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The generation of an excess of baryons over antibaryons in the very early universe due to CP -
and B-violating interactions is described. The Boltzmann equation is used to perform detailed
calculations of the time development of such an excess in several simple illustrative models. Com-
plications encountered in applications of the results to specific models are discussed.

1. Introduction

Theories in which quarks and leptons are treated in a unified manner often lead naturally to
the speculation that there should exist interactions which violate baryon and lepton number.
The rather stringent limit ( >∼ 1030 yr) on the proton lifetime suggests that such interactions, if
present, must be mediated by very massive particles (with m >∼ 1014 GeV). A null result in the
forthcoming generation of searches for proton decay could rule out the detailed predictions of
the present generation of models, but could never provide an ultimate proof for the absence of
baryon number (B) violation. For further information on B-violating interactions, one must
forsake terrestrial experiments, and rely on indirect evidence from the early universe. According
to the standard hot big bang model for the early universe, temperatures at sufficiently early
times should have been high enough to overwhelm suppressions from large intermediate masses,
rendering the rates for any B-violating reactions comparable to those for B-conserving ones.

If baryon number and the various (µ, e, . . .) lepton numbers were absolutely conserved by all
possible interactions occurring in the early universe, then the total baryon and lepton numbers
of the present universe must simply reflect their apparently arbitrarily imposed initial values.
A plausible guess would be that the initial total baryon and lepton numbers were exactly zero
(as the total electric charge appears to be). However, if this is to be viable some mechanism
must exist which serves either to separate baryons and antibaryons or to hide antibaryons in the
universe, since otherwise nearly all baryons should have annihilated away at temperatures above
about 50 MeV in the early universe, and the present observed mean matter density, corresponding
to nB/nγ � 10−9, would not be present. The fundamental prediction of models in which baryons
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and antibaryons are separated in the universe is the existence of antimatter galaxies. While there
is quite convincing evidence against the presence of antimatter within our own galaxy (mostly
based on the absence of obvious annihilation products), the constitution of other galaxies cannot
definitely be ascertained. There is, however, an apparently insuperable theoretical difficulty
with baryon-antibaryon symmetric models for the universe: the separation must have acted at
times <∼ 0.1 sec (T >∼ 50 MeV) in order to prevent complete annihilation, but at these times the
processes of separation cannot yet have acted over regions containing more than about 1056

particles (∼ 0.1M�), since a light signal could not by that time have traversed a larger distance.
If B-violating interactions do occur at very high energies, the present baryon number of the

universe could no longer be specified simply as an initial condition. In fact, the presence of such
interactions should serve to destroy all but perhaps a small fraction of any initial baryon number
(see sect. 4), and insufficient baryons would have survived to explain the observed nB/nγ � 10−9.
If no further effects occurred, then models involving appreciable B violation at very high energies
would presumably be in disagreement with the standard cosmological model. However, if C and
CP invariances are also violated in B-violating reactions, it is possible that a calculable baryon
excess may be generated after any initial baryon excess has been erased, thus allowing large B
violation at high temperatures without inconsistency with the standard hot big bang model of
the early universe. Nevertheless, since CPT invariance must remain intact, CP violation can
have no effect unless a definite arrow of time is defined (see subsect. 2.1). In thermal equilibrium
no preferred time direction exists. However, the expansion of the universe may result in small
deviations from thermal equilibrium, which allow an excess of baryons over antibaryons to be
generated by the action of B-, CP -violating interactions. The relaxation time necessary to regain
true equilibrium in which the baryon asymmetry has been destroyed again may increase faster
than the age of the universe, thus freezing the asymmetry. A model along these basic lines was
considered by Sakharov in 1966 [2], and since the development of grand unified gauge theories
in which B violation is rampant, the generation of a baryon excess in the early universe has
been discussed extensively [3,4,5,6,7,8]. In this paper we perform a detailed calculation of the
development of a baryon excess in several simple illustrative models. Sect. 2 introduces the
models, and derives Boltzmann equations for the time evolution of the number densities of the
various particles involved. In sect. 3 we discuss the solution of these equations in the early
universe, and find that for plausible choices of parameters, numerical solutions are obligatory.
The final results depend sensitively on the parameters; the observed nB/nγ should therefore place
interesting constraints on models for the very early universe and the interactions occurring in it.
The final nB/nγ produced in any given model is always proportional to an unknown CP violation
in super-high-energy interactions. The origin and magnitude of this CP violation is probably
unconnected to that observed in the K0 system. Nevertheless, since there is always an upper
limit to CP -violating phases, any model involving B violation which cannot generate sufficient
nB/nγ even with maximal CP violation must presumably be considered in disagreement with the
standard cosmology. The methods developed in this paper are easily generalized to an arbitrary
model (see subsect. 2.4); in a forthcoming work we shall describe the constraints which result [29].

In grand unified models where the µ, τ “families” are treated as simple replications of the lowest
e family, it is inevitable that cosmological mechanisms which yield a net baryon number (and
hence e number) in the universe should also generate net µ, τ asymmetries of the same magnitude.
Such an asymmetry in massless ν̄τ , ν̄µ number densities would, however, be quite negligible
(O(10−9)) and presumably unobservable. However, the same asymmetry should also exist for
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possible more massive absolutely stable replications (their masses are irrelevant if they are much
smaller than the temperature ∼ 1015 GeV at which the asymmetries must be generated). The
observed deceleration parameter for the universe suggests that the mean energy density does not
exceed that observed in nucleons by more than about an order of magnitude. Thus there cannot
exist absolutely stable particles much heavier than the proton in the concentrations suggested
by grand unified models with the mechanism for baryon asymmetry generation described below.
This constraint strengthens existing limits on neutral and charged heavy leptons and hadrons
derived previously without grand unified models [13].

2. Basic formalism

2.1. Introduction

Let M(i → j) be the amplitude for a transition from a state i to state j, and let ı̄ be the state
obtained by applying a CP transformation to i. Then the CPT theorem (the validity of which
is necessary to justify use of quantum field theory) implies that

M(i → j) = M(j̄ → ı̄), (CPT invariance).(2.1.1)

CP invariance (and hence, by CPT , T invariance), when valid, demands

M(i → j) = M(̄ı → j̄) = M(j → i), (CP invariance).(2.1.2)

The requirement of unitarity (that the probabilities for all possible transitions to and from a
state i should sum to one) yields1∑

j

|M(i → j)|2 =
∑

j

|M(j → i)|2 , (unitarity).(2.1.3)

But from (2.1.1) (the sum over j includes all states and their antistates)2∑
j

|M(i → j)|2 =
∑

j

|M(j → ı̄)|2 =
∑

j

|M(j → i)|2 , (CPT + unitarity).(2.1.4)

In thermal equilibrium (and in the absence of chemical potentials corresponding to non-zero
conserved quantum numbers) all states j of a system with a given energy are equally populated3.
Eq. (2.1.4) then shows that transitions from these states (interactions) must produce states i
and their CP conjugates ı̄ in equal numbers. Thus no excess of particles over antiparticles (and
hence, for example, a net baryon number) may develop in a system in thermal equilibrium, even
if CP invariance is violated. (A restricted form of this result was given in ref. [5].)

From eqs. (2.1.1) and (2.1.3) one finds∑
j

|M(i → j)|2 =
∑

j

|M(̄ı → j)|2 , (CPT + unitary),(2.1.5)

implying that the total cross section for interactions between a set of particles and their CP
conjugates are equal, and that the total decay rate of a particle and its antiparticle must be equal.
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(CPT invariance alone implies the equality of the elastic scattering cross sections |M(i → i)|2 =
|M(̄ı → ı̄)|2 .) However, the corresponding result

|M(i → j)|2 =| M(̄i → j̄) |2≡ |M(j → i)|2 , (CP invariance),(2.1.6)

for specific final states requires CP invariance (e.g., [10]). Thus if the interaction inducing the
decay of a particle (say X) violates CP invariance, then the decay of a system containing an
equal number of X and X̄ can result in unequal numbers of; say, b and b̄. Note that for a system
with only two states, unitarity gives |M(1 → 1)|2 + |M(1 → 2)|2 = |M(1 → 1)|2 + |M(2 → 1)|2
so that the result (2.1.6) always holds.

Above, we argued that in thermal equilibrium, no excess of particles over antiparticles may
develop. In addition, any pre-existing excess tends to be diminished by interactions: eq. (2.1.5)
shows that the total cross sections for the destruction of the states i and ı̄ are equal. Hence, if
there exist, say, more i than ı̄, then the rate of i destruction is larger than the rate for ı̄ destruc-
tion. Moreover, eq. (2.1.5) implies that in thermal equilibrium i and ı̄ are produced in equal
numbers. Thus, interactions tend to destroy any excess of, say, i over ı̄ in thermal equilibrium.
According to Boltzmann’s H theorem (which holds regardless of T invariance, as discussed in
appendix A) any closed system will evolve on average in the absence of external influences to a
state in which all particles not carrying absolutely conserved quantum numbers are distributed
equally in phase space. No difference between the densities of any species of particles and their
antiparticles may survive (unless they are distinguished by absolutely conserved quantum num-
bers). However, as discussed in appendix A, the expansion of the universe adds extra terms to
the Boltzmann transport equation which invalidate the H theorem if some participating particles
are massive. The expansion of the universe may therefore prevent the achievement of complete
thermal equilibrium and allow a baryon excess to be generated: the relaxation time necessary to
destroy the excess often increases faster than the age of the universe (see subsect. 3.2) and hence
a net baryon number may persist.

CP invariance requires hermiticity of the transition matrix T
∼

= i(1∼
−S∼

), and in terms of the

T∼
matrix the CP -invariance constraint (2.1.6) becomes

|T∼ ij |2 = |T∼ ı̄j̄|2 = |T∼ ji|2 , (CP invariance).(2.1.7)

The unitarity requirement S∼
†S∼

= S∼S∼
† = 1 [which gave eq. (2.1.3)] is

T∼ ij − T∼
∗
ji = i

∑
n

T∼ in(T∼
†)nj , (unitarity).(2.1.8)

Thus unitarity constrains possible violations of CP invariance, and from eq. (2.1.8) one finds
that deviations from (2.1.7) must obey

|T∼ ij |2 − |T∼ ji|2 =

∣∣∣∣∣∣i
(∑

n

T∼T∼
∗
)

ij

+ T∼
∗
ji

∣∣∣∣∣∣
2

− |T∼ ji|2

= −2Im

⎡
⎣(∑

n

T∼T∼
+

)
ij

T∼
∗
ji

⎤
⎦+

∣∣∣∣∣∣
(∑

n

T∼T∼
+

)
ij

∣∣∣∣∣∣
2

.(2.1.9)
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If the rates of transitions i → j are governed by some small parameter, say α, so that |M(i → j)|2 =
O(αk), then eq. (2.1.9) shows that any CP -violating difference |M(i → j)|2 − |M(j → i)|2 must
be at least of order αk+1. (Regardless of perturbation theory, one may show that CP -violating
effects in any scattering process with high c.m. energy

√
s are suppressed by O(1/ log(s/s0)) [for

decays s → m2].) Hence, CP -violating effects must arise from loop diagram corrections to the
processes i → j. In appendix B, it is shown that these corrections must also involve B-violating
interactions [11]. In addition, the intermediate states in the loops must correspond to physical
systems n (so that the Feynman amplitudes have absorptive parts due to s-channel discontinu-
ities), in order to contribute to (2.1.9). Thus even if the intermediate particles have CP violating
complex couplings, they can produce a violation of (2.1.6) only when their masses are sufficiently
small to allow them to propagate on their mass-shells in intermediate states. (Note that, as
discussed in subsect. 2.4, when absolute conservation laws allow a particle to mix with its own
antiparticle [as for K0, K̄0], CP -violating mixing may occur without physical intermediate states.)

We assume that the early universe consists primarily of an effective number ξ (see appendix
C) of massless particle species (none forming highly degenerate Fermi gases) and we usually take
it to be homogeneous and isotropic. Then the Robertson-Walker scale parameter R for the early
universe (which corresponds to its radius of curvature) should expand with time (t) according to
(h = c = k = 1) (e.g., [9])4

1
R

dR

dt
�
(

8πρ(t)
3

)1/2 1
mP

,(2.1.10)

where ρ(t) is the energy density of the universe, and mP is the Planck mass

mP
.= G−1/2 � 1.2 × 1019 GeV = 1.2 × 104ΠeV.(2.1.11)

In keeping with SI conventions, we take 1 Π eV ≡ 1TTeV ≡ 1024 eV ≡ 1015 GeV.
Let fi(p, r, t) be the density of a particle species i in phase space (i.e., the number of i

per volume element d3p d3r). The assumptions of homogeneity and isotropy imply fi(p, r, t) =
fi(p, t) = fi(p, t); we usually do not display explicitly the dependence of fi(p) on time. We denote
the number of i particles per unit volume (of configuration space ) by

ni = gi

∫
d3p

(2π)3
fi(p),(2.1.12)

where gi is the number of accessible spin states for the species i(gi = 2si + 1 for mi > 0; gi = 2
for mi = 0, si > 0; gi = 1 for mi = 0, si = 0; for particles with small mass, some spin states may
be decoupled from interactions). We shall usually make the simplifying approximation that all
particles obey Maxwell-Boltzmann statistics and have only one spin state; the small corrections
resulting the indistinguishability of the particles are discussed in subsect. 2.4. Then the massless
neutral (at least in baryon number) particles (denoted generically as γ) which comprise a large
fraction of the contents of the early universe, should be Maxwell-Boltzmann distributed at all
times due to their interactions, so that

fγ(p) = eE/T = e−|p|/T ,

nγ =
T 3

π2
,

ργ =
3
π2

T 4,(2.1.13)
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where T is their common temperature (referred to as “the temperature” of the universe). The
expansion of the universe redshifts all p like 1/R, so that T ∼ 1/R, and (dots denote time
derivatives)5

Ṙ

R
= − Ṫ

T
= (8

3πGρ)1/2 =
T 2

mP
,

mP = (1
8π)1/2mP/

√
ξ(T ) � 0.63mP/

√
ξ(T )

� 7.5 × 103/
√

ξ(T )TTeV.(2.1.14)

Only for massless particles are the equilibrium fi(p) self-similar under rescalings of p; for massive
particles the mass provides an intrinsic scale and the fi(p) change their form as the universe
expands. The expansion of the universe dilutes the number densities of all types of particles,
even in the absence of interactions, at a rate

dni

dt
= V

dV

dt
ni = −3Ṙ

R
ni.(2.1.15)

In keeping with the simple big bang cosmology we shall assume6 that all species of particles in
the universe were initially in thermal equilibrium and spread homogeneously (the gravitational
field opposing expansion must, however, remain far from equilibrium). Two effects modify this
“equilibrium” state. First, regardless of expansion, long-range gravitational forces render a homo-
geneous state unstable, and lead to clumping. (This formally tends to increase the entropy of the
universe, but in fact produces a more ordered state, eventually containing stars, etc.) Second, the
expansion of a homogeneous universe can give rise to deviations from equilibrium, some of which
may never have time to relax away. The expansion of the universe causes the momenta of all par-
ticles to redshift so that p ∼ 1/R. So long as the energy density of the universe is dominated by
ultrarelativistic particle species, the temperature of the universe will likewise redshift according
to T ∼ 1/R. The equilibrium fi(p) ∼ exp(−|p|/T ) for massless particles remain, by construction,
unchanged by this expansion (so long as homogeneity is preserved). Since the expansion of the
universe is taken to be adiabatic, leading to the energy equation d(ρR3) + p d(R3) = 0, the
retention of equilibrium distributions by massless particles shows that the entropy of a universe
initially in thermal equilibrium and composed solely of such massless particles (assumed ho-
mogeneous and with zero equilibrium chemical potentials) should remain unchanged with time.
However, as mentioned above, the equilibrium distributions fi(p) ∼ exp(−√|p|2 + m2/T for
massive particles change their form when |p| ∼ T ∼ 1/R becomes smaller than ∼ m. Several
collision times are then necessary for the actual number distributions of the massive particles
to relax into their equilibrium forms; if the rate of expansion is much larger than the rate of
interactions, then significant deviations from equilibrium may result. When massive particles are
present, therefore, the expansion of the universe is no longer reversible; deviations from ther-
mal equilibrium may occur, and in their relaxation, the entropy of the universe may increase
slightly7. (When equilibrium is destroyed by expansion, the gravitational field opposing the ex-
pansion becomes slightly closer to equilibrium; the increase in its entropy compensates the slight
decrease in the entropy of the massive particle species.) If the expansion of the universe was slow
enough, then any deviations from thermal equilibrium would eventually relax to zero. However,
in several cases, the relaxation is always prevented by expansion. One example of this effect
is in the survival of massive stable particles from the early universe [13]. At some time after
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the equilibrium number density of the massive particles starts to decrease rapidly, the rate for
annihilation reactions becomes slower than the expansion rate of the universe, and the number
of the particles is permanently frozen: the particles are so separated by the expansion that the
probability for them to interact becomes negligible. In this way, the expansion of the universe
causes the number density to deviate from its equilibrium form, and prevents its relaxation in a
finite time. The generation of a baryon asymmetry is an effect of a similar character. That B,
but not CP, violating reactions should occur only too slowly to destroy any baryon asymmetry
(deviation from equilibrium) produced placed stringent constraints on models.

2.2. A Very Simple Model

In this subsection, we describe baryon number generation in a very simple model; subsect. 2.3
treats a more complicated and more realistic model, while in subsect. 2.4 we discuss the compli-
cations of the general case.

