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Abstract. Cellular automata are discrete dynamical systems, of simple
construction but complex and varied behaviour. Algebraic techniques are used
to give an extensive analysis of the global properties of a class of finite cellular
automata. The complete structure of state transition diagrams is derived in
terms of algebraic and number theoretical quantities. The systems are usually
irreversible, and are found to evolve through transients to attractors consisting
of cycles sometimes containing a large number of configurations.

1. Introduction

In the simplest case, a cellular automaton consists of a line of sites with each site
carrying a value O or 1. The site values evolve synchronously in discrete time steps
according to the values of their nearest neighbours. For example, the rule for
evolution could take the value of a site at a particular time step to be the sum
modulo two of the values of its two nearest neighbours on the previous time step.
Figure 1 shows the pattern of nonzero sites generated by evolution with this rule
from an initial state containing a single nonzero site. The pattern is found to be self-
similar, and is characterized by a fractal dimension log, 3. Even with an initial state
consisting of a random sequence of 0 and 1 sites (say each with probability 3), the
evolution of such a cellular automaton leads to correlations between separated
sites and the appearance of structure. This behaviour contradicts the second law of
thermodynamics for systems with reversible dynamics, and is made possible by the
irreversible nature of the cellular automaton evolution. Starting from a maximum
entropy ensemble in which all possible configurations appear with equal
probability, the evolution increases the probabilities of some configurations at the
expense of others. The configurations into which this concentration occurs then
dominate ensemble averages and the system is “organized” into having the
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Fig. 1. Example of evolution of a one-dimensional cellular automaton with two possible values at
eachssite. Configurations at successive time steps are shown as successive lines. Sites with value one
are black; those with value zero are left white. The cellular automaton rule illustrated here takes
the value of a site at a particular time step to be the sum modulo two of the values ofits two nearest
neighbours on the previous time step. This rule is represented by the polynomial T(x) =x+x~?,
and is discussed in detail in Sect. 3

properties of these configurations. A finite cellular automaton with N sites
(arranged for example around a circle so as to give periodic boundary conditions)
has 2" possible distinct configurations. The global evolution of such a cellular
automaton may be described by a state transition graph. Figure 2 gives the state
transition graph corresponding to the cellular automaton described above, for the
cases N=11and N =12. Configurations corresponding to nodes on the periphery
of the graph are seen to be depopulated by transitions; all initial configurations
ultimately evolve to configurations on one of the cycles in the graph. Any finite
cellular automaton ultimately enters a cycle in which a sequence of configurations
are visited repeatedly. This behaviour is illustrated in Fig. 3.

Cellular automata may be used as simple models for a wide variety of physical,
biological and computational systems. Analysis of general features of their
behaviour may therefore yield general results on the behaviour of many complex
systems, and may perhaps ultimately suggest generalizations of the laws of
thermodynamics appropriate for systems with irreversible dynamics. Several
aspects of cellular automata were recently discussed in [1], where extensive
references were given. This paper details and extends the discussion of global
properties of cellular automata given in [1]. These global properties may be
described in terms of properties of the state transition graphs corresponding to the
cellular automata.

This paper concentrates on a class of cellular automata which exhibit the
simplifying feature of “additivity”. The configurations of such cellular automata
satisfy an “additive superposition” principle, which allows a natural represen-
tation of the configurations by characteristic polynomials. The time evolution of
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Fig. 2. Global state transition diagrams for finite cellular automata with size N and periodic
boundary conditions evolving according to the rule M(x)=x+x"!, as used in Fig.1, and
discussed extensively in Sect.3. Each node in the graphs represents one of the 2V possible
configurations of the N sites. The directed edges of the graphs indicate transitions between these
configurations associated with single time steps of cellular automaton evolution. Each cycle in the
graph represents an “attractor” for the configurations corresponding to the nodes in trees rooted
on it

the configurations is represented by iterated multiplication of their characteristic
polynomials by fixed polynomials. Global properties of cellular automata are then
determined by algebraic properties of these polynomials, by methods analogous to
those used in the analysis of linear feedback shift registers [2,3]. Despite their
amenability to algebraic analysis, additive cellular automata exhibit many of the
complex features of general cellular automata.

Having introduced notation in Sect. 2, Sect. 3 develops algebraic techniques
for the analysis of cellular automata in the context of the simple cellular automaton
illustrated in Fig. 1. Some necessary mathematical results are reviewed in the
appendices. Section 4 then derives general results for all additive cellular
automata. The results allow more than two possible values per site, but are most
complete when the number of possible values is prime. They also allow influence
on the evolution of a site from sites more distant than its nearest neighbours. The
results are extended in Sect. 4D to allow cellular automata in which the sites are
arranged in a square or cubic lattice in two, three or more dimensions, rather than
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Fig. 3. Evolution of cellular automata with N sites arranged in a circle (periodic boundary
conditions) according to the rule T(x) =x+ x~* (as used in Fig. 1 and discussed in Sect. 3). Finite
cellular automata such as these ultimately enter cycles in which a sequence of configurations are

visited repeatedly. This behaviour is evident here for N =12, 63, and 192. For N =71, the cycle has
length 23%—1
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just on a line. Section 4E then discusses generalizations in which the cellular
automaton time evolution rule involves several preceding time steps. Section 4F
considers alternative boundary conditions. In all cases, a characterization of the
global structure of the state transition diagram is found in terms of algebraic
properties of the polynomials representing the cellular automaton time evolution
rule.

Section 5 discusses non-additive cellular automata, for which the algebraic
techniques of Sects.3 and 4 are inapplicable. Combinatorial methods are
nevertheless used to derive some results for a particular example.

Section 6 gives a discussion of the results obtained, comparing them with those
for other systems.

2. Formalism

We consider first the formalism for one-dimensional cellular automata in which
the evolution of a particular site depends on its own value and those of its nearest
neighbours. Section 4 generalizes the formalism to several dimensions and more
neighbours.

