Analytical and Empirical Mathematics with Computers*

Stephen Wolfram
The Institute for Advanced Study, Princeton NJ 08540.

(June 1985)

Some of the practical, methodological and theoretical implications of computation for
the mathematical sciences are discussed.

Computers are becoming an increasingly significant tool for research in the mathematical sci-
ences. This paper discusses some of the fundamental ways in which computers have and can be used to
do mathematics.

Computer-aided mathematical calculation [1]

The advent of electronic calculators made it easy to do arithmetic by computer, and made loga-
rithm tables and the like obsolete. Now computer hardware is becoming powerful encugh to be able to
do not only arithmetic, but all kinds of conventional mathematics. But to realize this capability a com-
puter language is needed. The language should be as close as possible to conventional mathematics, and
should be able to incorporate as much mathematical knowledge as possible. Through its use,
mathematical handbooks and tables of integrals should eventually become as obsolete as logarithm
tables.

The language should be general, so that it can handle all kinds of mathematics. It should be
interactive so that simple calculations are quick to do. It should be extensible, so that it can learn new
mathematics. It should be efficient and heavy duty, so that it is able to do big calculations. And finally,
it should be portable, and be able to run without significant change on many different kinds of comput-
ers.

There are numerical computer languages, such as FORTRAN, BASIC, APL and C. The intrinsic
data types in these languages are numbers, or arrays of numbers. But mathematical calculations involve
higher-level objects, such as algebraic formulae (say x¥*~3xa®). So to be able to handle many mathemati-
cal calculations one needs a language capable of symbolic manipulation of such objects.

Several ‘‘computer algebra’’ systems have been constructed. The prime examples are REDUCE
and MACSYMA. The emphasis of these systems is on algebraic manipulation, involving calculations
with polynomials and other algebraic objects. But to handle much of the mathematics that arises in

* Work supported in part by the U.S. Office of Naval Research under contract number N00014-85-K-0045.

practice, one needs a system with a more general basic structure. One needs a true general program-
ming language for mathematical computation.

It was with this in mind that I designed the SMP language. SMP was first implemented in 1979-
1981, in about 120000 lines of C code. It represents a general interactive system for mathematical com-
putation. It incorporates a core of fundamental mathematical knowledge; new objects and operations can
be defined in the SMP programming language. In addition, the SMP system includes such facilities as
graphics and numerical C and FORTRAN code generation. There is also an expanding library of exter-
nal files containing programs for specific applications.

FI[1]:: Ex[(x=1)t3 (x+2)+2]

2 3 4 5
#o[1]: -4 4+ 8x — x =5 x + x + x
#1[2]:: Fac[%]
3 2
§o0[2]: (=1 + x) (2 + x)

FI[3]:: Ar[4,f]
fo[3]: §f01].7(2],.7[3].f[4]}
#I1[4]:: Ar[5.%11/Prime[$1]]

fol4]: {1/2,2/3,6/5,24/7,120/11}

F1[5]:: N[Log[%,2]]

#0[5]: §{-1,-0.584963,0.263034,1.77761,3.44746}

fF1[6]:: Ar[§{3,3} ,N[Psi[$1,$2]]]

#0[6]: §§-0.577216,1.64493,-2.40411},§0.422784,0.644934,-0.404113},

§0.922784,0.394934,-2.154113}}
#FI1[7):: Z-x Ar[§3,31]
#0[7]: {11-0.577216 - x,1.64493,-2.40411},{0.422784,0.644934 — x,-0.404113},
§0.922784,0.394934,-0.154113 - xi}
#1[8]:: Det[x]
#o[8]: 0.323819 - 2.3780@8x
+ (-0.695452 + (-0.577216 — x) (0.644934 - x)) (-0.154113 — x)
#I1[9]:: Ex[%]

#0[9]: ©.488368 — 1.29992x - 0.0863945 B x
#1[10]:: N[Sol[%=0,x]]

#o[10]:+ §x => -0.212347 + 1.182581,x -> —-0.212347 - 1.182581,x -> ©.3383}
#FI1[11]:: Ar[10,xt$i-1]