Let b be a nearly massless particle carrying baryon number B = 1
2 and b̄ its antiparticle, with

B = − 1
2 and let ϕ be a massive particle with ϕ̄ ≡ ϕ. We allow a small violation of CP invariance

in the rates of 2 → 2 scattering processes among the b and ϕ, and consider the generation of a
net baryon number when a system initially symmetric in b and b̄ cools, as in the early universe.
We take the scattering amplitudes in the simple model to be (|M0|2 = O(α2), where α is a small
coupling constant)∣∣M(bb) → b̄b̄

∣∣2 = (1 + ζ)1
2 |M0|2 ,

|M(bb) → ϕϕ|2 =
∣∣M(ϕϕ) → b̄b̄

∣∣2 = (1 − ζ)1
2 |M0|2 ,∣∣M(b̄b̄ → bb)

∣∣2 = (1 + ζ̄)1
2 |M0|2 ,∣∣M(b̄b̄ → ϕϕ)

∣∣2 = |M(ϕϕ → bb)|2 = (1 − ζ̄)1
2 |M0|2 ,(2.2.1)

where −1 < ζ, ζ̄ < 1. This parametrization ensures the CPT -invariance constraint (2.1.5) that
the total cross sections for bb and b̄b̄ interactions should be equal. CP invariance would require
ζ = ζ̄; we shall, however, consider the CP -violating case ζ − ζ̄ = O(α) �= 0, so that, for example
|M(bb → b̄b̄)|2, |M(b̄b̄ → bb)|2 = O(α2), |M(bb → b̄b̄)|2− |M(b̄b̄ → bb)|2 = O(α3). We
assume here that the ϕ can interact only through the processes of eq. (2.2.1), but that the b, b̄
also undergo baryon-number conserving interactions (such as γb → γb or γγ → bb̄) with the
other particles in the universe. Such reactions should typically have rates O(α2) and serve to
distribute the b and b̄ in phase space in a Maxwell-Boltzmann manner. The time necessary to
attain this state of kinetic equilibrium should be much shorter than the time O(1/α3) on which
the net baryon number nb − nb̄ changes through the processes of eq. (2.2.1). Hence, at all times

fb(p) � e−(E−µ)/T ,

fb̄(p) � e−(E+µ)/T ,
nB

nγ
≡ nb − nb̄

nγ
� 2 sinh

( µ

T

)
,(2.2.2)

where µ is a baryon number chemical potential, which is changed only by B-violating processes
(in the present model, these occur on a time-scale at least O(1/α) longer than the reactions which
thermalize the b, b̄ into Maxwell-Boltzmann distributions). The fact that the chemical potentials
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in fb and fb̄ are exactly opposite is a consequence of processes such as γγ → bb̄, which maintain
bb̄ in chemical equilibrium with γγ.

The time evolution of the φ number density and of the total baryon number nB = nb − nb̄

due to the processes (2.2.1) is described by the Boltzmann transport equations8

dnϕ

dt
+

3Ṙ

R
nϕ = 2Λ34

12

[
fb(p1)fb(p2)|M(bb → ϕϕ)|2 + fb̄(p1)fb̄(p2)|M(b̄b̄ → ϕϕ)|2

−fϕ(p1)fϕ(p2)|M(ϕϕ → bb)|2 − fϕ(p1)fϕ(p2)|M(ϕϕ → b̄b̄)|2] ,(2.2.3a)

dnB

dt
+

3Ṙ

R
nB = Λ34

12

[
2fb̄(p1)fb̄(p2)|M(b̄b̄ → bb)|2 − 2fb(p1)fb(p2)|M(bb → b̄b̄)|2

+fϕ(p1)fϕ(p2)|M(ϕϕ → bb)|2 − fb(p1)fb(p2)|M(bb → ϕϕ)|2
−fϕ(p1)fϕ(p2)|M(ϕϕ → b̄b̄)|2 + fb̄(p1)fb̄(p2)|M(b̄b̄ → ϕϕ)|2] ,(2.2.3b)

where the integral operator

Λb1,b2...
a1,a2... ≡

∫
d4pa1

(2π)3

∫
d4pa2

(2π)3
· · ·
∫

d4pb1

(2π)3

∫
d4pb2

(2π)3
· · ·

×δ(p2
a1

− m2
a1

δ(p2
a2

− m2
a2

. . . δ(p2
b1

− m2
b1

)δ(p2
b2

− m2
b2

) . . .

×(2π)4δ4

⎛
⎝∑

i

pbi −
∑

j

paj

⎞
⎠

=
∫

d3pa1

2Ea1(2π)3

∫
d3pa2

2Ea2(2π)3
· · ·
∫

d3pb1

2Eb1(2π)3

∫
d3pb2

2Eb2(2π)3
· · ·

×(2π)4δ4(
∑

pbi −
∑

pai)(2.2.4)

represents appropriate integration over initial- and final-state phase space in the scattering pro-
cesses. (When Λ has only upper or only lower indices, no momentum conservation δ function is
included.) The second term on the left-hand side of eq. (2.2.3) accounts for the dilution of the
number densities due to the expansion of the universe, as in eq. (2.1.15). (A proof of its form
for Robertson-Walker metrics is given e.g., in ref. [5].) By considering

YA ≡ nA/nγ ,(2.2.5)

the explicit expansion term is removed (ẎA = ṅA/nγ −nAṅγ/n2
γ = ṅA/nγ +(3Ṙ/R)nA/nγ). The

various terms on the right-hand side of (2.2.3) represent the effects of the processes (2.2.1) (for
example, the first term on the right-hand side of (2.2.3a) accounts for the increase in the number
of ϕ due to bb → ϕϕ).

To simplify (2.2.3), we first substitute the parametrizations (2.2.1):

dYϕ

dt
=

1
nγ

Λ34
12

[{
(1 − ζ)fb(p1)fb(p2) + (1 − ζ̄)fb̄(p1)fb̄(p2)

−[(1 − ζ̄) + (1 − ζ)]fϕ(p1)fϕ(p2)}|M0(p1, p2, p3, p4)|2
]
,(2.2.6a)

dYB

dt
=

1
2nγ

Λ34
12

[{
2fb̄(p1)fb̄(p2)(1 + ζ̄) − 2fb(p1)fb(p2)(1 + ζ)
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+[(1 − ζ̄) − (1 − ζ)]fϕ(p1)fϕ(p2) − (1 − ζ)fb(p1)fb(p2)
+(1 − ζ̄)fb̄(p1)fb̄(p2)

} |M0(p1, p2, p3, p4)|2
]
.(2.2.6b)

Using the 4-momentum conservation δ function in Λ, one may write here

f(−)
b

(p1)f(−)
b

(p2) = e−(E1+E2)/T e
+

(−) 2µ/T

= f eq
ϕ (p3)f eq

ϕ (p4)e
+

(−) 2µ/T(2.2.7)

where we have defined

f eq
A (pA) = e−EA/T ,(2.2.8)

which is the phase-space distribution for a species of particles (perhaps massive) in thermal
equilibrium at temperature T. and with zero chemical potential. The total equilibrium number
density is given by (see appendix C)

neq
A =

∫
d3pA

(2π)3
f eq

A (pA)

=
∫

d3pA

(2π)3
e−EA/T =

∫
d3pA

(2π)3
exp
(
−
√

p2
A + m2

A/T

)

=
T 3

2π2

∫ ∞

xA

z
√

z2 − x2
Ae−zdz

=
T 3

2π2
x2

AK2(xA),

xA ≡ mA/T,(2.2.9)

where K2 is a modified Bessel function (see appendix C) [as x → 0, x2K2(x) → 2, and (2.2.9)
reverts to the massless result (2.1.13)]. We assume here that nB/nγ � 1, and may thus write
(2.2.7) in the form

f(−)
b

(p1)f(−)
b

(p2) � f eq
ϕ f eq

ϕ (p4)(1 +
(−)

YB).(2.2.10)

(Non-linear terms in YB for the model of subsect. 2.3 are discussed in subsect. 2.4.3.) Hence
(2.2.6) becomes

dYϕ

dt
� 1

nγ
Λ34

12[{−[(1 − ζ̄) + (1 − ζ)]fϕ(p1)fϕ(p2)

+[(1 − ζ)(1 − YB) + (1 − ζ̄)(1 − YB)]f eq
ϕ (p1)f eq

ϕ (p2)}
×|M0(p1, p2, p3, p4)|2],(2.2.10a)

dYB

dt
� 1

2nγ
Λ34

12[{[(3 + ζ̄)(1 − YB) − (3 + ζ)(1 + YB)]f eq
ϕ (p1)f eq

ϕ (p2)

+(ζ − ζ̄)fϕ(p1)fϕ(p2)}|M0(p1, p2, p3, p4)|2].(2.2.10b)

9
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The integration over the phase space available for the final momenta p3 and p4 introduces the
total 2 → 2 scattering cross sections

vσ(a1a2 → a3a4) =
1

(2Ea1)(2Ea2)

∫
d3pa3

2Ea3

∫
d3pa4

2Ea4

×δ4(pa1 + pa2 − pa3 − pa4)
(2π)2

|M(a1a2 → a3a4)|2,(2.2.11)

where v is the relative velocity of the incoming particles a1, and a2, which depends only on
Eal

+ Ea2 . Eq. (2.2.10) then becomes

dYϕ

dt
� nγ〈σ0v〉

{
2
[
1 −
(

ζ − ζ̄

2

)]
[(Y eq

ϕ )2 − Y 2
ϕ ] − (ζ − ζ̄)(Y eq

ϕ )2YB

}
,(2.2.12a)

dYB

dt
� nγ〈σ0v〉

{(
ζ − ζ̄

2

)
[Y 2

ϕ − (Y eq
ϕ )2] −

[
3 +
(

ζ + ζ̄

2

)]
(Y eq

ϕ )2YB

}
,(2.2.12b)

where 〈σ0v〉 denotes the average of the cross-section σ0v over the incoming energy distribution.
The first term in eq. (2.2.12a) is simply nγ〈σtot(ϕϕ)ν〉[(Y eq

ϕ )2−Y 2
ϕ ] and is familiar from studies of

the survival of stable heavy particles produced in the early universe [13]. The second term in eq.
(2.2.12a) contains the two small parameters ζ − ζ̄ and YB, and may usually be ignored. The first
term in eq. (2.2.12b) is approximately −nγ〈(σ(ϕϕ → bb)−σ(ϕϕ → bb̄))/σtot(ϕϕ))v〉dYϕ/dt and
accounts for the small disparity between b and b̄ production in ϕϕ annihilation. The second term
in eq. (2.2.12b) is proportional to the total cross section for baryon-number violating interactions,
and causes YB to relax towards zero when the system is in thermal equilibrium ( Yϕ = Y eq

ϕ ).
Note that the rate of baryon number generation (2.2.12b) is proportional to the deviation of the
ϕ number density from its equilibrium value; if mϕ = 0, then in the present model, the expansion
of the universe cannot alter fϕ(p) = e−p/T , and no net baryon number results [5]. (In subsect.
2.4 we discuss inhomogenities and differential heating effects which may produce non-zero baryon
number even if all particles participating directly in B-violating processes are massless.)

2.3. A Simple Model9

As in the previous model, let b and b̄ be nearly massless particles carrying baryon numbers

B = 1
2 and B = − 1

2 respectively. Let
(−)

X be some massive boson which mediates baryon-number

violating interactions. We take the decay amplitudes for the
(−)

X to be

|M(X → bb)|2 = (1 + η)1
2 |M0|2,

|M(X → b̄b̄)|2 = (1 − η)1
2 |M0|2,

|M(X̄ → b̄b̄)|2 = (1 + η̄)1
2 |M0|2,

|M(X̄ → bb)|2 = (1 − η̄)1
2 |M0|2,

(2.3.1)

where now |M0|2 is of order α. The parametrization (2.3.1) respects the CPT -invariance con-
straint (2.1.5). CP invariance would imply η = η̄, but we take η − η̄ = O(α) �= 0. Hence a state
initially containing an equal number of X and X̄ will decay, in the absence of back reactions, to
a system with a net baryon number nB � (η − η̄)1

2 (n0
X + n0

X̄
). (Back reactions can be ignored

10
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if the
(−)

X are emitted as thermal radiation into an infinite vacuum, or are concentrated into a
beam.) CPT conjugation gives the rates for the inverse decay processes

|M(bb → X)|2 = |M(X̄ → b̄b̄)|2 = (1 + η̄)1
2 |M0|2,

|M(bb → X̄)|2 = |M(X → b̄b̄)|2 = (1 − η)1
2 |M0|2,

|M(b̄b̄ → X)|2 = |M(X̄ → bb)|2 = (1 − η̄)1
2 |M0|2,

|M(b̄b̄ → X̄)|2 = |M(X → bb)|2 = (1 + η)1
2 |M0|2,

(2.3.2)

Note that if X and X̄ decay preferentially produce b (i.e., η > η̄), then according to CPT
invariance, inverse decay processes must preferentially destroy b̄. Thus, if only decay and inverse
decay are considered, a system even in thermal equilibrium cannot fail to generate a net baryon
number. (This rather relevant point has also been noted in ref. [14], but appears to have
been neglected elsewhere.) However, according to eq. (2.1.4), which follows purely from CPT
invariance and unitarity, no excess of b over b̄ can develop in thermal equilibrium. We take the

total rate for
(−)

X decay to be ∼ αmX Then eq. (2.1.9) shows that CP -violating effects in these
decays must be at least O(α2) (hence η− η̄ = O(α)). Eq. (2.1.4) applies only when summed over

all possible initial states j which can produce
(−)

i to a given order in α. Decay and inverse decay

are, however, not the only possible interactions between
(−)

X and
(−)

b to O(α2) : 2 → 2 scattering

processes, such as bb → b̄b̄ mediated by s-channel
(−)

X exchange, also occur. We show below that
after including these processes, eq. (2.1.4) is respected, and no baryon excess develops in thermal
equilibrium.

Although the X and X̄ in (2.3.1) are taken to have identical decay modes, we shall, for
simplicity ignore any mixing between them (until subsect. 2.4.4). This may be enforced by
considering two species of b (each with B = 1

2 ), and taking X → b1b1, X → b̄2b̄2, X̄ →
b̄1, b̄1, X → b2b2. The formulae below are unaffected by these distinctions. Note that, as
discussed in subsect. 2.4, the model of this section may be slightly simplified by taking X and
X̄ to be indistinguishable, so that η = −η̄, and X is an eigenstate of CP. Then CP invariance
requires |M(X → bb)|2 = |M(X → b̄b̄)|2, or η = 0. This case is exemplified by semileptonic K0

L

decay, where CP violation is revealed in Γ(K0
L → π+e−ν̄) �= Γ(K0

L → π−e+ν).

2.3.1 The
(−)

X Number Density.

In calculating the time evolution of the
(−)

X number density, we work to O(α), at which only
the decay and inverse decay processes of equations (2.3.1) and (2.3.2) contribute. In addition to

these baryon number violating interactions, the
(−)

X may also undergo baryon number conserving
interactions (such as γX → γX or γγ → XX̄) with other particles in the universe. Typically,
these processes will be O(α2), and therefore occur on a longer time-scale than the X decays we
consider. However, it is possible that the typical coupling constants involved are larger than for

the B-violating decays, or that the number of light particle species >∼O(1/α), so that
(−)

X may
undergo several B-conserving scatterings before decay. In this case, as with the b in the model

of subsect. 2.2, the
(−)

X will be brought into kinetic equilibrium before they decay, and assume a

11
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Maxwell-Boltzmann distribution in phase space, so that

f(−)
X

(px) � exp[−(E(−)
X

− µ(−)
X

)/T ].(2.3.3)

Processes such as γγ → XX̄ would lead to µX = µX̄ . The chemical potentials µ(−)
X

in eq. (2.3.3)

are in any case determined by the processes (2.3.1) and (2.3.2) in which single
(−)

X are created or
destroyed.

To O(α), the X number density evolves with time according to the equation [analogous to
(2.2.3a)]

dnX

dt
+

3Ṙ

R
nX = ΛX

12

[−fX(pX)|M(X → bb)|2 − fX(pX)|M(X → b̄b̄)|2

+fb(p1)fb(p2)|M(bb → X)|2 + fb̄(p1)fb̄(p2)|M(b̄b̄ → X)|2] .(2.3.4)

The first two terms on the right-hand side account for X decays, while the second two represent
inverse decay processes. In addition to the reactions (2.3.1) and (2.3.2) in which a net baryon

number is created or destroyed the
(−)

b also undergo baryon-conserving interactions with other
particles in the universe. These B-conserving processes (such as γb → γb) occur at a rate O(α2);

at temperatures T � mx they are much faster than any B-violating interactions mediated by
(−)

X
exchange. The relative rates of the various processes at high temperatures are discussed in sect.
4, and it seems likely that in most cases, B-conserving reactions occur with larger rates than

do B-violating ones. Hence the
(−)

b should be Maxwell-Boltzmann distributed in phase space
as in eq. (2.2.2), with their chemical potential determined by B-violating processes. Using the
momentum conservation δ function in Λ, one may then write (assuming YB � 1)

f(−)
b

(p1)f(−)
b

(p2) � f eq
X (px)(1(−)

+
YB,(2.3.5)

where, as above, f eq
X (pX) = e−EX/T is the distribution of X in thermal equilibrium at temperature

T and with zero chemical potential. On inserting eq. (2.3.5) into eq. (2.3.4), the p1 and
p2 integrations are weighted only by the matrix element and the available phase space; they
therefore yield simply the total decay rates10

Γ(A → a1a2) =
1

2EA

∫
d3pa1

2Ea1

∫
d3pa2

2Ea2

δ4(pA − pa1 − pa2)
(2π)2

|M(A → a1a2)|2

=
mA

EA
ΓR(A → a1a2) =

|M(A → a1a2)|2
16πEA

,(2.3.6)

where ΓR is the rate measured in the rest frame of the decaying A. Eq. (2.3.4) may then be
written in the form

dnX

dt
+

3Ṙ

R
nX = −

∫
d3pX

(2π)3
(fX(pX) − f eq

X (pX)){Γ(X → bb) + Γ(X → b̄b̄)}

−YB

∫
d3pX

(2π)3
f eq

X (pX){Γ(X̄ → bb) − Γ(X̄ → b̄b̄)}.(2.3.7)

12
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Performing the final pX integration, and using the parametrization (2.3.2) then gives

dYX

dt
� −〈ΓX〉{(YX − Y eq

X ) − η̄YBY eq
X },(2.3.8)

where 〈ΓX〉 denotes the total X decay rate averaged over the time-dilation factors for the decaying
particles. [In writing eq. (2.3.8) we have made the approximation that the actual X momentum
distribution does not differ from the µ = 0 equilibrium form sufficiently to affect the time-dilation
factor. This is certainly the case if thermalizing reactions occur sufficiently fast to produce an
(−)