We take the cellular automaton to consist of N sites arranged around a circle
(so as to give periodic boundary conditions). The values of the sites at time step ¢
are denoted af, ...,a%_ ;. The possible site values are taken to be elements of a
finite commutative ring IR, with k elements. Much of the discussion below
concerns the case R, =Z,, in which site values are conveniently represented as
integers modulo k. In the example considered in Sect. 3, R, =7Z,, and each site
takes on a value 0 or 1.

The complete configuration of a cellular automaton is specified by the values of
its N sites, and may be represented by a characteristic polynomial (generating
function) (cf. [2,3])

N'=1.
A= % al', (2.1)
i=0
where the value of site i is the coefficient of x’, and all coefficients are elements of the
ring IR,. We shall often refer to configurations by their corresponding character-
istic polynomials.

It is often convenient to consider generalized polynomials containing both
positive and negative powers of x: such objects will be termed “dipolynomials”. In
general, H(x) is a dipolynomial if there exists some integer m such that x™ H(x) is an
ordinary polynomial in x. As discussed in Appendix A, dipolynomials possess
divisibility and congruence properties analogous to those of ordinary
polynomials.

Multiplication of a characteristic polynomial A(x) by x*/ yields a dipoly-
nomial which represents a configuration in which the value of each site has been
transferred (shifted) to a site j places to its right (left). Periodic boundary conditions
in the cellular automaton are implemented by reducing the characteristic
dipolynomial modulo the fixed polynomial x¥—1 at all stages, according to

N=1

Yax‘mod(x"~1)= 3 (z a; ,.N>x" . (2.2)

i=0 \ j
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Note that any dipolynomial is congruent modulo (x"—1) to a unique ordinary
polynomial of degree less than N.

In general, the value af of a site in a cellular automaton is taken to be an
arbitrary function of the values af' "), a{ ~ "), and a; ") at the previous time step.
Until Sect. 5, we shall consider a special class of “additive” cellular automata
which evolve with time according to simple linear combination rules of the form
(taking the site index i modulo N)

afl=o_,af"" +aoal "V +o 4y, (2.3)

where the o; are fixed elements of IR, and all arithmetic is performed in R;. This
time evolution may be represented by multiplication of the characteristic
polynomial by a fixed dipolynomial in X,

T(x)=0_ x+og+o, x ', (2.4
according to
Ax)=T(x)A* (x) mod(x"—1), (2.5)

where arithmetic is again performed in R,. Additive cellular automata obey an
additive superposition principle which implies that the configuration obtained by
evolution for ¢ time steps from an initial configuration 4°)(x)+ B‘©(x) is identical
to A“(x)+ BY(x), where A“)(x) and B"”(x) are the results of separate evolution of
A9(x) and B(x), and all addition is performed in R,. Since any initial
configuration can be represented as a sum of “basis” configurations A(x)=x/
containing single nonzero sites with unit values, the additive superposition
principle determines the evolution of all configurations in terms of the evolution of
A(x). By virtue of the cyclic symmetry between the sites it suffices to consider the
case j=0.

3. A Simple Example

A. Introduction

This section introduces algebraic techniques for the analysis of additive cellular
automata in the context of a specific simple example. Section 4 applies the
techniques to more general cases. The mathematical background is outlined in the
appendices.

The cellular automaton considered in this section consists of N sites arranged
around a circle, where each site has value 0 or 1. The sites evolve so that at each
time step the value of a site is the sum modulo two of the values of its two nearest
neighbours at the previous time step:

a=al"P+al7 ) mod2. (3.1

This rule yields in many respects the simplest non-trivial cellular automaton. It
corresponds to rule 90 of [1], and has been considered in several contexts
elsewhere (e.g. [4]).

The time evolution (3.1) is represented by multiplication of the characteristic
polynomial for a configuration by the dipolynomial

T(x)=x+x""1 (3.2)
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according to Eq. (2.5). At each time step, characteristic polynomials are reduced
modulo x"¥—1 (which is equal to xV+1 since all coefficients are here, and
throughout this section, taken modulo two). This procedure implements periodic
boundary conditions as in Eq. (2.2) and removes any inverse powers of x.
Equation (3.2) implies that an initial configuration containing a single nonzero
site evolves after ¢ time steps to a configuration with characteristic dipolynomial

t
Tx)1=(x+x"H'=3Y <i> (3.3)
i=0

For t<N/2 (before “wraparound” occurs), the region of nonzero sites grows
linearly with time, and the values of sites are given simply by binomial coefficients
modulo two, as discussed in [ 1] and illustrated in Fig. 1. (The positions of nonzero
sites are equivalently given by +2/1 4272+ ... where the j; give the positions of
nonzero digits in the binary decomposition of the integer t.) The additive
superposition property implies that patterns generated from initial configurations
containing more than one nonzero site may be obtained by addition modulo two
(exclusive disjunction) of the patterns (3.3) generated from single nonzero sites.

B. Irreversibility

Every configuration in a cellular automaton has a unique successor in time. A
configuration may however have several distinct predecessors, as illustrated in the
state transition diagram of Fig. 2. The presence of multiple predecessors implies
that the time evolution mapping is not invertible but is instead “contractive”. The
cellular automaton thus exhibits irreversible behaviour in which information on
initial states is lost through time evolution. The existence of configurations with
multiple predecessors implies that some configurations have no predecessors’.
These configurations occur only as initial states, and may never be generated in the
time evolution of the cellular automaton. They appear on the periphery of the state
transition diagram of Fig. 2. Their presence is an inevitable consequence of
irreversibility and of the finite number of states.

Lemma 3.1. Configurations containing an odd number of sites with value 1 can
never be generated in the evolution of the cellular automaton defined in Sect. 3A, and
can occur only as initial states.