2 3 4 5 6 7 4 8
go[11]: f=1 4+ x,=1 + x ,—=1 + x ,=1 + x ,=1 + x ,-1 + x ,=1 4+ x ,—-1 + x

9 1@
-1 4+ x ,-1 + x }

#1[12]:: Map[Fac,%]

2
§o[12]: f=1 + x,(=1 + x) (1 4+ x),(-1 + x) (1 + x + x),
2 3

2
(-1 + x) (1 + x) (1 + x),(-1 + x) (1 +x+x +x + x),

2 2
(=1 + x) (1 + x) (1 = x+ x) (1 + x+ x),
(-1 + x) (1 + x4+ x +x +x +x + x),

2
(=1 + x) (1 4+ x) (1 +x) (1 +x),

(=1 + x) (1 + x + xz) (1 + x3 + xs).
(=1 4+ x) (1 4+ x) (1 - x + x2 - x3 + x4)
= (1 + x + xz + x3 + x4)}
#I1[13]:: Map[Len,%]
#0[13]: §2,2,2,3,2,4,2,4,3,4}
#I1[14]:: Pos[4,%]

fo[14]: {163,181, {103}
FI[15]:: <XStat

#I[16]:: Mean[013]
fo[16]: 14/5
f1[17]:: sp[e13]
#0[17]: e@.918937

Figure 1. A sample dialogue with SMP.

Figure 1 shows an example of a dialogue with SMP, in which SMP is used much like a symbolic
mathematical calculator. The SMP language is designed to be as close to conventional mathematical
notation and usage as possible. It is strongly based on pattern matching.

The command a:x-1 assigns the symbolic expression x-1 to be the value of the symbol or ‘‘vari-
able’’ a. So wherever a appears, it is replaced by the expression x-1. Now the assignments v[2]:x and
v[3]:y define values for components of the list v. With these assignments the object v, which can be
considered as a vector or array, is defined to have value {[3]:y,[2]:x}. Making the assignment v[p]:x+2
specifies a value for the element of v with symbolic index p. The value will be used whenever the
literal expression v[p] appears. But no definition has been given for an expression like v[q]. To define a
value for all “‘projections’” of v, one makes the assignment v[$x]:$x"2. This specifies that the value of
v when indexed with any expression represented by the ‘‘generic symbol’’ $x is the square of that
expression. The assignment can thus be considered a definition for the ‘‘function’’ v. The notation
makes it clear that a function can be viewed as an array with a continuous index. SMP always uses
more specific definitions for a particular expression in preference to more general ones, Thus v[p] is
replaced by x+2, but v[q] becomes q~2.

SMP includes a sophisticated pattern matcher, which makes it possible to implement complex
transformation rules for patterns. So for example the definition Acos[Sqrt[1-$x"2]] : Asin[$x] specifies
a simplification rule for inverse trigonometric functions. In general one can specify rules for mathemati-
cal functions and so on much as they are given in books of tables. Figure 2 shows an example.

SBer_: Ldist

Ber[@] :

1

Ber[$n_=Natp[($n-1)/2],0] : @

SBer[1]:
SBer[2]:

SBer[3]:
SBer[4]:
SBer[5]:
SBer[6]:

SBer[7]:
SBer[8]:
SBer[9]:
SBer[9]:
SBer[10@]:

SBer[11]:

SBer[12]:

SBer[13]:

SBer[14]:
SBer[15]:
SBer[16]:
SBer[17]:

SBer[18]:

SBer[19]:

Ber[$n] -> —-Sum[Comb[$n+1,k] Ber[k], k, @, $n=1] / ($n + 1)

Ber[$n,$x+$$y] ——> Sum[Comb[$n,m] Ber[m,$x] $$y+t($n-m),m,0,$n]
/*R: MOS p. 25 s/

Ber[$n_=Natp[$n].,@] -> Ber[$n]
Ber[$n_=Natp[$n],1/2] -> —=(1-2¢(1-$n))Ber[$n]
Ber[$n_=Natp[$n].1/4] => (-1)1$n Ber[$n,3/4]