X distribution of the form (2.3.3). Note that we assume all decaying
(−)

X to be exactly on-shell;
in practice they should have a distribution of invariant masses peaked at mX and with a width
∼ ΓX ∼ αmX

11: we make the narrow resonance approximation ΓX � mX .] Charge conjugation
(nX → nX̄ , nB → −nB, η → η̄, ΓX = ΓX̄ and mX = mX̄ so that neq

x = neq

X̄
by CPT invariance)

gives the corresponding equation for the X̄ number density

dYX̄

dt
� −〈ΓX〉{(YX̄ − Y eq

X ) + ηYBY eq
X }.(2.3.9)

It is convenient to write eqs. (2.3.8) and (2.3.9) in terms of

Y+ = 1
2 (YX + YX̄)(2.3.10a)

and

Y− = 1
2 (YX − YX̄) :(2.3.10b)

dY+

dt
� −〈ΓX〉

{
(Y+ − Y eq

+ ) +
(

η + η̄

2

)
YBY eq

+

}
,

dY−
dt

� −〈ΓX〉
{

Y− −
(

η − η̄

2

)
YBY eq

+

}
.(2.3.10c)

2.3.2 The
(−)

b Number Density.
The Boltzmann equation for the b number density in the model of equations (2.3.1) and (2.3.2) is

dnb

dt
+ 3

Ṙ

R
nb = ΛX

12

[
+fX(pX)|M(X → bb)|2 + fX̄(pX)|M(X̄ → bb)|2

−fb(p1)fb(p2)|M(bb → X)|2 − fb(p1)fb(p2)|M(bb → X̄)|2]
+Λ34

12[+fb̄(p1)fb̄(p2)|M′(b̄b̄ → bb)|2 − fb(p1)fb(p2)|M′(bb → b̄b̄)|2](2.3.11)

The first term in eq. (2.3.11) accounts for the decay and inverse decay processes X → bb,
X̄ → bb, bb → X and bb → X̄. The second term in (2.3.11) accounts for those 2 → 2 scattering
processes that are not already included as successive inverse decay and decay processes, (as
would bb → X → b̄b̄, with a real intermediate X.) The amplitude for bb → b̄b̄ due to s-channel
exchange of a single X contains two terms: a part corresponding to the propagation of an on-shell
intermediate X (which is important only when the incoming energies lie within the X resonance
curve), and, as usual, a part accounting for off-shell X exchange. [The t- and u-channel exchange

13
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diagrams at lowest order receive no contributions from physical intermediate states. Note that
processes such as b → bbb are energetically forbidden in (2.3.11).] We write

|M′(a1a2 → a3a4)|2 = |M(a1a2 → a3a4)|2 − |MRIS(a1a2 → a3a4)|2,(2.3.12)

where MRIS denotes the contribution from physical intermediate states, already included in the
first term of the Boltzmann equation (2.3.11) as successive lower-order (2 → 1 and 1 → 2)
processes.

Subtracting from eq. (2.3.11) the charge-conjugated equation for the b̄ number density, we
obtain an equation for the evolution of the total baryon number density YB = Yb − Yb̄ = (nb −
nb̄)/ny :

dYB

dt
� 〈ΓX〉{ηYX − η̄YX̄ + (η − η̄)Y eq

X − 2YBY eq
X }

− 2
ηγ

Λ34
12{e−(E1+E2)/T (|M′(b1b2 → b̄b̄)|2 − |M′(b̄1b̄2 → bb)|2)}

−2YB

ηγ
Λ34

12{e−(E1+E2)/T (|M′(b1b2 → b̄b̄)|2 + |M′(b1b2 → bb)|2)}(2.3.13)

Notice that, as mentioned above, even when the
(−)

X are in thermal equilibrium, so that YX =
YX̄ = Y eq

X the two terms on the right-hand side of this equation do not individually vanish even
when YB = 0 : the 2 → 2 scattering processes must conspire with decay and inverse decay
processes to maintain thermal equilibrium.

In the model of this section, the only B-violating 2 → 2 reactions which may occur to O(α2)
are bb → b̄b̄ and b̄b̄ → bb. But the unitarity requirement (2.1.3) then demands |M(bb →
b̄b̄)|2 = |M(b̄b̄ → bb)|2 for the total matrix elements of these processes. However, in the
|M′|2 which actually enter the Boltzmann equation (2.3.13), the part |MRIS|2, which arises
from real intermediate X exchanges already accounted for by the first term of eq. (2.3.13), has
been subtracted out. Unlike the total |M|2, |MRIS|2, (and hence |M′|2) may differ at O(α2)
between bb → b̄b̄ and b̄b̄ → bb. In the narrow-width approximation (which has already been
made in (2.3.13) by assigning the decaying X and definite mass mX) the contributions of a real
intermediate X to the process bb → b̄b̄ and b̄b̄ → bb become

|MRIS(b1b2 → b̄b̄)|2 � π

mXΓX
δ((pb1 + pb2)

2 − m2
X)

×{|M(bb → X)|2|M(X → b̄b̄)|2 + |M(bb → X̄)|2|M(X̄ → b̄b̄)|2}
=

π|M0|4
2mXΓX

δ((pb1 + pb2)
2 − m2

X)(1 − η)(1 + η̄)

= −|M′(b1b2 → b̄b̄)|2 + |M(b1b2 → b̄b̄)|2,(2.3.14a)

|MRIS(b̄1b̄2 → bb)|2 � π|M0|4
2mXΓX

δ((pb1 + pb2)
2 − m2

X(1 − η̄)(1 + η)

= −|M′(b̄1b̄2 → bb)|2 + |M(b̄1b̄2 → bb)|2.(2.3.14b)

Because of the l/ΓX ∼ l/αmX factor arising from the integral under the X resonance curve,
these terms are of order α, rather than O(α2) as expected for 2 → 2 scatterings. Using the fact
that in our model |M(bb → b̄b̄)|2 = |M(b̄b̄ → bb)|2 for the total amplitudes [in general these
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terms may have a CP -violating difference O(α3)], we may write the difference appearing in the
second term on the right-hand side of eq. (2.3.13) as

|M′(b1b2 → b̄b̄)|2 − |M′(b̄1b̄2 → bb)|2 = |MRIS(b̄1b̄2 → bb)|2 − |MRIS(b1b2 → b̄b̄)|2

� π(η − η̄)|M0|4
mXΓX

δ((pb1 + pb2)
2 − m2

X).(2.3.14c)

Then the complete second term in eq. (2.3.13) may be written in the form

− 2
ηγ

1
(2π)8

∫
d3p1

2E1

∫
d3p2

2E2

∫
d3p3

2E3

∫
d3p4

2E4
δ4(p1 + p2 − p3 − p4)

×f eq
X (p1 + p2)

π|M0|4
mXΓX

δ((p1 + p2)2 − m2
X)(η − η̄),(2.3.15)

where the X mass-shell delta function has allowed us to replace exp(−[E1 +E2]/T 2) by f eq
X (p1 +

p2). [The extra O(α3) terms which may in general appear in (2.3.15) from CP -violating loop
corrections to genuine 2 → 2 scattering processes may contain parts not proportional to f eq

X , but
these cannot be retained consistently in view of other approximations.] To simplify this we apply
the results

ΓX =
1

2mx

∫
d3pb1

2Eb1

∫
d3pb2

2Eb2

δ4(pX + pb1 − pb2)
(2π)2

|M0|2 =
|M0|2
16πmX

,(2.3.16)

and (from appendix C)∫
d3p1

2E1

∫
d3p2

2E2
f eq

X (p1 + p2)δ((p1 + p2)2 − m2
X) =

( 〈ΓX〉
ΓX

)
neq

X

2π4

mX
,(2.3.17)

so that eq. (2.3.15) becomes just

−2Y eq
X (η − η̄)〈ΓX〉,(2.3.18)

and thus elegantly cancels the first term of (2.3.13) in thermal equilibrium, as required by eq.
(2.1.4). (This seemingly miraculous result may formally be obtained by considering the sum of
double (t = ±∞) cuts in vacuum diagrams with finite temperature propogators, without treating
separately one- and two-body initial states as is done here.)

The last term of eq. (2.3.13) may be written using eq. (2.2.11) in the form

−2YBnγ〈vσ′(bb → b̄b̄) + vσ′(b̄b̄ → bb)〉,(2.3.19)

where in σ′ the contribution from real intermediate X exchange in the s-channel has been
subtracted out by replacing the full X propogator by its principal part. In addition, since
YB � 1, n(−)

b
is approximated by nγ . [No Y eq

X factor, as in eq. (2.3.18), appears here, since the

incoming c.m.s. energy is no longer constrained to be mX , and at low temperatures will be much
smaller.]

Finally, therefore, eq. (2.3.13) for the time development of the baryon number density may
be written in the simple form

dYB

dt
� 〈ΓX〉{(η − η̄)(Y+ − Y eq

+ ) + (η + η̄)Y−}
−2YB{〈ΓX〉Y eq

+ + nγ〈v{σ′(bb → b̄b̄) + σ′(b̄b̄ → bb)}〉},(2.3.20)
Y± = 1

2 (YX ± YX̄ ;
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as expected from the discussion of subsect. 2.1, the rate of baryon generation vanishes when the
system is in thermal equilibrium (YX = YX̄ = Y eq

X ), while any pre-existing baryon number is
destroyed at a rate governed by the total rate for B-violating processes. Note that any possible
CP violation in the 2 → 2 reactions would be ineffective at producing a baryon excess, since the
masslessness of the b̄ prevents deviations from thermal equilibrium [5].

In sect. 3 we discuss the solution of eq. (2.3.10) and (2.3.20). First, however, we consider
some possible complications.

2.4. Complications

2.4.1 More Particles and More Decay Modes.
The evolution of the number density nχ = Yχnγ of a massive particle species χ due to decay and
inverse decay processes is given in direct analogy with eq. (2.3.4) by

dYχ

dt
= Λχ

k

⎡
⎣−∑

k

fχ(pχ)|M(χ → k)|2 +
∑

k

⎛
⎝∏

β∈k

fβ(pβ)

⎞
⎠ |M(k → χ)|2

⎤
⎦ .(2.4.1)

But, so long as all excesses of particles over antiparticles are small,

∏
β∈k∑
pβ=pχ

fβ(pβ) = f eq
χ (pχ)

⎛
⎝1 +

∑
β

µβ

T

⎞
⎠

= f eq
χ (pχ)(1 + 1

2

∑
(Yβ − Yβ̄)),(2.4.2)

and hence

dYχ

dt
= 〈Γχ〉(−Yχ + Y eq

χ ) − Y eq
χ )
∑

k

⎧⎨
⎩
⎛
⎝∑

β

(Nβ − Nβ̄)k

(
Yβ − Yβ̄

2

)⎞⎠ 〈Γ(χ̄ → k)〉
⎫⎬
⎭ ,(2.4.3)

where (Nβ)k denotes the number of β particles in the state k. This equation holds even if several
massive species χ are present. (If some χ may mix, further complications may occur, as discussed
below.) By charge conjugation and subtraction, we obtain from (2.4.3) equations analogous to
(2.3.10) (and with corresponding approximations):

dY+

dt
� −Γχ(Y+ − Y eq

+ ) + 1
2Y eq

+ )
∑

k

{⎛⎝∑
β

(Nβ − Nβ̄)k

(
Yβ − Yβ̄

2

)⎞⎠

×〈Γ(χ̄ → k) − Γ(χ → k̄)〉
}

� −〈Γχ〉(Y+ − Y eq
+ ),(2.4.4a)

dY−
dt

� 〈Γχ〉Y− + 1
2Y eq

+

∑
k

{⎛⎝∑
β

(Nβ − Nβ̄)k

(
Yβ − Yβ̄

2

)⎞⎠
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〈Γ(χ̄ → k) + Γ(χ → k̄)〉
}

,(2.4.4b)

Y± = 1
2 (Yχ ± Yχ̄).(2.4.4c)

In analogy with eq. (2.3.13), the density of a quantum number B violated in decays and
scatterings involving particles χ evolves according to [sums on χ run over both particles and
antiparticles (χ̄), and for simplicity we assume that any particle β for which nβ �= nβ̄ carries
baryon number]

dYB

dt
=
∑

χ

{∑
f

(NB)fYχΛ[|M(χ → f)|2 − |M(χ → f̄)|2]
}

−
∑

χ

{∑
f

(NB)fY eq
χ Λ[|M(f → χ)|2 − |M(̄f → χ)|2]

}

−YB

∑
χ

{∑
f

[(NB)f ]2Y eq
χ Λ[|M(f → χ)|2|M(̄f → χ)|2]

}

+
∑
f,f′

{
(NB)f − (NB)f′ ]

∑
χ

{
Y eq

χ

Γχ

Λ[|M(f → χ)|2|M(χ → f′)|2 − |M(̄f → χ)|2|M(χ → f̄′)|2
}}

− 1
2YBnγ

∑
f,f′

{
(NB)f − (NB)f′ ](NB)fΛ[|M(f → f′)|2]}(2.4.5)

Using CPT invariance, the second term may immediately be rewritten as

+
∑

χ

{∑
f

(NB)fY eq
χ Λ[|M(χ → f)|2 − |M(χ → f̄)|2]

}
,(2.4.6)

which is equal to the first term when Yχ = Y eq
χ while the fourth term may be simplified to

−
∑

f

{
(NB)f

∑
χ

Λ − [|M(f → χ)|2 − |M(χ → f̄)|2 − |M(f → χ)|2 + |M(f̄ → χ)|2]
}

= −2
∑

f

{
(NB)f

∑
χ

Λ[|M(χ → f)|2 − |M(χ → f̄)|2]
}

,(2.4.7)

which has exactly the form necessary to negate the second term, as required by the theorem
(2.1.4). The second and fifth terms in eq. (2.4.5) may be written in the manifestly negative
forms

−YB

∑
χ

⎧⎨
⎩
∑

f

[(NB)f ]2Y eq
χ 〈Γ(χ → f) + Γ(χ → f̄)〉

⎫⎬
⎭ ,(2.4.8a)
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and

− 1
4YBnγ

∑
f,f ′

{
[(NB)f − (NB)f ′ ]2Λ[|M′(f → f ′)|2|M′(f ′tof)|2]}

� −YBnγ

2

∑
f,f ′

{
[(NB)f − (NB)f ′ ]2〈vσ′(f → f ′)〉}(2.4.8b)

respectively, exhibiting the fact that B-violating processes in thermal equilibrium must always
act to destroy any initial net baryon number. Performing the remaining phase space integrations,
eq. (2.4.5) may finally be written as

dYB

dt
=
∑

χ

⎧⎨
⎩(Yχ − Y eq

χ )
∑

f

{
(NB)2f 〈Γ(χ → f) − Γ(χ → f̄)〉}

⎫⎬
⎭

−YB

⎧⎨
⎩
∑

χ

Y eq
χ

∑
f

{
[(NB)f ]2〈Γ(χ → f) + Γ(χ → f̄)〉}

⎫⎬
⎭

− 1
2YBnγ

∑
f,f ′

{
[(NB)f − (NB)f ′ ]2.〈vσ′(f → f ′)〉} .(2.4.9)

In many supposedly more realistic models, it is necessary to generalize these equations to describe
the development of several approximately-conserved quantum numbers (e.g., B, e, µ, . . .). Often
some combination of the quantum numbers (e.g., B −L) may be absolutely conserved (typically
in order to conserve fermion number). Note that if heavy unstable fermions are present, they
may be treated in this analysis as χ.

2.4.2 Spin and Statistics.
In the discussion above, we have assumed that all particles have only one spin state, and obey
Maxwell-Boltzmann statistics. Accounting for more spin states changes no formulae: inclusion
of appropriate Fermi-Dirac or Bose-Einstein statistics complicates the proof of the theorems
discussed in subsect. 2.1 (see appendix A) and yields some small corrections.

For a particle A with gA accessible spin states, we define fA(pA) to be the phase-space density
for each single spin state, but take nA to be the total number density of A summed over spins,
and thus write nA = gAΛA[fA(pA)]. The matrix elements |M|2 are taken to be summed over the
possible spin states of initial and final particles, so that the total rates for reactions are given
by products of the form Λ[fAfB . . . |M|2], without further spin factors. To write these rates
in terms of the total initial particle number densities ni, rather than fi would require division
by the requisite gi factors. However, since we define (as usual) cross sections and widths to be
averaged, rather than summed, over initial spin states, the rates written in terms of ni and these
cross-sections require no explicit spin multiplicity factors.