Consider any configuration specified by characteristic polynomial 4®(x). The
successor of this configuration is A™M(x) =T(x)4?(x) = (x + x 1) 4%(x), taken, as
always, modulo x"—1. Thus

AV(x) = (x2 + 1DB(x) + R(x) (x¥ —1)

for some dipolynomials R(x) and B(x). Since x*+1=x"—1=0 for x=1,
AM(1)=0. Hence AV(x) contains an even number of terms, and corresponds to a
configuration with an even number of nonzero sites. Only such configurations can
therefore be reached from some initial configuration 4%(x).

An extension of this lemma yields the basic theorem on the number of
unreachable configurations:

1 Such configurations have been termed “Gardens of Eden” [5]
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Theorem 3.1. The fraction of the 2V possible configurations of a size N cellular
automaton defined in Sect. 3A which can occur only as initial states, and cannot be
reached by evolution,is 1/2 for N odd and 3/4 for N even.

A configuration A)(x) is reachable after one time step of cellular automaton
evolution if and only if for some dipolynomial 4®(x),

ADX)=T(x)AOx)=(x+x"HA(x) mod(x"—1), (3.4)
so that
AD(x) = (x2 + DB(x) + R(x) (x¥ — 1) (3.5)

for some dipolynomials R(x) and B(x). To proceed, we use the factorization of
(x¥N—1) given in Eq. (A.7), and consider the cases N even and N odd separately.

(a) N even. Since by Eq.(A.4), (x> 4+ 1)=(x+1)*>=(x—1)? (taken, as always,
modulo 2), and by Eq. (A.7),

=D (N2 =1)*=(x"—1)
for even N, Eq. (3.5) shows that
(x—1)?[ AD(x)

in this case. But since (x — 1)* contains a constant term, A")(x)/(x — 1)? is thus an
ordinary polynomial if A*)(x) is chosen as such. Hence all reachable configura-
tons represented by a polynomial A")(x) are of the form

ADx)=(x—1)*C(x),

for some polynomial C(x). The predecessor of any such configuration is xC(x), so
any configuration of this form may in fact be reached. Since deg A(x) < N, deg C(x)
< N —2. There are thus exactly 2V~ ? reachable configurations, or 1/4 of all the 2¥
possible configurations.

(b) N odd. Using Lemma 3.1 the proof for this case is reduced to showing that
all configurations containing an even number of nonzero sites have predecessors.
A configuration A"(x) with an even number of nonzero sites can always be written
in the form (x+ 1)D(x). But

ADx)=(x+DD(x)=(x+x" ) (*+x*+ ... +x¥ " HD(x) mod(x"—1)
=Tx)(x*+x*+ ... +x¥ " HD(x) mod(x¥—1),

giving an explicit predecessor for 4AM(x).
The additive superposition principle for the cellular automaton considered in
this section yields immediately the result:

Lemma 3.2. Two configurations A©(x) and B°(x) yield the same configura-
tion C(x)=T(x)A9(x)=T(x)B? after one time step in the evolution of the cel-
lular automaton defined in Sect. 3A if and only if A (x)=B(x)+ Q(x), where
T(x)0(x) =0.

Theorem 3.2. Configurations in the cellular automaton defined in Sect. 3A which

have at least one predecessor have exactly two predecessors for N odd and exactly
four for N even.
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This theorem is proved using Lemma 3.2 by enumeration of configurations

Q(x) which evolve to the null configuration after one time step. For N odd, only the
N

X . :
configurations 0 and 1+x+ ... +x¥ ! P (corresponding to site values
x—

11111 ...) have this property. For N even, Q(x) has the form

2 N-2 xN—1
(IT+x*+ ... +x"79)Si(x)= = Si(x),
where the S;(x) are the four polynomials of degree less than two. Explicitly, the
possible forms for Q(x) are 0, 1+x*+ ... +x" 72, x+x*+ ... +x"!, and

l+x+x%+ ... +xN L

C. Topology of the State Transition Diagram

This subsection derives topological properties of the state transition diagrams
illustrated in Fig. 2. The results determine the amount and rate of “information
loss” or “self organization” associated with the irreversible cellular automaton
evolution.

The state transition network for a cellular automaton is a graph, each of whose
nodes represents one of the possible cellular automaton configurations. Directed
arcs join the nodes to represent the transitions between cellular automaton
configurations at each time step. Since each cellular automaton configuration has
a unique successor, exactly one arc must leave each node, so that all nodes have
out-degree one. As discussed in the previous subsection, cellular automaton
configurations may have several or no predecessors, so that the in-degrees of nodes
in the state transition graph may differ. Theorems 3.1 and 3.2 show that for N odd,
1/2 of all nodes have zero in-degree and the rest have in-degree two, while for N
even, 3/4 have zero in-degree and 1/4 in-degree four.

As mentioned in Sect. 1, after a possible “transient”, a cellular automaton
evolving from any initial configuration must ultimately enter a loop, in which a
sequence of configurations are visited repeatedly. Such a loop is represented by a
cycle in the state transition graph. At every node in this cycle a tree is rooted; the
transients consist of transitions leading towards the cycle at the root of the tree.

Lemma 3.3. The trees rooted at all nodes on all cycles of the state transition graph
for the cellular automaton defined in Sect. 3A are identical.

This result is proved by showing that trees rooted on all cycles are identical to
the tree rooted on the null configuration. Let A(x) be a configuration which
evolves to the null configuration after exactly ¢ time steps, so that T(x)'A(x)
=0mod(x" —1). Let R(x) be a configuration on a cycle, and let R "(x) be another
configuration on the same cycle, such that T(x)'R‘"”(x) = R(x) mod(x" — 1). Then

deftiie W [A(0)] = A(x)+ RCI(x).