Serln [T o g0 1St Bl

Ber[$n_=Natp[$n/2],5/6] -> Ber[$n,1/6]

Ber[$n_=Natp[$n/2],1/6] => 1/2 (1-21(1-$n))(1-31(1-$n))Ber[$n]
Ber[$n_=Natp[$n],1-$x] => (=1)t$n Ber[$n,$x]
Ber[$n_=Natp[$n],$x] => (=1)t$n (Ber[$n,-$x]+$n (=$x)1($n-1))

Sum[$m+$n,$m,1,$N] => 1/($n+1) (Ber[$n+1,$N+1] = Ber[$n+1J)
/*R: MOS p. 26 s/

Ber[$n_=Natp[$n].$x] —> Ber[$n.$x+1] = $n $xt($n-1)
/%R: MOS p. 26 +/

Sum[Comb[$n_=Natp[$n],$m_=Natp[$m=1]] Ber[$m.$x].%m,0,$n=1] —>\
$n $xt($n-1)
/*R: MOS p. 26 s/
[$m 1]] —> $mt ($n=1)\
m}

m—
/-R MOS p. 26 s/

Ber[$n_=Natp[$n],$x $m_=Natp
Sum[Ber $n]($x + 1/3%

/** Bernoulli numbers ss/

Ber[$n,@] -> Ber[$n]
Ber[$n,1] => Ber[$n]
Ber[$n_=Natp[$n/2-1/2]] : @
/*R: MOS p. 27 =/

Ber[$n_ -NotpE$n/2]] -—> 2(- 1)f($n/2+1) $nis\
Sum[(2 Pi m)t(-%$n),m,1,Inf]
/*R: MOS p. 27 =/
Ber[$n_=Natp[$n/2]] —=> 2(=1)+($n/2+1)(2 Pi)t(=%$n) $nl=\
Zeta[$n]
/* MOS p. 28 =/

Ber[$n_=Natp[$n/2-1]] -=> -$n Zeta[1-$n]
/* MOS p. 28 =/

_XBer[Loaded]:1

Figure 2. An SMP external file containing some relations concerning Bernoulli polyno-

mials.

The core of SMP incorporates a substantial body of mathematical knowledge and techniques. At
the simplest level, it includes over 200 mathematical functions, covering for example all the standard
special functions of mathematical physics (hypergeometric functions, elliptic functions, and so on). It
incorporates many standard mathematical operations, including polynomial manipulation (expansion,
factorization, etc.), equation solving (linear, polynomial, etc.), calculus (differentiation, integration, etc.)
and series expansion (power series, rational approximations, continued fractions). A central part of
many of these mathematical operations is simplification of expressions to canonical form. So for exam-
ple both y+x+x+a and x+y+a+x are transformed to the canonical form a+2x+y. The derivative D[f[x],x]
is transformed to the canonical form D([f[#1],{#1,1,x}] which displays explicitly the single
differentiation with respect to a dummy variable #1 followed by evaluation at #1:x. This canonical form
makes possible immediate definition of symbolic derivatives. So for example D[f[$x],{$x,1,$y}] : g[$y]
defines the derivative of f to be g. With this definition, the standard pattern matching process transforms
D[f[x"2]+f[3x],x] to 2x g[x] + 3g[x].

To allow for general mathematical operations, SMP is able to perform not only standard
mathematical operations, but also purely structural operations on symbolic expressions. Expressions can
be treated either as symbolic tree structures, or can be manipulated by essentially graphical means. SMP
includes many list manipulation primitives, covering for example the capabilities of APL. For example,
Ar[list specification,element specification] creates lists of particular structure and with particular ele-
ments. Thus Ar[4,f] yields the four-element list {f[1],f[2],f13],f[4]}, while Ar[{2,2},g] yields the 2x2
matrix {{g[1,1],g[1,2]},{gl2,1],g(2,2]}}. SMP includes a wide range of matrix manipulation functions.
Ar can also be used to create higher rank tensors. So for example a general definition for the n-
dimensional Levi-Civita (totally antisymmetric) tensor can be given simply as Levi[$n_=Natp[$n]] :
Ar[Ar[$n,$n],Sig], where $n_=Natp[$n] represents only expressions that satisfy the natural number
predicate, and Sig signifies the signature function.