When the density fA(pA) of a species A of particles in phase space becomes close to one, so
that cells at least in some region of phase space have a high probability to be occupied, the rates
for reactions in which A are produced must be modified to account for quantum statistics effects.
If A is a fermion, then these rates contain a factor (1 − fA(p)) for each A produced, thereby
implementing the exclusion principle that no more than one A (with a given spin direction)
may occupy a single cell in phase space. If A instead obeys Bose-Einstein statistics, then each
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produced A introduces a factor (1 + fA(p)) to account for stimulated emission, as discussed in
appendix A. These factors appear not only for the final particles produced in a process, but also
for each intermediate virtual particle and hence modify the unitarity relation (2.1.3) [to (A.22)].
This will guarantee the cancellation between the two-body processes, and decay-inverse decay as
discussed in subsect. 2.3. Taking b, b̄ to be fermions, and X a boson, eq. (2.3.4) becomes

dnX

dt
+ 3

Ṙ

R
nX = Λ12

{−fX(pX)[1 − fb(p1)][1 − fb(p2)]|M(X → bb)|2

−fX(pX)[1 − fb̄(p1)][1 − fb̄(p2)]|M(X → b̄b̄)|2
+fb(p1)fb(p2)[1 + fX(pX)]|M(bb → X)|2
+fb̄(p1)fb̄(p2)[1 + fX(pX)]|M(b̄b̄ → X)|2} .(2.4.10)

We again assume that b, b̄ are in kinetic equilibrium. If f eq(p) is Fermi-Dirac (Bose-Einstein)
distributed, then

f eq(p) = [e(E−µ)/T +
(−)1]−1 = e−(E−µ/T (1 −

(+)f eq(p)),(2.4.11)

so that the product of f(−)
b

(pl)f(−)
b

(p2) in eq. (2.4.10) may be written as

f(−)
b

(p1)f(−)
b

(p2) = e
+

(−)2µ/T e−(E1+E+2)/T [1 − f(−)
b

(p1)][1 − f(−)
b

(p2)]

= e
+

(−)2µ/T f eq
X (pX)

1 + f eq
X (pX)

[1 − f(−)
b

(p1)][1 − f(−)
b

(p2)](2.4.12)

where the second equality follows from the energy conservation δ function ΛX
12. We now assume

that the fermion chemical potential is small, and take [1−f eq
b (pl)] ≈ [1−f eq

b (p2)], so that (2.4.10)
becomes

dnX

dt
+ 3

Ṙ

R
nX = ΛX

12

{
− fX(pX)(|M̃(X → bb)|2 + |M̃(X → b̄b̄)|2)

+f eq
X (pX)

(
1 + fX(pX)
1 + f eq

X (pX)

)
|M̃(X̄ → b̄b̄)|2e2µ/T |M̃(X̄ → bb)|2e−2µ/T

}
,(2.4.13)

where we have defined

|M̃(a → cc)|2 = |M(a → cc)|2[1 − fb(pc)][1 − fb(pc)].(2.4.14)

Quantum statistics corrections should be small so long as

|M̃| ≈ |M|,(2.4.15a) (
1 + fX(pX)
1 + f eq

X (pX)

)
≈ 1.(2.4.15b)

The correction to the decay rate of particle A with mass mA decaying at rest to two massless
fermions c, in the presence of a gas of c in thermal equilibrium at a temperature T is given
simply by

Γ̃
Γ

=
|M̃|2
|M|2

∫
d3p1

2E1

∫
d3p2

2E2
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×[[1
−

(+)f eq
c (p1)][1

−
(+)f eq

c (p2)]δ4(p1 + p2 − pA)]
/

∫
d3p1

2E1

∫
d3p2

2E2
δ4(p1 + p2 − pA)

=
1

[1
+

(−)e−mA/2T ]2
.(2.4.16)

As T → 0, the density of the c gas goes to zero, and Γ̃/Γ → 1. If, as in (2.4.13), the c are fermions,
then when T → ∞, Γ̃/Γ → 1

4 : 3
4 of the final-state phase space is excluded by Pauli’s principle

(Γ̃/Γ climbs slowly up to 1 as T decreases; for T = mA, Γ̃/Γ � 0.4). When the c are bosons, the
presence of an ambient c gas causes stimulated emission, and increases the decay rate. In fact,
as T → ∞, Γ̃/Γ ∼ (2T/mA)2, reflecting the approach to Bose condensation in the f eq

c . (As T
decreases, Γ̃/Γ falls steadily to 1; for T = mA, Γ̃/Γ � 6.5) The correction (2.4.16) is for decay
at rest: for high-energy A, Γ̃/Γ tends to one. In the region T <∼mX which dominates baryon
production 〈Γ̃/Γ〉 is close to one. Suppression of X decays by Pauli exclusion merely causes YB

to be generated at slightly lower temperatures: its final value is unaffected, except in as far as the
processes which destroy YB are less effective. The correction is reversed if the X decay products
are bosons rather than fermions.

If we assume that the actual X distribution is not far from its µ = 0 equilibrium form (but
perhaps at a different temperature) in most regions of phase space, then the approximation
(2.4.15b) is good. However, for a Bose gas, when E/T � 1, the phase-space density may become
large. The approximation (2.4.15b) should nevertheless remain valid for two reasons. First, the
equilibrium distribution f eq

X (pX) will also become large, tending to cancel the growth in fX(pX)
Also the region or phase space where fX(pX) is expected to be large is for pX/T small and m/T
small. Since most baryon production occurs at T > m, only in the small pX region is fX(pX) ≥ 1.
However, in this region the distribution function is multiplied by pX in calculating the number
density, which lessens the contribution of the region where fX(pX) ≥ 1.

2.4.3 Large Baryon Excesses.
In 2.3, we always assumed that YB ≡ nB/nγ � 1, and made the linear approximation

fb(p) = e−(E−µ)/T = e−E/T
(
1 +

µ

T

)
= e−E/T (1 + 1

2YB).(2.4.17)

However, in most cases, the formalism of subsect. 2.3 does not require this approximation.
Retaining the full non-linear form

YB = eµ/T − e−µ/T − 2 sinh
(µ

T

)
,

fb(p) = e−E/T

(√
1 + 1

4y2
B + 1

2YB

)
,(2.4.18)

the final equations (2.3.10) and (2.3.20) become

dY+

dt
� −〈ΓX〉

{
(Y+ − Y eq

+ + 1
2YBY eq

+

{
(η − η̄)

√
1 + 1

4Y 2
B − YB

}}
,(2.4.19a)

dY−
dt

� −〈ΓX〉
{

(Y− −
(

η + η̄

2

)
YBY eq

+

√
1 + 1

4Y 2
B

}
,(2.4.19b)
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dYB

dt
� 〈ΓX〉{(η − η̄)(Y+ − Y eq

+ ) + (η − η̄)Y−
}

−2YB〈ΓX〉Y eq
+

{√
1 + 1

4Y 2
B − 1

4YB(η − η̄)
}

−2YBnγ〈v
{
σ̄′(bb → b̄b̄) + σ̄′(b̄b̄ → bb)

}〉√1 + 1
4Y 2

B

−Y 2
Bnγ〈v

{
σ̄′(bb → b̄b̄) − σ̄′(b̄b̄ → bb)

}〉,(2.4.19c)

where we have used the fact that

e±2µ/T = 1 + 1
2Y 2

B ± YB

√
1 + 1

4Y 2
B .(2.4.19d)

In the limit |YB | 
 1, but ignoring Pauli exclusion effects, these reduce to

dY+

dt
� 1

2Y 2
BY eq

+ 〈ΓX〉
{

1 − YB

|YB|
(

η − η̄

2

)}
,

dY−
dt

�
(

η − η̄

2

)
1
2Y 2

BY eq
+ 〈ΓX〉,

dYB

dt
� −Y 2

BY eq
+ 〈ΓX〉

{
1 − YB

|YB|
(

η − η̄

2

)}
− Y 2

Bnγ

{ 〈vσ̄′(bb → b̄b̄)〉
〈vσ̄′(b̄b̄ → bb)〉

}
,

YB > 0
YB < 0 .(2.4.20)

For very large |YB | the b or b̄ should form a degenerate Fermi gas; while exclusion effects render
the bb or b̄b̄ elastic scattering cross section much suppressed, they do not affect the baryon
number destruction processes of eq. (2.4.20) since the phase space available to the products of
these reactions is unrestricted by the presence of the Fermi gas. As shown in eq. (4.8), even
if degenerate massless particles dominate the energy density and hence expansion rate of the
universe, the expansion term absorbed on the left-hand side of eqs. (2.4.20) remains unchanged.
For the usual hot universes considered in sect. 3, YB is sufficiently small that the non-linear terms
in eq. (2.4.19) are entirely irrelevant. [Note that, as shown in sect. 3, if the initial YB � (η − η̄),
then the final YB generated is always less than η − η̄; hence, for example, the last term in eq.
(2.4.19) cannot dominate even if η − η̄ is very small.] Notice that chemical potentials associated
with quantum numbers which are genuinely conserved in the processes considered exactly cancel
out in all equations [e.g., (2.2.7)].

2.4.4 Mixing.
As mentioned in subsect. 2.3, when it is not forbidden by absolute conservation laws (as exhibited
for example by their ability to decay into the same final state), X and X̄ should mix12; the
mixed states X1 and X2 diagonalize the hamiltonian and have definite masses and decay widths
(typically, the X1, and X2 will be split by an amount mXl

−mX2 ∼ ΓX). CP -violating effects in
X decays may then arise in two ways: either because the eigenstates X1,2 consist of a combination
of X, X̄ which is not a CP eigenstate, or because the final decays of the X1,2 exhibit CP violation
(in the manner described in subsect. 2.3). The observed CP violation in K0 system appears to
be dominantly of the former type.

We first consider the case in which X1,2 are the CP eigenstates:

|X1〉 =
√

1
2

{|X〉 + |X̄〉} ,
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|X2〉 =
√

1
2

{|X〉 + |X̄〉} ,

CP |X1〉 = +|X1〉,
CP |X2〉 = −|X2〉.(2.4.21)

Then CP invariance requires

M(Xk → i) = M(Xk → ı̄), (k = 1, 2).(2.4.22)

The unitarity and CPT -invariance constraint (2.1.5) is impotent in this case; the result (2.1.9) still
applies, however, so that CP -violating differences (|M(Xk → i)|2−|M(Xk → ı̄)|2)/∑i |M(Xk →
i)|2 must again be O(α) in perturbation theory. For example, if for some state s,

M(X → s) = M0, M(X̄ → s̄) = M1,
M(X → s̄) = 0, M(X̄ → s) = 0,

(2.4.23)

then (we take the X0− X̄0 mixing to occur through an intermediate state with m > mx; in these
cases none of the X0, X̄0 decay final states need be identical)

|M(X1 → s)|2 = |M(X2 → s)|2 = 1
2 |M0|2,

|M(X1 → s̄)|2 = |M(X2 → s̄)|2 = 1
2 |M1|2,(2.4.24)

which may differ by O(α2). (If s was a CP eigenstate, so that s ≡ s̄, then M(
(−)

X → s) = ±M
(−)

X →
s̄).) When X1,2 are CP eigenstates, their number densities individually satisfy equations anal-
ogous to those derived in subsect. 2.3 (on setting η = −η̄ = O(α) and identifying X and X̄
there). Notice that with the choice (2.4.23) of matrix elements, the state X may yield only s
and X̄ only s̄. Because of the X − X̄ mixing, it is the X1,2 rather than X̄ states which exhibit
the characteristic exp[(iE − Γ)t] time dependence; the number of X or X̄ oscillates at the beat
frequency ∼ (EXl

−EX2 )(= mXl
−mX2 , when the X are at rest). [The case of the K0 system is

slightly more complicated than that treated here. In practical experiments, the
(−)

K0 are produced
by strong interaction 2 → 2 processes for which the matrix elements are arranged somewhat
analogously to (2.4.23), in that strangeness +1 initial states give only K0 and S = −1 only K̄0

(assuming the recoil final particle has S = 0). The weak interactions responsible for
(−)

K0 mixing
and decay are not involved in their production.]

The second type of CP violation arises when Xl and X2 are no longer CP eigenstates as in
(2.4.21), but are rather of the form (in the K0 system, these combinations are conventionally
denoted KS and KL (e.g., [15]))

|X1〉 =
1√

1 + |ε|2 {|X
¯ 1〉 + ε|X

¯ 2〉}

=
1√

2(1 + |ε|2)
{
(1 + ε)|X〉 + (1 − ε)|X̄〉} ,

|X2〉 =
1√

1 + |ε|2 {ε|X
¯ 1〉 + |X

¯ 2〉}

=
1√

2(1 + |ε|2)
{
(1 + ε)|X〉 − (1 − ε)|X̄〉}(2.4.25)
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where ε measures the CP impurity of the states. X–X̄ mixing occurs when the matrix elements
M(X → X̄), M(X̄ → X) are non-zero (if they involve as intermediate states shared X, X̄ decay
modes, they are typically ∼ ΓX). In the eigenvectors (2.4.25) of the X–X̄ propagation matrix,
the parameter ε measures the CP -violating difference of the ratio M(X → X̄)/M(X̄ → X)
from one. Whereas unitarity places severe constraints (2.1.9) on CP violation in |M(X → i)|2 �=
|M(X̄ → i)|2, these constraints do not apply to the unsquared amplitudes: to obtain ε �= 0,
it is sufficient for interactions generating X → X̄ to have complex coupling constants (which
appear conjugated in X̄ → X); no further restrictions apply. (In the K0 system, ε �= 0 may
well arise from relatively complex couplings of t, c and u quarks in box diagrams with virtual
WW intermediate states (e.g., [12]). We shall assume here that the decays of the states X1,2 are
CP conserving (as appears to be the case for K0

L,S); all CP -violating effects arise from the X–X̄
mixing which causes the eigenstates X1,2 of the hamiltonian not to be CP eigenstates. We take
the X, X̄ decay amplitudes

M(X → i) = M(X̄ → ı̄) = (1 + λ) 1
2M0,

M(X → ı̄) = M(X̄ → i) = (1 − λ) 1
2M0,(2.4.26)

so that the decay rates for the states (2.4.25) become (for simplicity taking λ real)

|M(X1 → i)|2 =
|M0|2

2(1 + |ε|2)
{
1 + 2λ Re ε + λ2|ε|2} ,

|M(X1 → ı̄)|2 =
|M0|2

2(1 + |ε|2)
{
1 + 2λ Re ε + λ2|ε|2} ,

|M(X2 → i)|2 =
|M0|2

2(1 + |ε|2)
{|ε|2 + 2λ Re ε + λ2

}
,

|M(X2 → i)|2 =
|M0|2

2(1 + |ε|2)
{|ε|2 − 2λ Re ε + λ2

}
.(2.4.27)

(If i is a CP eigenstate with CP |i〉 = +|i〉, then in (2.4.26), λ = 0 : this is the case for the ππ
final state in K0 decays. In semileptonic (π�ν) K0 decays, the ∆S = ∆Q rule implies λ = 1.)
(The value of |ε|2 in the simple model (2.4.27) is determined from the total X1 and X2 decay
rates by a quadratic equation. In general, |ε|2 satisfies the unitarity constraint |ε|2 ≤∑i Γ(X1 →
i)Γ(X2 → i) / [(m1 − m2)2 + 1

4 (Γ1 + Γ2)2] [15].)
The CP violation in the rates (2.4.27) can generate an excess of i over ı̄ in a system which

is initially symmetrical in X and X̄. For example, the free decay (without back reactions) of X
and X̄ produced in equal numbers, and with wave functions of random phase, as when they are
emitted in thermal radiation, generates an excess of i over ı̄ given by

ni − nı̄

ni + nı̄
� 8λRe ε

1 + |ε|2)(1 + λ2)
.(2.4.28)

2.4.5 Multiple Temperatures and Annihilation Heating.
Eq. (2.1.4) shows that if all particles are in thermal equilibrium with zero chemical potential,
then no baryon number can be generated. Once a massless particle species has been brought
into kinetic equilibrium, equation (2.1.13) shows that the expansion of the universe alone cannot
destroy its equilibrium distribution in phase space. Thus other influences are necessary to modify
the distributions of massless particles so as to allow reactions between them to generate baryon
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number. One possible such influence might be the presence or growth of inhomogeneities in
the universe. Another possible mechanism would be differential heating of various massless
particle species by the annihilation products of other, massive, particles decoupling from thermal
equilibrium. As mentioned in subsect. 2.1, the expansion of a homogeneous universe (containing
weakly interacting particles) should approximately conserve the entropy

S = R3

(
ρ + p − µn

T

)
�
(

4
π2

)
ξT 3R3,(2.4.29)

where ξ is the effective number of particle species at temperature T (ξ = 1
2 for each boson spin state

with m � T and ξ = 7
16 for non-degenerate ultrarelativistic fermion spin states), as described

in appendix C. p is the pressure13: for an ultrarelativistic ideal gas in equilibrium ρ = 1
3p while

for dust p = 0. (For any ideal equilibrium gas, p = (γ − 1)ρ, where γ = cp/cυ. Systems whose
components interact strongly may have pressures up to p = ρ. Such pressure should probably
occur if the universe undergoes a phase transition.) As T falls below the mass of a particular
species, the contribution of that species to the energy density of the universe (and hence to ξ)
drops rapidly to zero (unless the particles carry a non-vanishing chemical potential). The energy
density originally carried by the disappearing species is transferred to its lighter annihilation
products; their interactions with the rest of the universe raise the temperatures of other particle
species in such a way as to conserve (2.4.29), so that ξT 3 = constant. However, the rate at
which the energy is shared among the species depends on their cross sections for interaction
with the annihilation products. If the cross section for a particular species is too small, it may
never receive its full share of the energy, and remain at a lower temperature. (This behavior is
exhibited by light neutrinos in the present universe; below T ∼ 1 MeV, the rate for e+e− → νν̄
reactions becomes very small, and when the e± annihilate at T ∼ 0.1 MeV, all their energy goes
into photons. Consequently, the temperature of photons in the present universe should be about
[ξγ + ξe+ + ξe−)/ξγ ]1/3 = (11

4

1/3 � 1.4 times higher than that of the neutrinos. Similarly, heavy
quark species should dominantly annihilate into gluons, which heat the lighter quarks, but not
leptons, in the universe.) In eq. (2.2.12), for example, the rate of baryon number generation
is proportional to the difference of the actual ϕ number density from its equilibrium value with
µ = 0 and at the temperature of the b, b̄. Even if mϕ = 0, so that the ϕ phase-space distribution

remains of the form (2.2.13), its temperature may differ from that of the
(−)

b (because of weaker
interactions with annihilation products), and baryon number generation may occur until the

ϕ and
(−)

b are brought to the same temperature. Thus baryon-number conserving annihilation
of massive species can indirectly result in baryon number generation by B-violating reactions
between massless particles.

In models such as those of subsects 2.2 and 2.3, the baryon number of the universe remains
constant after the temperature has fallen below the masses of the particles mediating B-violating
interactions. When lighter species of particles annihilate, they increase the temperature, and thus
number, of photons, but leave the baryon number unchanged. These effects reduce the original
YB produced by a factor

YB(T � 0)
YB(T � mX)

� ξ(T � 0)
ξ(T � mX)

;(2.4.30)

In typical grand unified models, this factor is O( 1
100 )14.
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The approximate conservation of entropy for the universe may of course be drastically violated
if its contents undergo a first order phase transition (with specific latent heat ∆). Such a transition
would reduce YB by a factor ∼ ξT 3/(ξT 3 + ∆/T ). As mentioned above, most phase transitions,
regardless of order, would result in a temporary increase in the pressure of the universe. The phase
transitions associated with the spontaneous breaking of gauge symmetries (mentioned below) are
expected to be second-order, or first-order with very small latent heats. The phase transition
at T ∼ Λ in asymptotically free theories (either QCD or a higher Λ “technicolor” group) to
confinement and chiral symmetry breaking is also probably second order.