We first show that as A(x) ranges over all configurations in the tree rooted on the
null configuration, ¥g,, [4(x)] ranges over all configurations in the tree rooted
at R(x). Since

T(x)'¥ g [A(x)] =T(x)'A(x) + T(x)'R" (x)=R(x) mod(x"—1),
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it is clear that all configurations Wg,,[A(x)] evolve after ¢ time steps [where the
value of ¢ depends on A(x)] to R(x). To show that these configurations lie in the
tree rooted at R(x), one must show that their evolution reaches no other cycle
configurations for any s <t. Assume this supposition to be false, so that there exists
some m=0 for which

REM(x)=T(x)*¥ g [A(x)]=T(x)*A(x) + R*"(x) mod(x"—1).

Since T(x)'A(x)=0mod (x" — 1), this would imply R *~™(x) = R(x) = R(x), or
RU™(x)=R® 9(x). But R ™(x)—R® 9(x)=T(x)*A(x), and by construction
T(x)°*A(x)*0 for any s<t, yielding a contradiction. Thus ¥g,, maps configura-
tions at height ¢ in the tree rooted on the null configuration to configurations at
height t in the tree rooted at R(x), and the mapping ¥ is one-to-one. An analogous
argument shows that ¥ is onto. Finally one may show that ¥ preserves the time
evolution structure of the trees, so that if T(x)A4*(x)= A")(x), then

T(x) !IIR(x)[A(O)(x)] = tlUR(x)[A(l)(x)] 5

which follows immediately from the definition of ¥. Hence ¥ is an isomorphism,
so that trees rooted at cycle configurations are all isomorphic to that rooted at the
null configuration.

Notice that this proof makes no reference to the specific form (3.2) chosen for
T(x) in this section; Lemma 3.3 thus holds for any additive cellular automaton.

Theorem 3.3. For N odd, a tree consisting of a single arc is rooted at each node on
each cycle in the state transition graph for the cellular automaton defined in
Sect. 3A.

By virtue of Lemma 3.3, it suffices to show that the tree rooted on the null
configuration consists of a single node corresponding to the configuration
111...111. This configuration has no predecessors by virtue of Lemma 3.1.

Corollary. For N odd, the fraction of the 2~ possible configurations which may occur
in the evolution of the cellular automaton defined in Sect. 3A is 1/2 after one or more
time steps.

The “distance” between two nodes in a tree is defined as the number of arcs
which are visited in traversing the tree from one node to the other (e.g. [6]). The
“height” of a (rooted) tree is defined as the maximum number of arcs traversed in a
descent from any leaf or terminal (node with zero in-degree) to the root of the tree
(formally node with zero out-degree). A tree is “balanced” if all its leaves are at the
same distance from its root. A tree is termed “quaternary” (“binary”) if each of its
non-terminal nodes has in-degree four (two).

Let D,(N) be the maximum 2/ which divides N (so that for example D,(12) =4).

Theorem 3.4. For N even, a balanced tree with height D,(N)/2 is rooted at each node
on each cycle in the state transition graph for the cellular automaton defined in Sect.
3A; the trees are quaternary, except that their roots have in-degree three.

Theorem 3.2 shows immediately that the tree is quaternary. In the proof of
Theorem 3.1, we showed that a configuration Q,(x) can be reached from some
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configuration Q(x) if and only if (14 x?)|Q,(x); Theorem 3.2 then shows that if
0,(x) is reachable, it is reachable from exactly four distinct configurations Q(x).
We now extend this result to show that a configuration Q,,(x) can be reached from
some configuration Q,(x) by evolution for m time steps, with m< D,(N)/2, if and
only if (1+x%)™Q,.(x). To see this, note that if

() =T (x)"Qo(x) mod(x"—1), (3.6)
then
(" = 1) | @u(x)+ (6% + 1) " ™Q(x) , (3.7)
and so, since by Eq. (A.7), (x4 1)"|(x" —1) for m< D,(N)/2, it follows that
(c® +1)" ] Qpu(x) (3.8)

for m< D,(N)/2. On the other hand, if (x? 4 1)™|Q,,(x), say Q,.(x) = (x*+ 1)"Q(x),
then Q,,(x)=T(x)"x"Q,(x), which shows that Q,,(x) is reachable in m steps.
The balance of the trees is demonstrated by showing that for m<D,(N)/2, if
(x* 4+ 1)™Q,.(x), then Q,,(x) can be reached from exactly 4™ initial configurations
Q,(x). This may be proved by induction on m. If

(1+x*)"1Qu(x) (1=m<D,(N)/2),

then all of the four states Q,, ,(x) from which Q,,(x) may be reached in one step
satisfy (x241)" " 1Q,,_ ,(x). Consider now the configurations Q(x) which satisfy

(% + 1P | (). (3.9)

If we write Q(x) = (x + 1)?2™R(x), then as in Theorem 3.2, the four predecessors of
Q(x) are exactly
N/2

Q- 1()=(x-+ )P 2R*(x) + <xx_-1 1>2 510, (310

where xR(x) = R*(x) mod (x" —1). S,(x) ranges over the four polynomials of degree
less than two, as in Theorem 3.2. Exactly one of these polynomials satisfies
Eq. (3.9), whereas the other three satisfy only

e+ DM 7204 (x).

Any state satisfying Eq. (3.9) thus belongs to a cycle, since it can be reached after an
arbitrary number of steps. Conversely, since any cycle configuration must be
reachable after D,(N)/2 time steps, any and all configurations Q _,(x) satisfying
Eq. (3.9) are indeed on cycles. But, as shown above, the three Q _;(x) which do not
satisfy Eq. (3.9) are roots of balanced quaternary trees of height D,(N)/2-1. The
proof of the theorem is thus completed.

Corollary. For N even, a fraction 4" of the 2" possible configurations appear after t
steps in the evolution of the cellular automaton defined in Sect. 3A fort <D,(N)/2. A
fraction 2722 of the configurations occur in cycles, and are therefore generated at
arbitrarily large times.

