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Formation and Evolution of Cosmological Strings 

1. Introduction 
Grand unified gauge theories imply the existence of phase transitions in the 

very early universe, at which symmetries are spontaneously broken and Higgs 
condensates are formed. Topologically-stable defects may in some cases be 
created in these transitions, and may survive long after the transition, and 
perhaps even to the present. The presence of such defects may have observable 
consequences for the present universe. 

If G and H are respectively the symmetry groups before and after a transi­
tion, then the possible topologically-stable defects generated in the transition 
are determined from the homotopy of G/H. When G is a simple group, 
njc(G/ H) = nk-i(H). Nontrivial TT0(G/ H) allows the formation of two-
dimensional "domain walls" separating different components of the low-
temperature phase. Such domain walls would involve immense energies, 
presumably entirely inconsistent with the energy content of the present 
universe, and would be unstable to gravitational collapse. A nontrivial TTZ{G/ H) 
implies topologically-stable pointlike "magnetic monopole" configurations, 
expected to be completely stable, except for pair annihilation. The conse­
quences of such objects have been considered at length elsewhere. In these 
notes we consider cases in which n^G/ H) is nontrivial, so that one-dimensional 
"strings" may be created. In sect. 2 we discuss the configuration of strings gen­
erated at the phase transition, and in sect. 3 we consider the dynamical evolu­
tion of these strings in the expanding universe. Sect. 4 discusses the significance 
(if any) of the results for theories of galaxy formation. For simplicity, we shall 
usually consider the simplest model, in which G/H = U(l), and n^G/H) = Z. 
The group orientation of the relevant Higgs field <p may then be specified by a 
single phase angle. More complicated and perhaps more realistic models intro­
duce presumably inessential complications. 

2. String formation 
Above the transition temperature the phase angle in the Higgs field <p is 

presumably uncorrelated between different points in the universe, except in so 
far as kinetic energy te rms in its Lagrangian imply a maximum spatial gradient 
of the same order as the ambient temperature. At the phase transition, correla­
tions in the field develop over some characteristic distance f. For a static sys­
tem, £ is finite in a first-order phase transition, and infinite in a second-order 
one. However, in the expanding early universe, the correlation length can never 
exceed the horizon size, since correlated regions can presumably grow only at 
the speed of sound. As a simple approximation, one may divide the universe into 
many cubes with side length £, and take the direction of the Higgs field to be 
constant throughout each cube. A string passes through the centre of a square 
formed by the faces of four adjacent cubes if the direction of the Higgs field in 
the internal C/(l) space rotates through Zn when traced around the square in 
real space. The sense of rotation determines the direction of the string. As a 
further approximation, it is convenient to take the internal symmetry group for 
the Higgs field to be a discrete group Zk, ra ther than the continuous group U{\). 
The Higgs field in each cube is then randomly assigned a direction specified by 
an integer between 0 and k —1. Fig. 1 illustrates typical squares formed by faces 
of four adjacent cubes with k =3. The second column in fig. 1 shows the mapping 
from real space to group space inferred from the Higgs field directions in the 
first column. A continuous dependence of the Higgs field on position is mimiced 
by assuming that at each angular step in real space, the Higgs field direction 
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rotates to its new direction in group space in the shorter of the two possible 
senses. Thus a rotation from direction 0 to direction 1 is in the clockwise sense 
(with the conventions of fig. 1), while a rotation from 0 to 3 is in the anticlock­
wise sense. For odd k, the sense thus deduced is always unique. As illustrated 
in fig. 1, a string is present if the mapping from real space to group space has 
nonzero winding number. If the Higgs field directions are assigned randomly 
with equal probabilities, one finds for A; =3 that the probability of a string with 
winding number +1 to occur in a particular square is p+^0.148. Strings with 
winding number —1 occur by symmetry with an equal probability p_=p + . The 
winding number of a string determines its direction: a left-hand rule is taken by 
convention. With A: =5, the probability for a string to occur increases to 0.160, 
while in the limit fc->°°, the probability tends to 1/6. For simplicity, we shall 
usually assume that A: =3. 

The characteristics of strings are conveniently investigated by Monte Carlo 
simulation. With the universe divided into a regular lattice of size £ cubes, one 
first assigns randomly to each cube a Higgs field direction specified by an 
integer between 0 and k—l. Then for each side at which four cubes meet, the 
prescription described above is applied to the values on the surrounding four 
faces to determine whether a string is present. In this way, each segment of 
each string is identified. The construction is such that a particular string must 
either be closed, forming a loop, or must terminate on the boundary of the sys­
tem. An ambiguity arises when multiple string segments are found to pass 
through a particular vertex. We assume that each incoming string is assigned 
randomly to an outgoing string, mimicing the behaviour expected in the absence 
of a regular cubical lattice. With A; =3, the probability for no strings to pass 
through a particular vertex is =*0.16. The probability for a single string to enter 
(and leave) the vertex is =*0.48; and the probabilities for two or three strings to 
pass through the vertex are respectively c^O.31 and 0.06. The average number of 
strings at a given vertex is thus r^0.42. Notice, however, that the probabilities 
for multiple strings at a vertex are not independent: the total probabilities for 
different numbers of strings do not therefore follow a simple binomial distribu­
tion. 

In the simplest approximation, each string might be taken as a random 
walk with step length £. In practice, some correlation effects are present. When a 
string passes a particular vertex one finds that the probability for it continue in 
a straight line without deflection is =^0.093, while the probability for it to be 
deflected to one of the four orthogonal directions is ^0.23. The ratio of these 
probabilities is ~2.5, while for a true random walk they would be equal. 

In actual simulations, a cubical lattice with side length up to about 50f is 
used. Only about 13% of the cubes then lie on the surface. Nevertheless, many 
strings terminate at the surface, ra ther than forming closed loop in the interior. 
However, such strings only very rarely penetrate more than about 5£ from the 
surface, and their effects are thus usually unimportant. Figure 2 shows the dis­
tribution of loop lengths for closed strings. 
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