2.4.6 Phase Transitions and Spontaneous Symmetry Restoration.
The only known method for breaking local gauge symmetries and providing masses for gauge
bosons without destroying renormalizability is by the introduction of Higgs fields φ with non-
zero vacuum expectation values 〈φ〉. With this mechanism, the mass of a gauge boson V is
given by

m2
V = 1

2g2〈φ〉2,(2.4.31)

where g is the gauge coupling constant, and 〈φ〉 is determined by minimizing the effective potential

V (φ) = − 1
2µ2φ2 + 1

4λφ2 + O(g4 + φ4 log(φ2/m2)),(2.4.32)

which gives the energy density of the “vacuum” as a function of the strength of a uniform classical
Higgs field φ. The masses of the quantized fluctuations in this condensate (Higgs particles H) are
given by

m2
H =

δ2V

δφ2

∣∣∣∣
φ=〈φ〉

� 2µ2,(2.4.33a)

〈φ〉 � µ/
√

λ.(2.4.33b)

The vacuum energy density implied by minimizing V (φ) then has the absurdly large value

ρ = V (〈φ〉) � −m2
Hm2

V

2g2
� −2 × 1021(mH [GeV])2g cm−3.(2.4.34)

If this energy density is present, it presumably has no gravitational effects; to accord with ob-
servation it must otherwise be delicately cancelled by a cosmological term in the Einstein field
equations. (When the symmetry is restored, the Higgs condensate energy density disappears,
leaving uncancelled the cosmological term; however, at the relevant temperatures, its effects on
the expansion rate of the universe are typically overwhelmed by the radiation energy density
present.) The energy density (2.4.34) perhaps discredits any cosmological considerations of the
Higgs mechanism.

At zero temperature, 〈φ〉 will always be given by minimizing the “vacuum” energy (2.4.32).
However, at high temperatures, thermal fluctuations in φ become much larger than 〈φ〉, and the
“vacuum” state is no longer concentrated at the minimum of V (φ). The mean Higgs condensate
strength at high temperatures is typically given by15

〈φ(T )〉2 � 〈φ2
0〉
(

T 2
c − T 2

T 2
c

)
, T < Tc,

= 0, T > Tc,

Tc � mH .(2.4.35)
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(In the region close to the phase transition [(T 2 −T 2
c )/T 2

c
<∼ g2, the perturbative methods used to

derive (2.4.35) fail, so that the precise nature of the transition cannot be determined.) For T > Tc,
therefore, the gauge bosons and Higgs particles will be effectively massless; when the universe
cools below T = Tc, their masses grow slowly to the T = 0 values. Note that the constraint
V (〈φ〉) < V (0) necessary for spontaneous symmetry breakdown to occur at low temperatures
implies

Tc � mH
>∼ g2mV .(2.4.36)

Above this critical temperature, all particles (X) should be effectively massless, and therefore
exist in their equilibrium number densities, so that

YX � 1, (T >∼Tc).(2.4.37)

When the universe cools below Tc, the particles become massive and may decay. The smaller the
ratio Tc/mx is, the smaller will be the back reactions to these decays, and thus the larger the
final baryon number generated. However, the bound (2.3.36) suggests that the values of mX for
which back reactions will not destroy the baryon number produced are not in fact much extended
by these considerations of symmetry restoration.

In addition to the masses of the decaying X particles, spontaneous symmetry breakdown may
also determine the strength of CP violation (e.g., [11]). In this case, CP -violating effects should
disappear above a critical temperature T CP

c . If T CP
c /(αmX) � 1, then most X decays will be

CP conserving, and so no baryon asymmetry may be generated.
An intriguing (but probably irrelevant) possibility is that domains with different “order pa-

rameters”, (typically 〈φ〉) signalling different symmetry breaking, may have formed in the early
universe just below the critical temperature. If, as in the phase transition leading to mX �= 0,
different values of (φ) imply different vacuum energies, then the “true vacuum” in which V (〈φ〉)
is at its global minimum should quickly overwhelm the regions of false vacuum. However, if
there are many possible 〈φ〉, as characterized, for example, by a phase angle, which give the
same vacuum energy, then domains may survive. Thus it is possible that the sign and perhaps
magnitude of CP violation may initially have differed from one region (domain) in the universe
to another. However, it is probable that insufficient surface tension would exist to prevent the
domains from mixing freely. Moreover, the maximum size of a domain is presumably governed by
the distance over which a light signal could have propagated by the time of the phase transition:
larger regions could not yet be in “causal contact” and therefore could not act collectively. At the
temperatures T ∼ 1015 GeV probably relevant for B-violating processes, the maximum number
of particles in a domain is ∼ 105. The possibility that domains in which baryons were generated
should have collected together and repelled antibaryons seems extremely implausible. (Note that
the “Leidenfrost effect” by which radiation pressure from NN̄ annihilation may hold matter and
antimatter regions apart is entirely impotent at T 
 mq, mN , since it relies on the conversion
of N rest energy into photon momentum in annihilation.)
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3. Results in a Simple Model

3.1. Introduction

In this subsection, we present solutions to eqs. (2.3.10) and (2.3.20) which describe baryon
number generation in the simple model of subsect. 2.3. In terms of the dimensionless variables

x ≡ mX

T
, xP − mX

mP
,

dY

dx
=

x

mXxP

dY

dt
,(3.1.1)

where the effective Planck mass mp was defined in (2.1.14), these equations become

dY+

dx
� −A(x)

{
(Y+ − Y eq

+ ) +
(

η − η̄

2

)
YBY eq

+

}
,(3.1.2a)

dY−
dx

� −A(x)
{

Y− −
(

η + η̄

2

)
YBY eq

+

}
,(3.1.2b)

dYB

dx
� −A(x)

{ {
(η − η̄)(Y+ − Y eq

+ ) + (η + η̄)Y−
}

−2YB

{
Y eq

+ +
nγ

〈ΓX〉 〈v{σ
′(bb → b̄b̄) + σ′(b̄b̄ → bb)}〉

}}
,(3.1.2c)

A(x) =
x

xP

〈ΓX〉
mX

,(3.1.2d)

Y± = 1
2 (YX ± YX̄).(3.1.2e)

For simplicity we shall henceforth take
η + η̄

2
= 1

although none of our results are sensitive to this choice. The CP violation parameter η − η̄ will
be denoted by

ε ≡ (η − η̄).

Unitarity of the decay rates (2.3.1) requires |ε| ≤ 2, and according to eq. (2.1.9), ε is formally of
order α. We shall write Y 0

B; for the final baryon number density (at zero temperature); we do not
include in Y 0

B the final factor ξ discussed in subsect. 2.4 to account for increase in the photon
number density.

If the contents of the universe were in thermal equilibrium at sufficiently early times, the
solutions to eqs. (3.1.2) must satisfy the initial conditions [we assume as in sect. 2 that all
particles (including γ) have only one spin state and obey Maxwell-Boltzmann statistics: if X has
gX spin states (and γ are assigned Bose-Einstein statistics) then Y ∞

+ = 1
2gX if it is a boson, and

Y ∞
+ = 3

8gX if a fermion]:

Y+(x = 0) = Y ∞
+ = Y eq

+ (x = 0) = 1,

Y−(x = 0) = Y ∞
− = 0

YB(x = 0) = Y ∞
B(3.1.3)
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where Y ∞
B is a possible initial baryon number. At lower temperatures, the equilibrium X number

density is given by (cf., eq. (2.2.9) and appendix C)

Y eq
+ (x) = Y eq

X (x) = 1
2x2K2(x) =

m3
X

2π2x
K2(x),(3.1.4)

where K2 is a modified Bessel function (see appendix C). We take the time-dilation factor in the
effective X width to be averaged over an equilibrium X energy distribution, so that

〈ΓX〉 = 〈mX

EX
〉ΓX =

K1(x)
K2(x)

ΓX .(3.1.5)

For the numerical solutions of subsect. 3.3, we use

ΓX = 1
4mXα (gX = 1)

=
mXα

2gX
(gX > 1),(3.1.6)

corresponding to the decay of an X with gX spin states to two identical (spin- 1
2 ) fermions, coupled

with strength e =
√

4πα. (The factor of 2 between gX = 1 and gX > 1 in (3.1.7) arises because
only half the possible final fermion spin states are accessible from a spin-0 X.) We usually take
gX = 1. The cross sections σ′(bb → b̄b̄) and σ′(b̄b̄ → bb) (in which the contribution of real
intermediate X already included in previous terms has been subtracted off, by removing the pole
part of the exchanged X propagator) are equal to O(α2). The high-energy behavior of the σ′

crucial for the destruction of any initial baryon number will be discussed in sect. 4. For baryon
number generation, the form of σ′ at c.m.s. energies

√
s <∼mX is important. In the low-energy

limit, it is of the usual Fermi form

vσ′(bb → b̄b̄) � cα2s

m2
X

, (s � m2
X),(3.1.7)

where typically c � πgX (see below for specific cases). Averaging this cross section over thermal
energy distributions for the incoming b gives (see appendix C)

vσ′(bb → b̄b̄) � 18cα2T 2

m4
X

, (T � mX).(3.1.8)

The detailed from of σ′ as a function of s depends on the couplings and spin of the exchanged
X. For scalar X exchange, one finds [using the same couplings as in (3.1.6)]16

dσ

dt
=

πα2

s2

[
t2

t′2
+

s2

s′2
+ 2

st

s′t′

]
,

σ =
∫ 0

−s

dσ

dt
dt,

v′ ≡ v − m2
X , (v − s, t).(3.1.9)

In the high-energy limit, this cross section becomes

σ � 4πα2

3s

[
1 +

m2
X

s

(
5
4
− log

s

m2
X

)
+ . . .

]
, (s 
 m2

X),(3.1.10)
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while at low energies it reduces to

σ � πα2s

3m4
X

[
1 +

7
2

s

m2
X

− . . .

]
, (s � m2

X),(3.1.11)

Note that in (3.1.9) the contribution of t-channel, as well as s-channel, X-exchange has been
included. To obtain σ′, one must subtract from σ the cross section obtained by keeping only
the pole part of the X propagator. For a vector X (with coupling eγµ ), the total cross section
becomes

dσ

dt
=

2πα2

s2

[
s2 + u2

t′2
+

t2 + u2

s′2
+

2u2

s′t′

]
,

σ =
∫ 0

−s

dσ

dt
dt,

v′ = v − m2
X , (v = s, t, u),

s + t + u = 0.(3.1.12)

In the high-energy limit, this yields

σ � 4πα2

m2
X

[
1 +

m2
X

s

(
7
3
− 6 log

s

m2
X

)
+ . . .

]
, (s 
 m2

X),(3.1.13)

and in the low-energy limit

σ � 16πα2s

3m4
X

[
1 +

s

4m2
X

− . . .

]
, (s � m2

X).(3.1.14)

For the numerical calculations of subsect. 3.3, these cross sections are averaged over the relevant
initial energy distributions; for the purposes of analytical approximation, one may estimate the
complete 〈vσ′〉 by replacing s in vσ′ by 〈s〉 = 18T 2.

3.2. Approximate Analytical Solutions

If YB and Y− always remain small, eqs. (3.1.2) reduce simply to

dYB

dx
= −ε

dY+

dx
, (YB , Y− � 1),(3.2.1)

corresponding to baryon-number generation by free X decays, with no back reactions. In this
approximation, the baryon number generated Y 0

B is trivially given by

Y 0
B � Y ∞

B + ε{Y ∞
+ − Y 0

+}
= Y ∞

B + ε, (YB , Y ∞
B , Y− � 1),(3.2.2)

where, as usual, Y ∞
B is a possible initial baryon number. Numerical solutions in subsect.

3.3 suggest that this approximation is typically accurate for Y ∞
B

<∼ ε and α <∼ 10−3 or xP =
mX/mP

>∼ 10−4. Note that (3.2.2) provides an upper bound on |Y 0
B |; back reactions always tend

to diminish the baryon density.
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At high temperatures, and taking for simplicity Y ∞
B = 0, eqs. (3.1.2) become (the necessary

small x expansions of Y eq
+ , etc., are given in appendix C):

dY+

dx
� −ax2

{
Y+ − 1 + 1

4x2 + O(x4 log x) + O(x2(Y+ − 1)) + . . .
}

,(3.2.3a)

dY−
dx

� −ax2 {Y− − YB + . . .} ,(3.2.3b)

dYB

dx
� −aεx2

{
Y+ − 1 + 1

4x2 + . . .
}

, (x � 1),(3.2.3c)

where

a =
ΓX

xP mX
=

mP ΓX

m2
X

.(3.2.3d)

For small x, the solutions to these equations are

Y+ � 1 − 1
20

ax5 + O(x7 log x),(3.2.4a)

Y− � 1
160

εa2x8 + O(x11),(3.2.4b)

YB � ε{1 − Y+} � 1
20

εax5 + O(x7 log x), (x � 1).(3.2.4c)

In subsect. 3.3, we shall find that these forms are often adequate until x � 1 (the largest
discrepancies are usually in Y−).

At low temperatures (large x) the X undergo exponential decay, and their number is typically
negligible for x 
 1. Only the last term in eq. (3.1.2c) for YB is thus important at large x. Using
the low-energy point form (3.1.7) for the 2 → 2 cross sections, and taking s = 〈s〉 = 18T 2 =
18(mX/x)2, eq. (3.1.2c) becomes

dYB

dx
� −72cα2

π2xP

YB

x4
≡ −λ

α2mP

mX

YB

x4
, (x 
 1).(3.2.5)

Any baryon excess generated by decay and inverse decay at high temperatures is therefore de-
pleted at low temperatures through baryon-number violating 2 → 2 reactions, falling roughly
like

YB(x) ∼ exp
[

λα2

3xP x3

]
, (x 
 1),(3.2.6)

and eventually tending to a constant non-zero value. (For fixed temperature, the exponent here
∼ α2/m4

X , which arises simply from the Fermi low-energy form for the bb → b̄b̄ cross section.)
Numerical results in subsect. 3.3 suggest that in practice, when λα2/3xP

<∼ 1, this behavior
typically sets in when x rises above about 2.

If the temperature T of the universe falls with time t according to

T � mP

(tmP )γ
,(3.2.7)
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(where γ = 1
2 for a radiation-dominated universe at small t, γ = 3

2 for a matter-dominated
universe with deceleration parameter q0 = 1

2 and γ = 1 for a closed universe (q0 < 1
2 ) [9]), then

the relaxation (3.2.6) of baryon density with time due to low-energy 2 → 2 interactions is roughly

YB(t) ∼ exp
[

λα2

x4
P (mP t)5γ−1(5γ − 1)

]
.(3.2.8)

Hence, if γ > 1
5 [as in eq. (3.2.6), for which γ = 1

2 ], YB(t) cannot relax to zero even when t → ∞:
the age of the universe then grows faster than the time necessary to establish chemical equilibrium;
the fluctuation in baryon number has been frozen by the expansion of the universe, and survives
forever, albeit perhaps somewhat diminished from its high temperature value. As discussed in
appendix A, this failure to destroy baryon number even after an infinite time is a consequence of
the extra expansion terms in the Boltzmann equation, which invalidate Boltzmann’s H theorem
dH/dt ≤ 017. On the other hand, in a universe with γ < 1

5 , 2 → 2 processes occur with a
sufficient rate to combat expansion, and any baryon number generated at high temperatures
eventually relaxes exponentially to zero. To attain γ < 1

5 would require the introduction of a
cosmological term into the Einstein field equation, which can serve even to halt expansion (as
in the Lemâıtre universe) and allow chemical equilibrium to be established. (These results are
not specific to the model of subsect. 2.3 considered. In practice, however, gravitational or other
clumping will drastically change the rate for B-violating interactions at large t: for example, two
quarks confined within a proton have a much higher amplitude to come sufficiently close together
to annihilate than would two free quarks in an ideal homogeneous gas with the same density
as the proton gas18. Note that even in the presumably physical case γ > 1

5 , baryon number
generated at high temperatures would be diminished to an unacceptably low level if λα2mP /mX

were too large. The final baryon number usually depends, however, on the behavior of eqs. (3.1.2)
in the region x ∼ 1, where simple analytical approximations fail; a numerical solution to (3.1.2)
is therefore necessary.

3.3. Numerical Results

In this subsection we give numerical solutions to eqs. (3.1.2) as a function of the three dimension-
less parameters ε, xP and α. Except in considerations of the destruction of an initial non-zero
Y ∞

B at very high temperatures, for which eqs. (3.1.2) are no longer accurate (see sect. 4) the
precise form for the widths and cross sections assumed is largely irrelevant; only the very model
independent low-energy form (3.1.7) for the 2 → 2 cross sections is important (these cross sections
are essentially just those which should induce proton decay).

Baryon number violating interactions such as those in the simple model of subsect. 2.3 treated
here should lead to proton decay, with a lifetime given by the very low-energy limit of (3.1.7)
as roughly τp ∼ m4

X/(α2m5
N ). The experimental τP

>∼ 1030 yr then implies mX
>∼ 1014 GeV; in

the SU(5) grand unified model, estimates suggest that mX � 1015 GeV = 1 Π eV19. We use
mX = 1Π eV as a standard value for our numerical results. The relevant coupling constant α
depends on the precise nature of the X in our model. If X is a gauge (vector) boson, then α
should presumably be the corresponding effective gauge coupling constant at an invariant mass
∼ √

s for 2 → 2 scatterings and ∼ mX for X decays. A typical value obtained for this coupling
constant in the SU(5) model is α ∼ 1

40 . On the other hand, if X is a scalar (presumably Higgs)
boson, as is probably obligatory in generating baryon number from an SU(5) model, the relevant
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coupling constant is largely unknown, but it is probably rather small ( <∼ 10−3). The value of
the CP -violation parameter ε is even more uncertain. Nevertheless, all our numerical results
for YB (and Y−) in fact depend linearly on ε to within a few percent, even when ε � 1. As a
standard, we take the quite unmotivated value ε = 10−6.20 Finally, we must specify the effective
Planck mass defined by eq. (2.1.14), which depends on the number of species ξ contributing
to the energy density of the universe at the temperatures ∼ mX considered. If no new species
of particles (except t, W±, Z0) beyond those already detected exist with masses <∼mX , then
ξ � 100. With this, and the choice mX = 1 Π eV, the dimensionless parameter xP � 2 × 10−3.
mP determines the rate of expansion in the early universe; inhomogeneities or perturbations in
the metric could lead to different expansion rates for different regions of the universe. Such effects
may be parametrized by different values for xP .