Corollary. All configurations A(x) on cycles in the cellular automaton of Sect. 3A are
divisible by (1 4 x)?2™)
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This result follows immediately from the proof of Theorems 3.3 and 3.4.

Entropy may be used to characterize the irreversibility of cellular automaton
evolution (cf. [ 1]). One may define a set (or topological) entropy for an ensemble of
configurations i occurring with probabilities p; according to

1
s= Nlogzge(pi), (3.11)

where 0(p) =1 for p>0, and 0 otherwise. One may also define a measure entropy

1

5,=— NZp,-logzpi. (3.12)

For a maximal entropy ensemble in which all 2¥ possible cellular automaton
configurations occur with equal probabilities,

s=su=1.

These entropies decrease in irreversible cellular automaton evolution, as the
probabilities for different configurations become unequal. However, the balance
property of the state transition trees implies that configurations either do not
appear, or occur with equal nonzero probabilities. Thus the set and measure
entropies remain equal in the evolution of the cellular automaton of Sect. 3A.
Starting from a maximal entropy ensemble, both nevertheless decrease with time ¢
according to

st)=s,()=1-2t/N, 0<t<D,(N)/2,
s(t)=s5,()=1—Dy(N)/N, t2Dy(N)/2.

D. Maximal Cycle Lengths

Lemma 3.4. The lengths of all cycles in a cellular automaton of size N as defined in
Sect. 3A divide the length Il of the cycle obtained with an initial configuration
containing a single site with value one.

This follows from additivity, since any configuration can be considered as a
superposition of configurations with single nonzero initial sites.

Lemma 3.5. For the cellular automaton defined in Sect. 3A, with N of the form 2/,
HN = 1.

In this case, any initial configuration evolves ultimately to a fixed point
consisting of the null configuration, since

x+x 1=+ 2" N +x =0 med(x¥~1].

Lemma 3.6. For the cellular automaton defined in Sect. 3A, with N even but not of
the form 2/, Iy =211 ,,.
A configuration A(x) appears in a cycle of length = if and only if

Tx) A(x)=A(x) mod(x*—1),
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and therefore
N =D [(x*+ D)™+ x"] A(x) .

After t time steps, the configuration obtained by evolution from an initial state
containing a single nonzero site is (x+x~!')"; by Theorems 3.3 and 3.4 and
the additive superposition principle, the configuration

A(x)=(x+x~ 1P

is therefore on the maximal length cycle. Thus the maximal period II is given by
the minimum 7 for which

N =D [(x*+ D)™ +x™] (x + 1)P2™ |

and so

xn_l D>(N)
<x+1) | (G + 1) 4 xT], (3.13)

with N =D,(N)n, n odd. Similarly,
(eM12 = 1) 2+ 1) xT0] (x4 [P0,

o \Pa2 (3.14)
( +1 > | [(x* + 1)z 4 xTvr].
X
Squaring this yields
xn_l D>(N)
( = ) LG4 1y a4- 2]
X
from which it follows that
y|2My,. (3.15)

Since x™ — 1 divides [(x% + 1)¥ 4+ x~] (x 4 1)?2™), 50 does its square root, x¥* —1,
and therefore

My, | ITy. (3.16)
Combining Egs. (3.15) and (3.16) implies that either ITy=2I1y,, or IIy=1Iy,,. To

exclude the latter possibility, we use derivatives. Using Eq. (A.6), and the fact that
the derivative of x>+ 1 vanishes over GF(2), one obtains from (3.13),

x"—1
Oyx"~-1,
<x+1 >| "

If 1Ty were odd, the right member would be non-trivial, and the divisibility
condition could not hold. Thus [Ty must be even. But then the right member of
(3.13) is a perfect square, so that

xN/2 _ 1 2
<W> | (% + 1) 72 4 xTIwi2]2,

Thus ITy,|ITy/2, and the proof is complete.
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Theorem 3.5. For the cellular automaton defined in Sect. 34, with N odd,
I | IT%=2°"9%® — 1 where sordy(2) is the multiplicative ‘‘sub-order” function of 2
modulo N, defined as the least integer j such that 2= +1mod N. ( Properties of the
suborder functions are discussed in Appendix B.)

By Lemma 3.1, an initial configuration containing a single nonzero site
cannot be reached in cellular automaton evolution. The configuration
(x+x~')mod(x" — 1) obtained from this after one time step can be reached, and in
fact appears again after 2°°"¥() —1 time steps, since

T(x)zsordN(Z)l E(X+x_ 1)ZsordN(2)E (xzsnrdN(Z) +x‘250rdN(2))
=T +xFHY)=(x+x"1) mod(x"-1).

The maximal cycle lengths ITy for the cellular automaton considered in this
section are given in the first column of Table 1. The values are plotted as a function
of N in Fig. 4. Table 1 together with Table 4 show that IT, = IT}; for almost all odd
N. The first exception appears for N =37, where IIy=II%/3; subsequent
exceptions are Ilos=1II%s/3, I,y =1IIT01/3, 141 =1IT41/3, I197=1IT04/3,
I1,99=1M%4o/7, 1,45 =11%,5/105 and so on.

As discussed in Appendix B, sordy (2) £ (N —1)/2. This bound can be attained
only when N is prime. It implies that the maximal period is 2V ~ /2 — 1. Notice that
this period is the maximum that could be attained with any reflection symmetric
initial configuration (such as the single nonzero site configuration to be considered
by virtue of Lemma 3.4).