The definition of Levi just given is an example of a program in SMP. SMP has a wide range of
programming constructs: its symbolic nature makes it substantially richer than numerical languages.
SMP programs are usually built up interactively, with individual functions tested before being combined
with others. This is made possible by the fact that any intermediate data corresponds to a legal SMP
expression, which can be input or output like any other. And the powerful primitive functions of SMP
are arranged to have expressions input and output in very standard forms, making them easy to string
together into programs. Typical SMP programs make extensive use of pattern matching. Rather than
having extensive conditional statements, they consist of a sequence of definitions to be used when they
apply - a form much closer to that found in mathematical handbooks.

The input and output syntax of SMP can be defined by the user so as to be as close as possible to
conventional notation. Two- and three-dimensional graphical output can also be obtained. The graphs
are stored internally as symbolic expressions, and so can be manipulated for example by the same struc-
tural operations as are used for standard mathematical expressions.

Another capability of SMP, not directly linked to symbolic manipulation, but extremely significant
in practice, is the ability to convert functions defined in SMP into C or FORTRAN programs which can
then in turn be loaded into an SMP job. This capability makes it possible to write symbolic programs
which can create programs needed for efficient numerical computation.

The kernel of SMP contains a core of basic mathematical knowledge. But the ultimate power of
SMP lies in the ability to create programs for a wide range of mathematical problems. There is an
expanding library of external files which contain definitions for particular applications. These files are
indexed with a database system which uses keywords based on standard English language phrases.
There are already several hundred external files, which serve for example to define new mathematical
functions, specify relations and simplification rules for functions, catalogue mathematical, physical and
other data, and to implement a wide variety of mathematical definitions and algorithms. With time, one
can expect that much of the knowledge now found in mathematical handbooks can be put in this form,
and accessed through SMP.

Experimental mathematics [2]

An increasingly important application of computers is in doing experiments on mathematical sys-
tems. Using a computer, one can find out how a mathematical system behaves, even though with con-
ventional mathematical techniques one cannot carry out a complete analysis. (Nevertheless, having
found evidence that a certain mathematical fact is true, it may be possible to prove it using conven-
tional mathematical techniques.)

Probably the most significant consequence of the experimental mathematics method is that it is
making possible the investigation of many complex systems hitherto inaccessible to theoretical study. It
is central to such fields as dynamical systems theory.

As one example of experimental mathematics, I discuss a class of systems called cellular auto-
mata that I have studied extensively. These are mathematical systems whose microscopic construction is
very simple, yet whose overall behaviour can be highly complex. They probably capture the essential
mathematical mechanisms by which complexity is generated in many natural systems.

. (i i A
2

Figure 3. Patterns generated by some simple cellular automata (with two possible
values for each site, and nearest-neighbour rules).

In the simplest case, a cellular automaton consists of a line of sites, each with say two possible
values. The values are updated in a sequence of discrete time steps according to a fixed rule that
depends on neighbouring values. Figure 3 shows some examples of patterns produced in this way. Con-
siderable complexity is evident. But a number of definite features, such as self similarity, are seen.
Almost all of these features were discovered using experimental mathematics, as a result of explicit
computer simulations.

Cellular automata provide models for many physical, biological and other systems. They can be
considered for example as approximations to partial differential equations. Not only is a discrete lattice
taken in space and time, as in standard numerical analysis, but in addition discrete values are assumed
for the variables at each site. Just one or two bits of information are included at each site, rather than
the 32 or 64 bit numbers commonly used in the standard numerical analysis approach on digital com-
puters. Local averages must be performed to find continuum quantities such as fluid density. The cellu-
lar automaton approach to a problem like fluid flow can be viewed as intermediate between molecular
dynamics, in which very many molecules must always be averaged over to obtain a result, and the con-
tinuum partial differential equation approach, which gives directly specific results for continuous param-
eters.