Fig. 1 shows the development of the X̄ and baryon densities as a function of the inverse
temperature x = mX/T, with α = 1

40 , mX = 1Π eV, ξ = 100, and ε = 10−6. The dashed lines
in fig. 1 are the analytical approximations for small x discussed in subsect. 3.2. Note that the
changes in the actual Y+ lag behind those in Y eq

+ .
In fig. 2 we show the relative sizes of the terms contributing to dYB/dt with the parameters

used in fig. 1. As expected, for x > 1 (in this case x >∼ 10) all terms proportional to YX decrease
exponentially so that the only remaining contribution is from the two-body scattering.

Fig. 3 illustrates the sensitivity of YB to the parameters of the model. Unless otherwise
indicated, the parameters are the same as for fig. 1. Fig. 3a shows that the final YB is independent
of an initial Y ∞

B , so long as Y ∞
B is small. As discussed in subsect. 2.4, the destruction of a very

large Y ∞
B cannot be treated using eq. (2.3.20). Fig. 3a also exhibits the linear proportionality

of Y 0
B on ε, Figs. 3b-d illustrate the dependence of YB on mX , α, and ξ respectively.

Finally in fig. 4, we give the final value of YB/ε as a function of xP (i.e., of mX) for various
values of α.

4. The Destruction of Initial Baryon Number

In this section, we discuss the behavior of the baryon density in the universe at temperatures
T 
 mX , where the X mass is irrelevant, and any B-violating interactions should occur as fast as
B-conserving ones. At times t <∼ l/mP (corresponding to temperatures T > mP), it is undoubtedly
not permissible to consider only background gravitational effects; quantized fluctuations in the
expansion rate, and direct gravitational contributions to particle interactions (which determine
the equation of state) presumably become overwhelming. Nevertheless, the perhaps overly naive
estimates given below indicate that such effects should rapidly become unimportant when T falls
below � mP .

As mentioned in sect. 1, the likely excess of baryons over antibaryons in the present universe
probably cannot be explained solely by postulating a small initial net baryon number if B-
violating processes occur rapidly at high temperatures, since these would tend to eradicate the
initial baryon number. The purpose of this section is to estimate the rate of relaxation to a B = 0
state, and to determine whether it would be complete before when the temperature fell below
∼ mX and B-violating processes become rare. We consider the fate of a baryon excess existing
at T � mP (the possible genesis of such an initial condition is, of course, quite unknown, despite
Polkinghorne’s program [17]). If particles carrying baryon number also carry electric charges
(but the sum of the charges of all baryon species is non-zero), then to maintain the overall charge
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Fig. 1. Numerical solutions (solid lines) and analytical approximations (dashed lines) for the number densities

in the model of subsect. 2.3. The differential equations for Y+, Y−, and YB are given in (3.12). The standard

choices of parameters used in this and later figures are mX = 1Π eV, α = 1
40

, ξ = 100, ε = 10−6, 1
2
(η − η̄) = 1,

and Y ∞
B = 0. (1ΠeV ≡ 10−15 GeV).

Fig. 2. The relative magnitudes of the terms in eq. (3.1.2) contributing to the time development of the baryon

density YB. Notice that for x = mX/T � 1, all terms proportional to Y+ or Y− become exponentially unimportant,

and the largest contribution to ẎB is from 2 → 2 scattering processes.
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Fig. 3. The sensitivity of the baryon number development to the input parameters. Unless otherwise indicated,

the parameters are the same as those used in fig. 1.

Fig. 4. The final baryon to photon ratio (divided by the CP -violation parameter ε) as a function of the ratio

xP of the effective Planck mass to mX , for several values of the coupling constant α. The upper scale shows the

values of mX with the choice ξ = 100 in the definition of the effective Planck mass (2.1.14).

34



Baryon Number Generation in the Early Universe (1980)

neutrality of the universe any baryon excess must be compensated by a suitable antilepton excess.
Then, if for example, B±L is absolutely conserved, destruction of an initial baryon excess would
be accompanied by destruction of the corresponding (anti) lepton excess. We assume as above,
purely for simplicity, that only one light neutral fermion species carrying baryon number exists,
and that there is only one species X of B-violating boson, with mX � mP .

According to eq. (2.3.20), at T 
 mX (so that, by assumption, YX = Y eq
X ) a small baryon

excess YB = (nb − nb̄/nγ
<∼ 1 in the model of subsect. 2.3 should be relaxed according to

dYB

dt
� −2YB

{〈ΓX〉 + nγ〈vσ(bb → b̄b̄)〉} .(4.1)

The first term in eq. (4.1) represents the absorption of baryons by inverse X decays (e.g., bb →
X); the X produced eventually decay approximately symmetrically to baryons and antibaryons,
and hence baryon asymmetry is diminished. The second term describes the direct destruction of
baryon number by 2 → 2 scattering processes. (As discussed in sect. 3, these act at temperatures
T <∼mX to diminish baryon number generated in X decays). Ignoring temporarily the first term
in (4.1), an initial baryon concentration Y ∞

B should relax roughly according to

YB(t) ∼ Y ∞
B exp

[
−mP

∫ T (t)

mP
〈vσ〉dT

]
,(4.2)

assuming as above that the universe expands according to

T ∼
√

mP

t
.(4.3)

At high c.m. energies
√

s, the total cross section for two-body scattering through t-channel
exchange of a spin-j particle behaves like

σ ∼ (s/m2)j/s.(4.4)

As evidenced by eq. (3.1.13), σ(bb → b̄b̄) due to exchange of a vector X goes to a constant value
∼ α2/m2

X at high s. (On the other hand, a scalar X exchange gives a cross section asymptotically
falling like α2/s.) Note that, as is typical in non-abelian gauge theories, the change in quantum
numbers (b → b̄) may be effected without any exchange of transverse momentum; the range of the
B−violating interaction is limited only by the mass of the exchanged X. If σ ∼ α2/m2

X , then eq.
(4.2) implies that any initial baryon excess would be diminished, dominantly near the Planck time,
by a factor ∼ exp[−α2m2

P /m2
X ], which would probably be sufficient to destroy any initial baryon

excess Y ∞
B

<∼ 1. (If σ ∼ α2/s, then the destruction factor would only be ∼ exp[−α2mP /mX ].) A
cross section σ ∼ α2/m2

X results essentially from interactions with an X cloud (of opacity α)
surrounding a baryon, with area ∼ 1/m2

X . At high temperatures, there should be ∼ n/m3
X ∼

ξT 3/(π2m3
X) particles within the range of the X interaction from a single baryon. These particles

should contribute to scattering from the baryon, giving rise to processes with many-body initial
states. As usual, the simple Boltzmann equation is unable to account for such effects of a “long-
range” X interaction21. However, as in electron-ion plasmas [18], it is presumably permissible,
at least in the near-equilibrium state considered, to account for higher-body processes simply
by introduction of an effective screened two-body cross section. The antibaryons surrounding
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a baryon typically screen its “X charge” at distances beyond the Debye length (note that all
particle species carrying any X charge contribute with the same sign to the screening length)

λD �
(

T

32π2αn

)1/2

� 1
(
√

32αξ)T
;(4.5)

this screening may be described by assigning the X an effective mass ∼ 1/λD. The mean time
∼ λD between successive collisions of the X becomes smaller than its Compton time ∼ 1/mX

at temperatures T 
 mX . The effective baryon destruction cross section at high temperatures
should therefore be22 ∼ α2λ2

D ∼ α/(ξT 2), due to each species of B-violating exchange. If, as in
many complicated and “realistic” models, the number of particle species mediating B-violating
processes at very high temperatures is much larger than those conserving baryon number, then
the total B destruction effective cross section should be ∼ ξα/(ξT 2) = α/T 2. With this form,
an initial baryon excess would be diminished by a factor ∼ exp[−αmP /mX ], which is probably
<∼ 10−6, so that the present YB could not be explained in an initially hot universe. (Recall
that YB(T = 0) � YB(T � mX)/ξ(T � mX)). The use of an effective screened cross section
will tend, if anything, to underestimate the rate of B destruction. Notice that the modification
∼ 1/λD ∼ √

αT to the effective X mass is largely irrelevant at the temperatures <∼mX considered
in previous sections.

The X width which governs the first term in eq. (4.1) is given at temperatures not too far
above mX by 〈ΓX〉 � (mX/T )ΓX ∼ mXα

√
t/mP . This form assumes that the produced X is on

its mass-shell, and therefore that the incoming total c.m.s. energy must lie within the X resonance
curve; this restricts the angle of the incoming particles to be <∼mX/EX , and thus introduces the
mX/EX “time-dilation factor” in 〈ΓX〉. However, at temperatures T 
 ΓX , the mean free path
of X for scattering will typically be much shorter than the mean decay length. Hence the X
resonance should be collision broadened, and the mX/EX factor resulting from the impossibility
of producing X with invariant masses 
 mX , should disappear. Then, according to eq. (4.1)
inverse decay processes should diminish an initial baryon excess by a factor >∼ exp[−αmP /mX ].
(If many B-violating bosons exist, dominating ξ at high temperatures, then the factor becomes
>∼ exp[−ξαmP /mX ].)

Most grand unified models based on simple gauge groups [e.g., SU(5)] are asymptotically free,
so that the effective gauge coupling constant falls logarithmically with increasing energy or tem-
perature, and presumably always remains small. Nevertheless, the effective coupling constant for
Higgs interactions often increases with temperature23, and could diverge (reach its Landau sin-
gularity Λ2 ∼ µ2 exp(β0/g2(µ2))24 beyond which perturbation theory is useless at temperatures
below the Planck mass. (If this occurred at T <∼mX , then the calculations of baryon number
generation given above must be modified considerably; in the standard SU(5) model this case
does not occur, except in the presence of massive fermions forbidden by other considerations
[20]. Nevertheless, divergence below the Planck mass could easily be achieved.) The presence of
such strong interactions at very high temperatures should lead to phenomena analogous to those
encountered in the Hagedorn-Frautschi model for hadronic matter (now believed to be inappro-
priate because of the quark composite nature of the hadron states considered). When energy is
added to a strongly interacting system, it may not simply increase the kinetic energies (and hence
temperature) of its constituent particles, but rather serve only to generate more massive parti-
cles with small momenta (these particles might be bound by strong Higgs interactions25). Hence
there may exist a maximum temperature for the universe, governed by the point at which Higgs
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couplings become strong. The behavior of the universe at earlier times may then be shielded:
only the decay products of the massive Higgs bound states initially present will be visible when
the universe has cooled below the maximum temperature; their nature should presumably be
determined solely from the dynamics of the strong Higgs interactions.

Next, we consider the autolysis of a cold universe, initially consisting of a zero temperature
Fermi gas of (ξ types of) baryons with large chemical potential µ(µ/T 
 1). The expansion rate
of such a universe is given by

Ṙ

R
= − Ṫ

T
= ξ

µ2

mP
= − µ̇

µ
,(4.6)

where ξ = (2nf/3π2)1/2, and nf is the number of degenerate fermion species. According to
eq. (2.4.19), the baryon density in a universe with |YB| 
 1 should be destroyed at a rate
(Pauli exclusion effects are negligible, because the phase space for the annihilation products is
unrestricted by the presence of the degenerate baryon sea)

ẎB = −n2
b

nγ
〈vσ〉

= −YBnb〈vσ〉.(4.7)

The number density is [see (C.36)]

nFD

(
T, m = 0,

µ

T

)
= 1

2ξ2µ3,(4.8)

where according to (4.6)

µ2 =
2mP
ξt

.(4.9)

Just as in the high temperature case discussed above, B-violating exchange at high densities
should also be screened. (Although the initial baryon number of a cold universe is taken to be
large, the initial SU(3) color charges, etc., were presumably zero, so that the total charge to which
the X couples was zero, allowing screening.) Hence the effective B destruction cross section in a
cold universe should be26 ∼ α/µ2, so that eq. (4.7) becomes

YB(t) =
2ξ2

α

(
ξ

2mP

)1/2

t−1/2.(4.10)

Thus in the presence of B-violating interactions, an initially cold universe with Y ∞
B 
 1 should

relax to a hot universe with YB
<∼mX/(αmP ) � 1.

Finally, we discuss the structure of the universe very close to the Planck time, and comment
on the consistency of our assumption of initial equilibrium. The cross section for production or
annihilation of scalar particle pairs into photon pairs at high energies is given by σ ∼ 8πα2/s.
The corresponding cross section for production or annihilation into spin-2 graviton pairs is given
at lowest order by [21] σ ∼ 19πs/6m4

P . When T >∼
√

αmP therefore, graviton-induced interactions
should be important, but at lower temperatures, they should rapidly become irrelevant. We have
assumed above that the contents of the early universe behave as an ideal ultrarelavistic gas. In
fact, Coulomb interactions alone should affect the properties of the gas, giving, for example, [22]

ρ � 3T 4

π2

[
1 − α

√
αξ

3
√

π
+ . . .

]
,(4.11)
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an evidently irrelevant correction. Even assuming homogeneity, gravitational interactions would
provide a correction perhaps O((T/mP)3); once again, the effect becomes overwhelming at T �
mP but quickly becomes negligible below it. Of course, even excepting quantum corrections,
the treatment of gravitational effects in the early universe is made difficult by the genuinely long
range nature of gravity: since all masses and gravity is universally attractive, no screening occurs,
and the Boltzmann equation becomes entirely inadequate.

In keeping with the simplest big bang cosmology, we have assumed that the universe is initially
in a state of kinetic equilibrium (so that all particles follow equilibrium distributions in phase
space, albeit perhaps with non-zero chemical potential). Nevertheless, of course, the gravitational
field must be far from equilibrium, otherwise no expansion would occur. One might therefore be
led to modify the usual initial assumptions, and postulate instead that not all particle species were
in equilibrium at the Planck time [23]: they would come to kinetic equilibrium only after a few
collision times. (Nevertheless, despite the fact that a finite time should be required for a signal to
propagate from one part of the universe to another, it appears that the expansion of the different
parts began at “times” closer than would have allowed a light signal to be exchanged between
them. This perhaps surprising phenomenon may indicate that equilibration was more rapid in
the very early universe.) In the presence of long-range interactions, one may consider only an
effective collision time � 1/(nσeff) � (αT )−1 log(1/

√
α). (Assuming not too many conservation

laws, the α here should probably be multiplied in practice by ∼ ξ2.) Typically, therefore, kinetic
equilibrium should be achieved quite rapidly. Two effects could be thought to modify this result.
First, the large effective masses of particles at high temperatures could affect their equilibrium
distributions. In fact, this modification is already included in consideration of suitable screened
cross sections. Second, at a time t, only particles within a Jeans volume � (vsoundt)3 could
apparently be in causal contact. However, this does not necessarily provide an infrared cutoff on
particle momenta (density fluctuations with larger wavelengths can exist).

We are grateful to many people for discussions, including A.D. Dolgov, E. Dwek, S. Frautschi,
William A. Fowler, G.C. Fox, T.J. Goldman, S.E. Koonin, D.L. Tubbs, and R.V. Wagoner.

Appendix A

Boltzmann’s H Theorem

A.1. Maxwell-Boltzmann Statistics

In this appendix, we discuss the H theorem, which shows that any closed system obeying Boltz-
mann’s equation will evolve with time, in the absence of external influences, to an equilibrium
state in which Boltzmann’s H function is minimal (entropy is maximal). If interactions in the
system violate baryon number, then the final equilibrium state can contain no excess of baryons
over antibaryons. In an expanding universe, however, the H theorem is modified, and the baryon
asymmetries discussed above may be produced and remain while expansion persists.

To investigate the approach to equilibrium, we consider the development of the quantity

H =
∑
α

fα(log fα − 1),(A.1)
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where the index α labels both the momentum state and the particle type (in the notation used
above H =

∑
i

∫
d3pifi(pi)(log fi(p)−1), where i runs only over particle types). [Note that (A.1)

differs slightly from usual definitions of H in which the −fα term is absent. When no particles
are created or destroyed,

∑
α fα gives the total number of particles and is constant and irrelevant.

The definition (A.1) is more convenient when particle creation is included.] H changes with time
according to

dH

dt
=
∑
α

dfα

dt
log fα.(A.2)

H is stationary when dfα/dt = 0, which may occur either if no collisions take place, or by detailed
balancing in equilibrium. In the presence of interactions, the fα are taken to evolve with time
according to the Boltzmann equation (the sum over states αi, βi accounts for usual phase-space
integration)

dfα1

dt
=

∑
α2,...αm
β1,...βn

{
bβ1 . . . fβn |M(β1 . . . βn → α1 . . . αm)|2

−fα1 . . . fαm |M(α1 . . . αm → β1 . . . βn)|2} .(A.3)

(This may represent a sum of terms with different numbers m and n of initial or final particles
in collisions.) Then Boltzmann’s H theorem states that any system (in which the momenta of
particles are initially uncorrelated) will evolve towards equilibrium so that

dH

dt
=
∑
α

dfα

dt
log fα ≤ 0,(A.4)

which is a microscopic statement of the second law of thermodynamics. Adding the forms ob-
tained by permuting the dummy indices as, (A.4) may be written (dropping irrelevant constant
factors) as

dH

dt
=
∑
α,β

{Fβ|M(β → α)|2 − Fα|M(α → β)|2} log(Fα),(A.5a)

where

Fα ≡ fα1 . . . fαn ,(A.5b)

and the sums on α, β run over all alphai and βi.
We first discuss the proof of (A.4) when all interactions respect time-reversal (CP ) invariance,

so that all pairs of T –conjugated matrix elements in (A.5) are equal. Then

dH

dt
=
∑
α,β

|M(α → β)|2 {Fβ − Fα} log(Fα)

=
∑
α,β

|M(α → β)|2 {Fβ − Fα} log(FαFβ)(A.6)

where the second form is obtained by adding forms in which the αi and βi are permuted in all
possible ways. The terms in the sum (A.6) now each have the form

(b − a) log(a/b) ≤ 0(A.7)
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(where equality holds only when a = b), and are thus separately not positive, so that dH/dt ≤ 0.
To achieve the equilibrium state dH/dt = 0, each term must vanish, so that

Fα = Fβ = fα1 . . . fαm = fβ1 . . . fβn (equilibrium)(A.8)

for all sets of αi and βi corresponding to initial and final states of possible collisions as represented
in (A.3)27. If particles carry no absolutely conserved internal quantum numbers, then the fi in
(A.8) may depend only on the energies Ei and must follow the Maxwell-Boltzmann distribution

fα = e−Eα/T ,(A.9)

where, as usual, −1/T may be considered as a Lagrange multiplier enforcing energy conservation.
The phase-space distributions for particles carrying absolutely conserved quantum numbers may
differ from (A.9) by factors exp(λiµ/T ) where λi gives the value of the quantum number carried
by species i, while µ is a chemical potential which parametrizes the total concentration of the
quantum number. (For non-abelian quantum numbers, the relevant factors are the corresponding
group elements.) Nevertheless, in the absence of absolutely conserved quantum numbers, the
equilibrium distributions must follow (A.9), and in particular if the particles and antiparticles
of a species are not absolutely conserved, their phase-space distributions must be identical in
equilibrium; no particle-antiparticle asymmetries may exist.