30 1

o} | 1 | |
o] 20 40 60 80 100

N
Fig. 4. The maximal length ITy of cycles generated in the evolution of a cellular automaton with
size N and T(x) =x+x "', as a function of N. Only values for integer N are plotted. The irregular
behaviour of ITy as a function of N is a consequence of the dependence of ITy on number
theoretical properties of N
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Table 1. Maximal cycle lengths ITy for one-dimensional nearest-neighbour additive cellular
automata with size N and k possible values at each site. Results for all possible nontrivial
symmetrical rules with k<4 are given. For k=2, the fixed time evolution polynomials are
T(x) =x+x""'and x+1+x "' (corresponding to rules 90 and 150 of [1], respectively). For k=3,
the polynomials are x+x ', x+14+x"% and x+2+x~", while for k=4, they are x+x"*,

x+14+x71Y x+2+x"L, and x+3+x"1

N k=2 k=3 k=4
3 1 1 6 1 3 2 2 1 1
4 1 2 2 2 2 1 4 1 4
5 3 3 8 8 4 6 6 3 6
6 2 1 6 6 3 2 2 2 2
7 il 7 26 26 13 14 14 7 14
8 1 <+ 4 8 8 1 8 1 8
9 7 7 18 1 9 14 14 7 14
10 6 6 8 8 8 6 12 6 12
11 31 31 242 121 121 62 62 31 62
12 - 2 6 6 6 4 -+ 4 4
13 63 21 26 13 13 126 42 63 42
14 14 14 26 26 13 14 28 14 28
15 15 15 24 24 12 30 30 15 30
16 1 8 16 80 80 1 16 1 16
17 15 15 1,640 6,560 820 30 30 15 30
18 14 14 18 18 9 14 28 14 28
19 511 511 19,682 19,682 9,841 1,022 1,022 511 1,022
20 12 12 16 40 40 12 24 12 24
21 63 63 78 78 39 126 126 63 126
22 62 62 242 242 242 62 124 62 124
23 2,047 2047 177,146 88,573 88,573 4,094 4,094 2047 4,094
24 8 4 12 24 24 8 8 8 8
25 1,023 1,023 59,048 59,048 29,524 2,046 2,046 1,023 2,046
26 126 42 26 26 26 126 84 126 84
27 511 511 54 1 27 1,022 1,022 511 1,022
28 28 28 26 26 26 28 56 28 56
29 16,383 16,383 4,782,968 4,782,968 2,391,484 32,766 32,766 16,383 32,766
30 30 30 24 24 24 30 60 30 60
31 31 31 1,103,762 14,348,906 551,881 62 62 31 62
32 1 16 160 6,560 6,560 1 32 1 32
33 31 31 726 363 363 62 62 31 62
34 30 30 1,640 6,560 6,560 30 60 30 60
35 4095 4,095 265,720 265,720 132,860 8,190 8,190 4,095 8,190
36 28 28 18 18 18 28 56 28 56
37 87,381 29,127 19,682 19,682 9,841 174,762 58,254 87,381 58254
38 1,022 1,022 19,682 19,682 9,841 1,022 2,044 1,022 2,044
39 4095 4,095 78 39 39 8,190 8,190 4,095 8,190
40 24 24 80 40 40 24 48 24 48

E. Cycle Length Distribution

Lemma 3.4 established that all cycle lengths must divide I and Theorems 3.3 and
3.4 gave the total number of states in cycles. This section considers the number of
distinct cycles and their lengths.
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Lemma 3.7. For the cellular automaton defined in Sect. 3A, with N a multiple of 3,
there are four distinct fixed points (cyles of length one); otherwise, only the null
configuration is a fixed point.

For N =3n, the only stationary configurations are 000000 ... (null configura-
tion), 0110110..., 1011011 ..., and 1101101 ....

Table 2 gives the lengths and multiplicities of cycles in the cellular automaton
defined in Sect. 3A, for various values of N. One result suggested by the table is that
the multiplicity of cycles for a particular N increases with the length of the cycle, so
that for large N, an overwhelming fraction of all configurations in cycles are on
cycles with the maximal length.

When Iy is prime, the only possible cycle lengths are ITy and 1. Then, using
Lemma 3.7, the number of cycles of length ITy is 2"~V —4)/II,, for N =3n, and is
(2N=Y—1)/IT otherwise.

When I, is not prime, cycles may exist with lengths corresponding to various
divisors of ITy. It has not been possible to express the lengths and multiplicities of
cycles in this case in terms of simple functions. We nevertheless give a
computationally efficient algorithm for determining them.

Theorems 3.3 and 3.4 show that any configuration A(x) on a cycle may be
written in the form

A(x)=(1+x)"VB(x),

where B(x) is some polynomial. The cycle on which A(x) occurs then has a length
given by the minimum = for which

n__ D>(N
T(x)"B(x)=(x+x"')"B(x)=B(x) mod (1 . 11 > " (3.17)

where N =D,(N)n with n odd, and (x"—1)?2™ =x¥—1. Using the factorization
[given in Eq. (A.8)]
$(d)
ordg(2)

X"—I=x—=DTII Il Caix), (3.18)

din  i=1
d+1

where the C, ;(x) are the irreducible cyclotomic polynomials over Z, of degree
ord,(2), Eq. (3.17) can be rewritten as

(x+x"1)*B(x)=B(x) modC, (x)”*™ (3.19)

foralld|n,d+1,and for all i such that 1 <i < ¢(d)/ord,(2). Let n,; ;[ B(x)] denote the
smallest 7 for which (3.19) holds with given d,i. Then the length of the cycle on
which A(x) occurs is exactly the least common multiple of all the =, ;[ B(x)]. If
Cy.i(x)?*M|B(x), then clearly Eq.(3.19) holds for n=1, and =, [B(x)]=1. If
Cy.{x) B B(x) (and 0=r, ;[ B(x)] <D,(N)), then Eq. (3.19) is equivalent to

(Hx HP=1 modCy ()22 ~ralBen, (3.20)

