
x x

where the second term arises because of Ito’s lemma. Thus

BZ
dIn(z) = (b— 7) dz 4+ B dw

To find the full form of the solution we substitute & = uv and using variation
of parameter.
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