This result also holds when the fundamental interactions exhibit CP violation; it is based
solely on unitarity [25]. The unitarity constraint (2.1.3) implies∑

α,β

Fα

{|M(α → β)|2 − |M(β → α)|2} =
∑
α,β

|M(β → α)|2{Fβ − Fα} = 0.(A.10)

Permuting dummy indices in the second term of (A.5a), but without assuming equality of the
T -conjugated matrix elements yields

dH

dt
=
∑
α,β

|M(β → α)|2 − {Fβ log Fα − Fβ log Fβ}.(A.11)

Inserting the result (A.10) then gives

dH

dt
=
∑
α,β

|M(β → α)|2{Fβ log Fα − Fβ log Fβ + Fβ − Fα} ≤ 0,(A.12)

since

b log(a/b) + (b − a) =
∫ a

b

log(x/a)dx ≤ 0.(A.13)

Once again, distributions must tend to the equilibrium form (A.8). That this conclusion is inde-
pendent of T -violation in the collisions was to be expected, since it also holds for systems in static
external (e.g., magnetic) fields, and when internal degrees of freedom are excited in molecules by
collisions. Of course, as usual, the validity of (A.4) relies on the assumption of molecular chaos,
according to which the momenta of particles are uncorrelated before each collision (but clearly
not after). This is presumably true only at the separated maxima of H, where evolution in t or
−t would decrease H. Strictly, the time dependence of a single-particle phase-space distribution
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should depend on the joint two-particle distribution (as in the BBGKY hierarchy); this may
not always factorize as required for molecular chaos. Nevertheless, eq. (A.3) and hence the H
theorem (A.4) is presumably adequate in an average sense, except when collision rates become
very large, or long-range forces are present, as discussed in sect. 4.

Note that the result dH/dt ≤ 0 relies on the form (A.3) of the Boltzmann equation. In an
expanding universe, the extra term of eq. (2.1.15) must be added to account for the expansion.
This term typically gives a positive contribution to dH/dt, which may overwhelm the negative
contributions from collisions and give dH/dt > 0, so that baryon asymmetries can be generated.

A.2. Quantum Statistics

In eqs. (A.1) and (A.3) we have assumed that all particles are classically distinguishable, and
therefore obey Maxwell-Boltzmann statistics. As mentioned in subsect. 2.4, when the particles
are identical, (A.3) becomes (known as the Uehling-Uhlenbeck equation)

dfα1

dt
=

∑
α2,...αm

β1,...βn

{
fβ1 · · · fβn(1 + θα1fα1 · · · (1 + θαmfαm |M(β1 · · ·βn → α1 · · ·αm)|2

−fα1 · · · fαm(1 + θβ1fβ1 · · · (1 + θβnfβn |M(α1 · · ·αm → β1 · · ·βn)|2}(A.14)

where θαi = +1 if the particle αi is a boson and = −1 if it is a fermion. We write the factor
(1+θα1fα1) · · · (1+θαnfαn) = sα1 · · · sαn = Sα and denote Θα = θα1 · · · θαn . For final fermions,
the extra (1− f) factor implements the Pauli exclusion principle which forbids any fermion from
being emitted into a cell in phase space which is already occupied (in a finite quantization volume,
this is achieved by a 1 − Nα factor for each finite cell, which becomes 1 − f in the continuum
limit). For final bosons, the two terms in each (1+f) factor represent spontaneous and stimulated
emission respectively. The presence of this correction may formally be considered to result from
the

√
N + 1 factor when a creation operator acts on an N boson state (a†|N〉 =

√
N + 1|N +1〉),

which follows from the commutation relations of the boson field operators. A slightly more direct
derivation is based on the fact that the total amplitude for any process is the sum of the amplitudes
associated with each possible permutation of identical bosons. (For fermions, the exchange of
each pair introduces a minus sign.) Consider a state |Ni〉 consisting of N indistinguishable
non-interacting bosons. For combinational purposes, assign each boson to one of N separate
“substates” of |Ni〉. The number of possible assignments is N ! First, let the bosons propagate
undisturbed to a final state |Nf 〉, which is again divided into N “substates”, labelled in N ! ways.
The amplitude for the propagation of each boson is exp (iEt). The total amplitude for all N
bosons to propagate them |Ni〉 to |Nf 〉 is the sum of the N ! amplitudes corresponding to each
possible assignment of substates for the bosons in the initial and final state. Dividing by the
number of possible relabellings of the substates in |Ni〉 and |Nf 〉 gives for the total propagation
probability |N !eiEt|2/(N !)2 = 1. Now, however, consider the introduction of an extra boson
during the propagation, with amplitude A. The final state |(N +1)f 〉 is now divided into (N +1)
substates, which may be labelled in (N+1)! ways. The total probability for the propagation with
the addition of one extra boson is then |(N + 1)!AeiEt|2/(N + 1)!) = (N + 1)|A|2 : it is enhanced
by a factor (N + 1) relative to the probability |A|2 for the introduction of the boson into an
initially empty state. Taking the continuum limit then gives the (1 + f) correction factor.
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A suitable quantity by which to measure the approach to thermal equilibrium of a system of
identical particles is

H =
∑
α

{fα(log fα − 1) − θαsα(log sα − 1)} .(A.15)

This H evolves with time according to
dH

dt
=
∑
α

dfα

dt
log(fα/sα),(A.16)

which may be written, using the modified Boltzmann equation (A.14), as

dH

dt
=
∑
α,β

{
FβSα|M(β → α)|2 − FαSβ |M(α → β)|2} log(Fα/Sα).(A.17)

We first assume T invariance, so that M(β → α) = M(α → β). In this case, eq. (A.17) becomes
[analogous to eq. (A.6)]

dH

dt
=
∑
α,β

|M(α → β)|2 {FβSα − FαSβ} log(fα/Sα)} log(Fα/Sα).

=
∑
α,β

|M(α → β)|2 {FβSα − FαSβ} log(fα/Sα)} log
Fα/Sβ

FβSα

≤ 0,(A.18)

where the final inequality follows from (A.7). Hence the system will evolve on average to an
equilibrium state in which H is minimal, and

Fα

Sα
=

Fβ

Sβ
=

fα1

1 + θα1fα1

. . .
fαm

1 + θαmfαm

=
fβ1

1 + θβ1fβ1

. . .
fβn

1 + θβnfβn

(A.19)

for all set of αi and βi corresponding to initial and final states of possible scattering processes.
In analogy with (A.9), energy conservation then implies

fα

1 + θαfα
= e−(Eα−µα)/T ,(A.20)

where µα represents possible absolutely conserved quantum numbers. Solving (A.20) for fα gives
[cf., eq. (2.4.11)]

fα = [e(Eα−µα)/T − θα]−1,(A.21)

which is the usual equilibrium Bose-Einstein or Fermi-Dirac distribution (θ = +1 for bosons,
θ = −1 for fermions).

When CP invariance is violated, one must use unitarity to prove the H theorem dH/dt ≤ 0. In
the presence of indistinguishable particles the unitarity relation (2.1.3) is modified, and becomes
[26] ∑

j

Sj |M(i → j)|2 =
∑

j

Sj |M(j → i)|2,(A.22)
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where Sj is the product of quantum statistics correction factors defined above. The CPT -
invariance constraint (2.1.1) yields the results [analogous to eqs (2.1.4) and (2-1-5)]

∑
j

Sj |M(i → j)|2 =
∑

j

Sj |M(j → i)|2 =
∑

j

Sj |M(j → i)|2

=
∑

j

Sj |M(̄ı → j)|2.(A.23)

To show that no asymmetry between particles and antiparticles may be generated in thermal
equilibrium, we must prove that∑

j

Fj |M(j → ı̄)|2 =
∑

j

Fj |M(j → i)|2,(A.24)

where Fj = fji . . . fjn is the product of the relevant incoming particle Bose-Einstein or Fermi-
Dirac equilibrium phase-space densities. According to eq. (A.l9), in thermal equilibrium

Fα

Sα
=

Fβ

Sβ
,(A.25)

for all sets of particles α, β, (This is the generalization of the result for distinguishable Maxwell-
Boltzmann particles used in subsect. 2.1 that all states of a given energy are equally populated.)
Inserting the relation (A.25) in the unitarity equation (A.23) gives directly the desired result
(A.24).

Using the unitarity result (A.22), the proof of the H theorem for indistinguishable particles
undergoing CP -violating interactions proceeds quite analogously to the distinguishable particle
case treated above. On exchanging dummy indices, eq. (A.17) may be written [cf., (A.11)]

dH

dt
=
∑
α,β

|M(β → α)|2 {FβSα log(Fα/Sα) − FβSα log(Fβ/Sβ)} .(A.26)

The unitarity relation (A.22) implies [cf., (A.10)]∑
α,β

|M(β → α)|2 {FβSα − FαSβ} = 0,(A.27)

and inserting this in eq. (A.26) gives

dH

dt
=
∑
α,β

|M(β → α)|2
{

FβSα log
FαSβ

FβSα
+ FβSα − FαSβ)

}
≤ 0,(A.28)

by eq. (A.13). Thus the validity of the H theorem is unaffected by indistinguishable particle
effects, even when CP violation is present28.
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Appendix B

Constraints on CP Violation

In eq. (2.1.9) we showed that to obtain a CP -violating difference between partial cross sections
of the form

|M(i → j)|2 − |M(̄ı → j̄)|2 �= 0(B.1)

cannot (except when īı mixing is possible, as discussed in subsect. 2.4) occur in the Born
approximation, and requires loop corrections with absorptive (imaginary) parts. Here, we first

show that a difference between cross sections summed over all final states
(−)

j with baryon number
(−)

B ∑
j∈B

|M(i → j)|2 −
∑
j̄∈B̄

|M(̄ı → j̄)|2 �= 0,(B.2)

cannot occur unless the loop corrections are also B-violating. We write

M(i → j) =
∑

n

M1(i → n)M2(n → j),(B.3)

where M1 is a B-violating Born amplitude (which is necessarily CP conserving) and M2 repre-
sents a correction (analogous to rescattering) which introduces CP violation, but is taken to be
B-conserving. Then

∑
j∈B

|M(i → j)|2 =
∑
j∈B

[∑
n

M1(i → n)M2(n → j)

]
×
[∑

n′
M1(i → n′)M2(n′ → j)

]†
.(B.4)

Since M2 is baryon conserving, it must obey the unitarity constraint∑
j∈B

M2(n → j)M∗
2(j → n′) = δnn′ ,(B.5)

when summed only over the accessible states j of a given baryon number. Using this result, eq
(B.4) becomes

∑
j∈B

|M(i → j)|2 =

∣∣∣∣∣
∑
n∈B

M1(i → n)

∣∣∣∣∣
2

=

∣∣∣∣∣∣
∑
n̄∈B̄

M1(̄ı → n̄)

∣∣∣∣∣∣
2

=

∣∣∣∣∣∣
∑
j̄∈B̄

M1(̄ı → j̄)

∣∣∣∣∣∣
2

,(B.6)

since M1 is CP -conserving. Hence to obtain a CP -violating difference of the form (B.2) after
summing over states j ∈ B, the hamiltonian responsible for the loop correction (hence M2) must
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violate baryon number. This constraint severely restricts baryon generation in gauge models, as
discussed in ref. [11,29].

Appendix C

Number Density Integrals

In this appendix, we give some integrals of equilibrium phase-space distributions used in sect. 2.
As elsewhere, we take units such that (k is Boltzmann’s constant)

h‘ = c = k = 1.(C.1)

We consider a uniform ideal gas of particles with mass m in thermal equilibrium at temperature
T , and write

x ≡ m/T.(C.2)

The number density of such particles in phase space is given by (see subsect. 2.1)29

dN

d3pd3x
≡ f(p) = f(p) =

g

(2π)3
1

e(E−µ)/T + θ
,

E =
√

p2 + m2,(C.3)

where θ = +1 for particles obeying Fermi-Dirac (FD) (Bose-Einstein (BE)) statistics, and θ = 0
in the classical (distinguishable particles) approximation of Maxwell-Boltzmann (MB) statistics,
used extensively above. g gives the number of spin states for each particle. [Usually g = 2s + 1
for massive particles and g = 2, s > 0 for m = 0. However, because the interaction cross sections
for the various spin states of a weakly interacting particle may differ, its full complement of
spin states may not be in thermal equilibrium at a particular temperature. Thus, for example,
the second spin state of a neutrino carrying a small but non-zero mass may not be in thermal
equilibrium if only one of its spin states may participate directly in weak interactions.] The
µ appearing in eq. (C.3) is a possible chemical potential which serves to constrain the total
number of particles. When a species of particles are distributed in phase space according to eq.
(C.3), they are said to be in kinetic equilibrium. They are in chemical equilibrium only if µ = 0
(unless they carry an absolutely conserved quantum number, such as electric charge, with respect
to which the complete system is not neutral). Baryons in the early universe should quickly be
brought into kinetic equilibrium by collisions; only much slower B- and CP -violating scatterings
can produce chemical equilibrium, with µ = 0.

The total particle number density may be obtained by integrating (C.3) over the available
momentum states:

n
(
T,

m

T
,
µ

T

)
=
∫ ∞

0

d3p

(2π)3
g

e(E−µ)/T + θ

=
gT 3

2π3

∫ ∞

x

z
√

z2 − x2[e(z−µ/T ) + θ]−1dz.(C.4)
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C.1. Number Densities with Maxwell-Boltzmann Statistics

In the approximation of Maxwell-Boltzmann statistics, the number density integral becomes

nMB

(
T,

m

T
,
µ

T

)
=

gT 3

2π2

∫ ∞

0

z
√

z2 − x2e−(z−µ/T )dz, z = E/T.(C.5)

This integral may be expressed in terms of a modified Bessel function (using the notation of ref.
[27])

nMB

(
T,

m

T
,
µ

T

)
=

gT 3e−µ/T

2π2
x2K2(x).(C.6)

For large x (corresponding to low temperatures) the asymptotic expansion of the Bessel function

Kν(x) �
√

π

2x
e−x

[
1 +

(ν2 − 1/4)
2x

+
(ν2 − 1/4)(ν2 − 9/4)

8x2
+ . . .

]
, (x 
 1),(C.7)

gives the usual Boltzmann factor

nMB

(
T,

m

T
,
µ

T

)
� g

(
mT

2π

)3/2

e−m−µ)/T

[
1 +

15
8x

+
105

128x2
− . . .

]
, (m 
 T )(C.8)

At small x (high temperatures) expansion of the Bessel function

Kν(x) = 1
2

ν−1∑
k=0

(−1)k (ν − k − 1)!
k!

(1
2x)2k−ν

+(−1)ν+1
∞∑

k=0

(1
2x)2k+ν

(k!(η + k)!)

[
log(1

2x) + γ +
k∑

i=1

1
2i

k+η∑
i=1

1
2i

]
,(C.9)

gives

nMB

(
T,

m

T
,
µ

T

)
� gT 3eµ/T

π2

[
1 − 1

4x2 − 1
64x4(4 log(1

2x) + 4γ − 3) + . . .
]
, (m � T ),(C.10)

where γ(� 0.5772) is Euler’s constant. Hence the ratio of the number density of a massive species
of particles to the number density of photons at high temperatures is roughly

nMB

(
T,

m

T
,
µ

T

)
/nγ

MB(T, 0, 0) � 1
2g eµ/t

[
1 −
( m

2T

)2

− . . .

]
(m � T )

� 1
2g

[
1 +

µ

T
−
( m

2T

)2

+ 1
2

( µ

T

)2

− . . .