The values of , ; for configurations with r, ;[ B(x)] = s are therefore equal, and will
be denoted 7, ; ; (0<s=<D,(N)). Since Cy (x)|(x*—1)/(x+1)(d=*1), the value of
7,,;.1 divides the minimum = for which (x+x~')*=1mod(x?—1)/(x+1). This
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Table 2. Multiplicities and lengths of cycles in the cellular automaton of Sect. 3A with
size N. The notation g; X «; indicates the occurence of g; distinct cycles each of length
;. The last column of the table gives the total number of distinct cycles or “attractors”
in the system

N
3 4x1 4
4 1x1 1
5 1x1;5%3 6
6 4x1;6x%x2 10
7 1x1;9%x7 10
8 1x1 1
9 4x1;36x7 40
10 Ix1;5%x3;40x6 46
11 1x1;33x31 34
12 4x1;6x2; 60x4 70
13 1x1; 65%63 66
14 1x1;9%x7; 288 x 14 298
15 4x1;20x 3; 1,088 x 15 1,112
16 1x1 1
17 1x1; 51x5;4,352x15 4,404
18 4x1;6x2,36x7; 4,662 x 14 4,708
19 1x1; 513 x 511 514
20 1x1; 5%x3; 40 x 6; 5,440 x 12 5,486
21 4x1;36x7; 16,640 x 63 16,680
22 1x1; 33 x31; 16,896 x 62 16,930
23 1x1; 2,049 x 2,047 2,050
24 4x1;6x%x2;60x4; 8,160x8 8,230
25 1x1; 5x3; 16,400 x 1,023 16,406
26 1x1; 65%63; 133,120 x 126 133,186
27 4x1;36x7; 131,328 x 511 131,368
28 1x1;9%x7; 288 x 14; 599,040 x 28 599,338
29 1x1; 16,385 x 16,383 16,386
30 4x1;6x2;20x3; 670 x 6; 1,088 x 15; 8,947,168 x 30 8,948,956
31 1x1; 34,636,833 x 31 34,636,834
32 1x1 1
33 4x1; 138,547,332 x 31 138,547,336
34 1x1; 51x5; 6,528 x 10; 4,352 x 15; 143,161,216 x 30 143,172,148
35 1x1; 5%x3;9x7;,45x21; 4,195,328 x 4,095 4,195,388
36 4x1;6x2; 60x4; 36x7, 4,662 x 14; 153,389,340 x 28 153,394,108
37 1x1; 786,435 x 87,381 786,436
38 1x1; 513x511; 67,239,936 x 1,022 672,340,450
39 4 x 1; 260 x 63; 49,164 x 1,365; 67,108,860 x 4,095 67,158,288
40 1x1; 5%3; 40 x 6; 5,440 x 12; 178,954,240 x 24 178,959,726

equation is the same as the one for the maximal cycle length of a size d cellular
automaton: the derivation of Theorem 3.5 then shows that

Ty 1] SR ], (3.21)

It can also be shown that n, ; ,;=m, ;  Or 7y ; ,o=2m, ;
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As an example of the procedure described above, consider the case N =30.

Here,
x30+1 =(X15 T 1)2 =C,, 1(x)2C3, 1(x)2C5, 1(x)2C15, 1(x)2C15,2(x)2 y iR

whese Ci1(x)=x+1,
Cy (x)=x*+x+1,
Cs(x)=x*+x>+x>+x+1,
Cis,1(0)=x*+x+1,
Cis(x)=x*+x>+1.

Then
Tai2=1,

m3,1=1, 734,0=2,
Ms,1,1=3,  Ts,4,0=0, (3.23)
Tys,1,1=T15,2,1=13,

Tys,1,0="T1s,2,0=30.

Thus the cycles which occur in the case N =30 have lengths 1, 2, 3, 6, 15, and 30.

To determine the number of distinct cycles of a given length, one must find the
number of polynomials B(x) with each possible set of values r, ;[B(x)]. This
number is given by

[TV d,Dy(N)),

dln i
d+1

where V(D,(N),d, D,(N))=1 and
V(r, d, D,(N)) = 20742 2(N)=r) _ yorda(2)(D2(N)=r ~ 1)

for 0<r<D,(N). The cycle lengths of these polynomials are determined as above
by the least common multiple of the =, ; ,, .

In the example N = 30 discussed above, one finds that configurations on cycles
of length 3 have (r3 1,75, 1,715,1.715.2)=(1,1,2,2) or (2,1,2,2), implying that 60
such configurations exist, in 20 distinct cycles.

4. Generalizations
A. Enumeration of Additive Cellular Automata

We consider first one-dimensional additive cellular automata, whose configura-
tions may be represented by univariate characteristic polynomials. We assume
that the time evolution of each site depends only on its own value and the value of
its two nearest neighbours, so that the time evolution dipolynomial T(x) is at most
of degree two. Cyclic boundary conditions on N sites are implemented by reducing
the characteristic polynomial at each time step modulo x — 1 as in Eq. (2.2). There
are taken to be k possible values for each site. With no further constraints imposed,
there are k* possible T(x), and thus k* distinct cellular automaton rules. If the
coefficients of x and x ! in T(x) both vanish, then the characteristic polynomial is
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at most multiplied by an overall factor at each time step, and the behaviour of the
cellular automaton is trivial. Requiring nonzero coefficients for x and x ' in T(x)
reduces the number of possible rules to k3>—2k?+k. If the cellular automaton
evolution is assumed reflection symmetric, then T(x)=T(x '), and only k* —k
rules are possible. Further characterisation of possible rules depends on the nature
of k.

(a) k Prime.In this case, integer values 0, 1, ..., k— 1 at each site may be combined
by addition and multiplication modulo k to form a field (in which each nonzero
element has a unique multiplicative inverse) Z,. For a symmetrical rule, T(x) may
always be written in the form

Tx)=x+s+x"" 4.1)

up to an overall multiplicative factor. For k=2, the rule T(x)=x+x"' was

considered above; the additional rule T(x)=x+14x"! is also possible (and
corresponds to rule 150 of [1]).