An important advantage of cellular automaton models is that they can be implemented very
efficiently by the forthcoming generation of massively parallel computers. The architecture of such
computers is close to the architecture of cellular automata, and apparently also to the ‘‘architecture’ of
many physical systems.

Computation theory perspectives [2]

Computers not only provide practical tools for mathematical science, but also suggest new con-
ceptual approaches that can be taken. Cellular automata and other models for physical systems can
themselves be considered as computational systems, which process information given as initial condi-
tions to yield final state output. One can use ideas from the mathematical theory of computation to
develop principles for the overall behaviour of complex physical systems.

One question which can be addressed by computation theory methods is the fundamental basis for
experimental mathematics. The outcome of the evolution of a physical system can always be deduced
by experimental observation, or by explicit simulation, as in the experimental mathematics method. But
there remains the question of whether it is, in principle, always possible to find a short-cut predictive
procedure that obviates the need for explicit simulation.

All predictions must be made by some form of computer. But the system itself can be considered
as a computer. Effective prediction is only possible if the predicting device can outrun the system itself,
essentially by performing a more sophisticated computation. However, there is increasing evidence that
many physical systems can act as universal computers, as powerful in their computational capabilities
as any computer built from physical components can be. In such cases, the behaviour of the system can
indeed in general be found essentially only by explicit simulation: the evolution of the system is “‘com-
putationally irreducible’’,

Figure 4. Evolution of a cellular automaton that is thought to be computationally ir-
reducible, so that its outcome can essentially be found only by explicit simulation,

There are in fact many systems, even with rather simple construction, which seem to be computa-
tionally irreducible. Cellular automata provide many examples, one of which is shown in figure 4. Con-
ventional theoretical physics has tended to concentrate on computationally reducible systems (such as

the two-body problem) for which exact mathematical formulae can be derived. But one suspects that the
vast majority of complex systems are computationally irreducible. And for these systems explicit simu-
lation following the experimental mathematics method is not only convenient, but actually necessary as
a matter of principle.

As one further example of the application of computation theory to physics, I mention a problem
with which I have recently been concerned: What are the basic mathematical mechanisms for the
apparent randomness in such phenomena as turbulent fluid flow? One theory is that random behaviour
results from amplification of external noise introduced through boundary conditions or thermal fluctua-
tions. Another related possibility, extensively investigated in dynamical systems theory, is that the flow
is sensitively dependent on in its initial conditions. Most arbitrarily-chosen initial conditions, it is
argued, involve real numbers whose digit sequences are random, and are progressively ‘‘excavated’’ by
the evolution of the system. However, as examples of cellular automata (such as those of figure 3)
clearly show, very complicated and seemingly random behaviour can be generated even with simple ini-
tial conditions. This phenomenon is analogous to the process of pseudorandom number generation, in
which a formula applied to a simple seed produces a sequence of apparently random digits. It is indeed
common for a comparatively simple mathematical process to yield a sequence that seems random: the
digits of 7 or V2 are examples.

In general one suspects that the evolution of many complex physical systems corresponds to a
sufficiently sophisticated computation that it “‘encrypts’’ the initial conditions to produce output indis-
tinguishable from random, at least in practical physics experiments. The phenomenon of turbulence
could then be understood in computation theory terms.

Notes

1. See S. Wolfram, “‘Symbolic mathematical computation’’, Commun. ACM 28 (1985) 390. For
further information on SMP, contact Computer Mathematics Group, Inference Corporation, 5300
W. Century Blvd., Los Angeles 90045 (213-417-7997).

2. See S. Wolfram, ‘‘Computer software in science and mathematics’’, Sci. Amer. 251 (September
1984) 188. For information on cellular automata, see S. Wolfram, ‘‘Cellular automata as models
of complexity’’, Nature 311 (1984) 419. For more technical discussion of computation theory
applied to physics, see S. Wolfram, ‘‘Undecidability and intractability in theoretical physics’’,
Phys. Rev. Lett. 54 (1985) 735; S. Wolfram, “‘Origins of randomness in physical systems”’, Phys.
Rev. Lett., to be published.