]
(µ, m � T ),(C.11)

where, for consistency, we have approximated the photon number distribution by Maxwell-
Boltzmann statistics.
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C.2. Moments of the Maxwell-Boltzmann Distribution

The mean time dilation in the decay lifetime of Maxwell-Boltzmann particles in thermal equilib-
rium at a temperature T = m/x is given by

〈m
E
〉MB =

∫∞
x

x
√

z2 − x2e−zdz∫∞
x z

√
z2 − x2e−zdz

=
K1(x)
K2(x)

.(C.12)

At high temperatures (small x) the particles are relativistic, with energies ∼ T , and

〈m
E
〉MB � m

T
[1 + 1

2x2(log(1
2x) + γ) + . . .], (m � T ),(C.13)

while in the non-relativistic limit (high x):

〈m
E
〉MB � 1 − 3

2x
+

15
8x2

− . . . , (m 
 T ).(C.14)

Next, we consider the mean energy of the particles in a Maxwell-Boltzmann gas. This may
be found directly by integrating (C.1) with weight E = Tz. However, we shall here use a less
direct method, since it introduces several useful results. In non-relativistic classical statistical
mechanics the equipartition theorem states that each (quadratic) degree of freedom of a particle
which is Boltzmann distributed has a mean thermal energy of 1

2T. To obtain the relativistic
generalization of the equipartition theorem one must find a quantity Q(p) whose mean value

〈Q〉MB =
∫

d3p e−E/T Q(p)∫
d3p e−E/T

,(C.15)

depends only on T and not on m/T or µ/T. A suitable such quantity is

Q = pi

∂E

∂pi

,(C.16)

where i labels some component of the three-momentum p. Inserting the choice (C.16) into (C.15)
one finds on integrating by parts:

〈Q〉MB =
〈

pi

∂E

∂pi

〉
MB

= T,(C.17)

for all m and µ. In the non-relativistic limit, E = m+
∑

p2
i /2m, so that Q = mv2

i , and summing
over i one regains the standard result that the mean kinetic energy of a particle in thermal
equilibrium at a temperature T is 3

2T. For relativistic particles, Q = p2
i /E, so that〈

p2

E

〉
MB

=
〈

E − m2

E

〉
MB

= 3T,(C.18)

regardless of the value of m (or µ). This result is therefore a relativistic generalization of the
equipartition theorem. One may now use eqs. (C.12) and (C.18) to find

〈E〉MB = 3T + m
K1(x)
K2(x)
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� 3T +
m2

T
+ . . . , (T 
 m),

� m +
3T

2
+

15T 2

8m
− . . . (T � m).(C.19)

Eq. (C.6) then gives the energy density of the gas:

ρMB

(
T,

m

T
,
µ

T

)
= nMB

(
T,

m

T
,
µ

T

)
〈E〉MB

=
3gT 4eµ/T

2π2
[x2K2(x) +

1
3
x3K1(x)]

= gm

(
mT

2π

)3/2

e−(m−µ)/T

[
1 +

27
8x

+ . . .

]
(m � T )

=
3gT 4eµ/T

π2
[1 − 1

12
x2 + . . .](T 
 m).(C.20)

C.3. Number Densities with Quantum Statistics

For fermions (bosons) the number density integral (C.4) becomes

n
(
T, x =

µ

T
,
µ

T

)
=

gT 3

2π2

∫ ∞

x

z
√

z2 − x2e−z/[1
+

(−)e−(z−µ/T )]dz,(C.21)

which cannot be expressed in terms of the usual special functions, but may formally be written
as

nFD

(BE)

(
T, x =

m

T
,
µ

T

)
=

gT 3

2π2

∞∑
k=0

[(∓)eµ/T ]k

(k + 1)
x2K2((k + 1)x),(C.22)

since K2(z) falls off exponentially for large z, this series converges rapidly, and is convenient for
numerical evaluation. However, for small x the series is not uniformly convergent. Nevertheless
it is easy to find the high temperature behavior of eq. (C.21) when µ = 0 :

nBE

(
T,

m

T
, 0
)

=
gT 3

π2

[
ζ(3) + 1

4

(m

T

)2

log
m

T
+ . . .

]
,

nFD

(
T,

m

T
, 0
)

=
gT 3

π2

[
3
4
ζ(3) −

(m

T

)2 log 2
2

+ . . .

]
, (T 
 m),(C.23)

where ζ(3) =
∑∞

i=1 1/i3 � 1.202, while for Maxwell-Boltzmann statistics, eq. (C.10) gives

nMB

(
T,

m

T
, 0
)
� gT 3

π2

[
1 − 1

4

(m

T

)2

+ . . .

]
, (T 
 m).(C.24)

At low temperatures, of course, the effects of quantum statistics (represented by the terms in
(C.22) with k > 0) are exponentially unimportant, and thus [from eq. (C.8)]

nBE

(
T,

m

T
, 0
)
� nFD

(
T,

m

T
, 0
)
� nMB

(
T,

m

T
, 0
)

� g

(
mT

2π

)3/2

e−m/T , (T � m).(C.25)
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[Further terms in the asymptotic series are given in eq. (C.37)]. The ratio nFD(T, m/T, 0)/nMB(T, m/T, 0)
goes monotonically from 3

4ζ(3)(ζ(3)) to 1 as m/T goes from 0 to ∞; the largest changes occur
around m = T.

C.4. Massless Particle Number Densities

For massless particles, it is simple to perform the integrals (C.4) retaining the chemical potential
µ, in terms of the polylogarithm functions [28]

Lin(x) =
∫ x

0

Lin−1(t)
t

dt =
∞∑

k−1

xk

kn

=
(−1)n

Γ(n − 1)

∫ 1

0

logn−2(t) log(1 − xt)
t

dt, (n ≥ 2),

Li1(x) = − log(1 − x), Lin(1) = ζ(n),
Lin(−1) = (21−n − 1)ζ(n),(C.26)

using the formula∫ ∞

0

zn−1dz

ez − Y
=

Lin(Y )Γ(n)
Y

= Γ(n), (Y = 0).(C.27)

One finds30 ζ(2) = 1
6π2 � 1.645, ζ(3) � 1.202, ζ(4) = 1

90π4 � 1.082)

nBE

(
T, 0,

µ

T

)
=

gT 3

π2
Li3(eµ/T � gT 3

π2

[
ζ(3)

µ

T
ζ(2) + . . .

]
,

nFD

(
T, 0,

µ

T

)
=

gT 3

π2
Li3(−eµ/T � gT 3

π2

[
3
4
ζ(3)

µ

2T
ζ(2) + . . .

]
,

nMB

(
T, 0,

µ

T

)
=

gT 3

π2
eµ/T ,(C.28)

where µ ≤ 0 for the Bose-Einstein case. [If the number density of bosons in a system increases
above its value given above when µ = 0, then Bose condensation must occur: many particles
collect in the ground state and the approximation of a sum over discrete energy levels by the
integral (C.4) is no longer satisfactory (so that finite volume effects become important).]

C.5. Energy Densities

The expansion rate of the early universe is determined by its energy density, which is conveniently
parametrized in terms of the “effective number of species in thermal equilibrium”, defined by

ρ = ξ
(m

T
,
µ

T

)
ργ ,(C.29)
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where ρ is the energy density of a (genuine Bose-Einstein) photon gas

ργ =
6ζ(4)
π2

T 4 =
1
15

π2T 4.(C.30)

The contribution of a massive particle with µ = 0 to ξ is given by eq. (C.25) as

ξ
(m

T
, 0
)
� 15g

π2

m

T

( m

2πT

)3/2

e−m/T , (m 
 T ),(C.31)

which is usually negligibly small. Eq. (C.20) gives us complete form of ξ for particles obeying
Maxwell-Boltzmann statistics. At high temperatures, one finds

ξBE

(m

T
, 0
)
� ζ(4)

[
1 − 5

2π2

(m

T

)2

+ . . .

]
� 1.082g + . . . ,

ξFD

(m

T
, 0
)
� 7

8
ζ(4)g

[
1 − 5

4π2

(m

T

)2

+ . . .

]
� 0.947g + . . . ,

ξMB

(m

T
, 0
)
� g

[
1 − 1

12

(m

T

)2

+ . . .

]
.(C.32)

For zero-mass particles with non-zero chemical potential31

ξBE

(
0,

µ

T

)
=

g

2
Li4(eµ/T ) � ζ(4)g

[
1 +

µ

T

ζ(3)
ζ(4)

+ . . .

]
,

ξFD

(
0,

µ

T

)
=

−g

2
Li4(−eµ/T ) � 7

8
ζ(4)g

[
1 +

µ

T

6ζ(3)
7ζ(4)

+ . . .

]
,

ξMB

(
0,

µ

T

)
= geµ/T ,(C.33)

where the expansions are for µ/T � 1. The mean energies (= ρ/n) for zero-mass particles in
thermal equilibrium with µ = 0 are given by

〈EBE〉 � 3
ζ(4)
ζ(3)

T � 2.6T,

〈EFD〉 � 7
2

ζ(4)
ζ(3)

T � 3.2T,

〈EMB〉 � 3T, (m = µ = 0),(C.34)

while the dispersions of the energy distributions about these means are

σ = [〈E2〉 − 〈E〉2]1/2,

σBE � 1.77T,

σFD � 1.75T,

σMB �
√

3T � 1.73T, (m = µ = 0).(C.35)

Since no known bosons carry absolutely conserved quantum numbers (other than electric
charge) it seems unlikely that a high chemical potential for a boson species, leading to Bose
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condensation, could be enforced in the early universe. However, according to “cold” models for
the early universe (discussed in sect. 4), degenerate Fermi gases existed at early times, having

nFD

(
T, 0,

µ

T

)
� gµ3

6π2

[
1 + 6ζ(2)

(
T

µ

)2

+ . . .

]
,

ρFD

(
T, 0,

µ

T

)
� gµ4

8π2

[
1 + 12ζ(2)

(
T

µ

)2

+ . . .

]
, (µ 
 T ),(C.36)

C.6. Non-relativistic Limit of Quantum Statistics

In the non-relativistic limit m 
 T , eq. (C.4) becomes

nFC

(BE)

(
T,

m

T
,
µ

T

)
� g

2π2

∫ ∞

0

p2dp

e(m−µ/T eρ2/(2mT) +
(−)

1
, (m 
 T ),(C.37)

which may be written in terms of polylogarithm functions

nBE

(
T,

m

T
,
µ

T

)
� g

(
mT

2π

)3/2

Li3/2(e−(m−µ)/T )

nFD

(
T,

m

T
,
µ

T

)
� −g

(
mT

2π

)3/2

Li3/2(e−(m−µ)/T ), (m 
 T ),(C.38)

where from eq. (C.26)

Li3/2(x) =
∞∑

k=1

xk

k3/2
,(C.39)

while

nMB

(
T,

m

T
,
µ

T

)
� g

(
mT

2π

)3/2

e−(m−µ)/T , (m 
 T ).(C.40)

(Note that for n ≤ 2, Lin(x) has an infinite derivative at x = 1). The energy densities of massive
fermions and bosons in thermal equilibrium at low temperatures are given by

ρBE

(
T,

m

T
,
µ

T

)
� nBEm +

3
4m

(
mT

2π

)5/2

Li5/2(e−(m−µ)/T ),

ρFD

(
T,

m

T
,
µ

T

)
� nFDm − 3

4m

(
mT

2π

)5/2

Li5/2(−e−(m−µ)/T ).(C.41)

C.7. A Two-particle Integral

In subsect. 2.3, the two-particle integral

I ≡
∫

d3p1

2E1

∫
d3p2

2E2
f eq(p1)f eq(p2)δ(s − m2

X),(C.42)
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where s = (pl + p2)2, appeared in connection with the rate for 2 → 2 scattering of massless b via
nearly on-shell X exchange. Performing the integral over c.m. angles gives

I = π2

∫
dE1

∫
dE2e

−E1/T e−E2/T

∫ 4E1E2

0

dsδ(s − m2
X)

= π2TmXK1

(mX

T

)
,(C.43)

where K1 is a modified Bessel function. Making use of (C.6) and (C.12), I may be written as
[cf., (2.3.17)

I = 〈mX

E
〉2π4

m
neq

X

=
( 〈ΓX〉

ΓX

)
neq

X

2π4

mX
.(C.44)
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Notes
1 This relation is modified if some of the final-state particles are indistinguishable from those in

an ambient gas. The necessary quantum statistics corrections are given in appendix A.
2 This result holds if all particles obey Maxwell-Boltzmann statistics. The modified form with

quantum statistics is given in Eq. (A.23).
3 This result may essentially be obtained by Newtonian considerations. Taking the universe to

contain a homogeneous gas with density ρ, the energy equation for a unit mass shell of the
gas with radius R becomes 1

2R2 − GM/R = Etot = − 1
2k, where M = 4

3πρR3 is the total
mass contained within the shell (relativistic considerations show that pressure terms do not
contribute). At least in the early universe the total energy may be neglected with respect to
the separate kinetic and potential energies and

(Ṙ/R)2 � 8π

3
Gρ =

8π

3
ρ

m2
P

.

4 The temperature dependence of the expansion rate in eq. (2.1.14) obtains only in a homoge-
neous universe.

5 We comment on the consistency of this assumption in sect. 4.
6 This increase may be considered to result from the appearance of a bulk (or second) viscosity

[24] ζ > 0, which opposes the expansion, ζ vanishes for ideal gases in the limits m 
 T and
m � T, but is positive at intermediate temperatures m ∼ T (and is typically proportional to
the relaxation time).

7 These equations are entirely classical. Identical particle corrections are discussed in subsect.
2.4. Genuine quantum-mechanical interference effects should be important only when the mean
distance between successive collisions is shorter than the wavelengths of the participating
particles. This circumstance may well occur at high temperatures, and a discussion of its
consequences is given in sect. 4. The rough number of particles in causal contact at a
temperature T is given (see subsect. 2.4) roughly by 10−2(mp/T )3 and is therefore sufficiently
large at the temperatures we consider for statistical methods to be applicable.

8 A model similar to this was proposed in ref. [6].
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9 We may take the two-body decay matrix element to be independent of any momenta. Even
ε · p terms must vanish on averaging over initial and final spins.

10 In addition to the finite intrinsic width of the X resonance, there should be additional collision
broadening at high temperatures; the resonance width should become of order the inverse time
between collisions −α2T or α2(T 3/m2

X) (see sect. 4). However, most X decay at temperatures
∼ αm,X, where such effects are probably negligible. (Doppler broadening, familiar from the

spectra of hot gases, is irrelevant here; it serves only to smear the energies of
(−)

b emitted in
(−)

X decay.)
11 Since quarks have third-integer electric charges, but leptons integer ones, B-violating bosons

in grand unified gauge models typically carry electric charge, and therefore cannot mix with
their antiparticles.

12 In general

{n, ρ, p} =
∫ ∞

0

d3p

(2π)3

{
1, E,

|p|2
3E

}
feq(p),

while

v2
sound − ∂p/∂ρ.

13 If a massive species survives for a long time between decoupling from thermal equilibrium and
decaying, the large deviations from equilibrium can occur, and large amounts of entropy may
be generated [31].

14 Much more complicated behavior, perhaps with 〈φ(∞)〉2 > 0, can be obtained by introducing
several coupled Higgs fields.

15 In this equation, we have approximated the intermediate X propagator by its zero-temperature
form. As discussed in sect. 4, the effective X mass at high temperatures is probably given by
an inverse Debye screening length.

16 When applied solely to the matter in the universe, but not to the gravitational field generated
by it.

17 For two quarks within a proton, |Ψ(0)|2 ∼ 1/r3
P ∼ (0.7 GeV)3, while if the quarks were free

in an ideal gas of number density n, |Ψ(0)|2 ∼ n.
18 Note that even within this specific model, only leading log contributions are included in

deducing mX [16]; the subheading log terms have not yet been calculated using consistent
prescriptions.

19 Note, of course, that by construction ε ≤ 1, so that models giving YB too small even when
ε = 1 should be considered in disagreement with the standard cosmology.

20 In fact, in the presence of “long-range forces” (acting over times longer than the collision time),
the Boltzmann equation ceases to be applicable. The equation assumes that the momenta of
particles are uncorrelated before each scattering, but ignores processes involving more than
two initial particles (e.g., two sequential two-body interactions). When long-range forces exist,
the effects neglected in this way become important, and one must formally resort to more
complicated equations [19]. So long as kinetic equilibrium prevails, however, consideration of
an effective screened cross section should be adequate.

21 In electron-ion plasmas, the effective Coulomb cross section involves a log, rather than a
power of λD; in that case, the f(p) change only if scatterings deflect particles into a different
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momentum state, so that for the relevant effective total cross section, the differential cross
section is weighted by the change in momentum. Here, the f(p) may change due to changes
in quantum numbers alone, with no change in momentum.

22 Bounds on Higgs couplings [20] based on the structure of the effective potential (vacuum
energy density as a function.of Higgs field strength) responsible for spontaneous symmetry
breakdown need only apply at low temperatures T � mX ; at higher temperatures, large
thermal fluctuations in the fields restores the broken symmetry (see subsect. 2.4) and render
the effective potential irrelevant.

23 Recall that asymptotically free coupling constants behave as g2(s) ∼ 1/ log(s/Λ2), and diverge
in the small s infrared region, while asymptotically strong couplings behave according to
g2(s) ∼ l/ log(Λ2/s). For QED, Λ2 ∼ m2

e exp(l/α).
24 Which represent (in ladder approximation) only spin-0 exchanges, yielding universally attrac-

tive forces.
25 At high temperatures, the Boltzmann distribution of the screening particles is reflected in the

exponential form VX(r) ∼ exp(r/λD)/r for the screened potential. In a degenerate Fermi gas,
the potential again reflects the particle distribution, and VX(r) ∼ θ(λD − r)/r.

26 One might expect that the equilibrium condition (A.8) could be deduced from dfα/dt = 0 for
a single state α. However, this implies only∑

β

(Fα − Fβ)|M(α → β)|2 = 0;

individual terms could be non-zero but cancel in the complete sum. Consideration of
∑

α d(fα)2/dt =
0 yields

∑
α,β(Fα − Fβ)2|M(α → β)|2 = 0, thus providing an alternative derivation of (A.8).

27 The proof given here finally dispels doubts raised e.g., in refs. [25,30].
28 The factor 1/(2π)3 arises because a phase-space cell containing a single mode of the field has

volume h3 rather than x3.
29 For these expansions, we used the relations (valid for 0 < x � 1) :

Li2(1 − x) = ζ(2) − Li2(x) − log x log(1 − x)
� ζ(2) − x(− log(x) + 1) − · · · ,

Li3(1 − x) � ζ(3) − xζ(2) − 1
4x2(2 log x + 2ζ(2) − 3) + · · · ,

Lin(1 − x) � ζ(n) − xζ(n − 1) + · · · , (n > 2).

The last result may trivially be derived from the series expansion in (C.26). It is also convenient
to apply the relation

Lin(x2) = 2n−1[Lin(x) + Lin(−x)],

to obtain (for |x| � 1)

Lin(−1 + x) � (21−n − 1)ζ(n) + x(1 − 22−n)ζ(n − 1) + . . . , (n > 2).
30 For these expansions we used the result (x 
 1)

Lin(−x) � logn(x)
n!

− logn−2(x)
(n − 2)!

ζ(2) − . . . ,

where the second term is absent for n ≤ 2.
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