(b) k Composite.

Lemma 4.1. For k=p$'p% ..., with p; prime, the value a™ of a site obtained by
evolution of an additive cellular automaton from some initial configuration is given
uniquely in terms of the values a'**! attained by that site in the evolution of the set of
cellular automata obtained by reducing T(x) and all site values modulo p¥.

This result follows from the Chinese remainder theorem for integers (e.g. [8,
Chap. 8]), which states that if k, and k, are relatively prime, then the values n, and
n, determine a unique value of n modulo k,k, such that n=n;modk; for i=1, 2.

Lemma 4.1 shows that results for any composite k may be obtained from those
for k a prime or a prime power.

When k is composite, the ring Z, of integers modulo k no longer forms a field,
so that not all commutative rings R, are fields. Nevertheless, for k a prime power,
there exists a Galois field GF(k) of order k, unique up to isomorphism (e.g. [9;
Chap. 4]). For example, the field GF(4) may be taken to act on elements 0, 1, k, k>
with multiplication taken modulo the irreducible polynomial k?+k+ 1. Time
evolution for a cellular automaton with site values in this Galois field can be
reduced to that given by x+o+x !, where ¢ is any element of the field. The
behaviour of this subset of cellular automata with k composite is directly
analogous to those over Z, for prime p.

It has been assumed above that the value of a site at a particular time step is
determined solely by the values of its nearest neighbours on the previous time step.
One generalization allows dependence on sites out to a distance r > 1, so that the
evolution of the cellular automaton corresponds to multiplication by a fixed
dipolynomial T(x) of degree 2r. Most of the theorems to be derived below hold for
any r.

B. Cellular Automata over Z, (p Prime)

Lemma 4.2. The lengths of all cycles in any additive cellular automaton over Z, of
size N divide the length Iy of the cycle obtained for an initial configuration
containing a single site with value 1.
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This lemma is a straightforward generalization of Lemma 3.4, and follows
directly from the additivity assumed for the cellular automaton rules.

Lemma 4.3. For N amultiple of p, Ily|pIly,, for an additive cellular automaton over
Zz,
Remark. For N a multiple of p, but not a power of p, it can be shown that
ITy=plly, for an additive cellular automaton over Z, with T(x)=x+x"". In
addition, IT,,=1 in this case.

Theorem 4.1. For any N not a multiple of p, Iy|II%=p P —1, and
I\ |ITE = p*°r¢~® — 1 if T(x) is symmetric, for any additive cellular automaton over

-
The period I1, divides IT% if
[T(x)]**'=T(x) mod(x"—1). 4.2)
Taking

T(x)= Z o;x",

Eq. (A.3) yields
[T =3 ax?® P =F ax"=T(x) mod(x"—1),

since o?* = amod p and p°™¥¥® =1 mod N, and the first part of the theorem follows.
Since x”*"*”’ =x*!modp, Eq. (4.2) holds for

H?\; =psordN(p)_ 1

if T(x) is symmetric, so that T(x)=T(x"').

This result generalizes Theorem 3.5 for the particular k =2 cellular automaton
considered in Sect. 3.

Table 1 gives the values of ITy for all non-trivial additive symmetrical cellular
automata over Z, and Z,. Just as in the example of Sect. 3 (given as the first
column of Table 1), one finds that for many values of N not divisible by p

My =porv® 1, (4.3)

When p=2, all exceptions to (4.3) when T(x)=x+x"" are also exceptions for
T(x)=x+1+x""' [19]. We outline a proof for the simplest case, when N is
relatively prime to 6 (as well as 2). Let ITy(x + x ') be the maximal period obtained
with T(x)=x+x ", equal to the minimum integer 7 for which

(x+1)2"=x" d<x~_l> (4.4)
X =X mo x+1 : X

We now show that ITy(x+x"!') is a multiple of the maximum period
ITy(x+1+x"1') obtained with T(x)=x+ 1+ x~'. Since the mapping x—x> is a
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homomorphism in the field of polynomials with coefficients in GF(2), one has

xN—1
3+1)?"=x3" m d( >
(x ) x © x+1

for any 7 such that IT,(x + x ~!)|n. Dividing by Eq. (4.4), and using the fact that N is
odd to take square roots, yields

¥+ x¥—1
<x+1> =X mod<x+1> 4.5)

. x*+1
for any n such that ITy(x+x~)|n. But since x + 1 +x '=x""1 < ] >, Eq. (4.5)
X

is the analogue of Eq. (4.4) for T(x)=x+1+x"?, and the result follows.
More exceptions to Eq. (4.3) are found with p=3 than with p=2.

Lemma 4.4. A configuration A(x) is reachable in the evolution of a size N additive
cellular automaton over Z,, as described by T(x) if and only if A(x) is divisible by
A (x) =N -1, T(x)).

Appendix A.A gives conventions for the greatest common divisor
(A(x), B(x)).
If AY(x) can be reached, then
AV(x)=T(x)A?(x) mod(xN—1)
for some A©(x), so that
(x¥N=1)] AD(x) —T(x)A9(x) .
But A,(x)|x"—1 and A,(x)/T(x), and hence if A*)(x) is reachable,
A(x)| AV(x). (4.6)
We now show by an explicit construction that all A)(x) satisfying (4.6) in fact have
predecessors A®(x). Using Eq. (A.10), one may write
A1) =r(x)T(x) + &(x) (¥ — 1)
for some dipolynomials r(x) and &(x), so that
A(x)=r(x)T(x) mod(x¥—1).

Then taking AV(x)=A,(x)B(x), the configuration given by the polynomial
obtained by reducing the dipolynomial r(x)B(x) satisfies

T(x)r(x)B(x)=A,(x)B(x)=AM(x) mod(x¥—1)
and thus provides an explicit predecessor for A?)(x).
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