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ABSTRACT

Cellular automata provide simple discrete deterministic
mathematical models for physical, biological and computational
systems. Despite their simple construction, cellular automata are
shown to be capable of complicated behaviour, and to generate

complex patterns with universal features. An outline of their sta-
tistical mechanics is given.

¥ Address from January 1983: Institute for Advanced Study, Princeton NI 08540.



Introduction

An "elementary" cellular automaton consists of a sequence of sites carrying
values 0 or 1 arranged on a line. The value at each site evolves deterministically
with time according to a set of definite rules involving the values of its nearest
neighbours. In general, the sites of a cellular automaton may be arranged on
any regular lattice, and each site may take on any discrete set of values. This
article concentrates on the case of "elementary" cellular automata in one
dimension with binary values at each site, and shows that despite their simple
construction, such systems can exhibit complicated behaviour. Details, exten-
sions and further discussion, together with more extensive references, are given
in ref. [1].

Cellular automata were introduced by von Neumann and Ulam as simple
models in which to study biological processes such as self-reproduction [2]. Any
system with many identical discrete elements undergoing deterministic local
interactions may be modelled as a cellular automaton. Non-trivial cellular auto-
mata are obtained when the local evolution is non-linear. Physical examples may
be found in aggreg tion phenomena such as snowflake growth (c.f. [3]). Biologi-
cal examples are iound when organisms grow into complicated forms by
repeated application ¢f simple local rules (e.g. [4]). Mathematical systems akin
to cellular automata are found in number theory [5]. The solitaire computer
game of "Life" [6] is an excmple of a two-dimensional cellular automaton.

Cellular automata may be considered as (parallel-processing) computers, in
which the initial configuration encodes the program and input data, and time
evolution yields the final output (e.g. [R]). Sufficiently complicated cellular
automata {such as the game of "Life" [7]) are found to be "computationally
universal” (e.g. [8]), and thus behave as "general-purpose" computers, capable
of evaluating any Turing computable function given appropriate input. Accord-
ing to Church's thesis in the formal theory of computation, such cellular auto-
mata may thus potentially simulate any possible system.

Figure 1 shows an example of a set of local rules for an elementary cellular
automaton. Each of the eight possible sets of values for a site and its nearest
neighbours appear on the upper line, while the lower line gives the value to be
taken by the central site on the next time step. These rules are applied syn-
chronously to each site at every time step. Thus for example, the sequence
010110110 becomes -0011011- after one time step according to the rule illus-
trated in fig. 1 (the two end sites depend on unspecified values). Rules may be
interpreted as Boolean operations on the values of the three sites in each neigh-
bourhood. Thus, for example, the rule illustrated in fig. 1 may be considered to
take the value of a site to be the sum modulo two of the values of its two neigh-
bours on the previous time step. Rules may be denoted by the decimal
equivalents of their binary specifications: fig. 1 thus gives rule 01011010,=90.
Since any sequence of eight binary digits corresponds to a (elementary) cellular

automaton rule in analogy with fig. 1, there are 2(?) =256 possible such rules.



Only the 32 rules of the form a;azazasczasx,0 satisfy reflection symmetry and
leave the "quiescent" configuration -000000- unchanged, and are therefore con-
sidered "legal".

Simple initial states

Figure 2 shows the "growth" of a pattern from a "seed" consisting of a single
site with value 1 (surrounded by value O sites) according to each of the 32 possi-
ble (legal) elementary cellular automaton rules. The evolution is shown until a
particular configuration appears for the second time (a "cycle" is detected) or
for at most 20 time steps. The patterns generated by all rules are seen to fall
into a few classes. In one class, the initial 1 is either immediately erased (as by
rule 0) or maintained unchanged forever (rule 4). A second class of rules
(exemplified by 50 or 122) copy the initial 1 to generate a uniform structure
analogous to a perfect crystal. Rules such as 18, 22 and 90 form a third class of
"complex" rules which generate complicated patterns.

Figure 3 shows two constructions for the pattern generated by rule 90.
Since this rule takes each site to be the sum of the previous values of its neigh-
bours modulo two, the pattern it generates is simply Pascal's triangle modulo
two {or the binomial coefficients in the expansion of the generating function
(1+z)™ modulo two). (Rule 90 may also be interpreted as generating "stunted"
binary trees, in which two diagonal branches grow from each nonzero site at
each time step, but are inhibited if they would collide.) The final pattern of
nonzero sites is obtained as the limit of the recursive geometrical construction
shown in fig. 3. This pattern is seen to be "self-similar” or "scale invariant”, in
that views with different "magnifications” (but the same "resolution”) are indis-
tinguishable. Scale invariance is to be expected, since the cellular automaton
defines no intrinsic scale (except the size of a single site) in the large time limit.

The pattern shown in fig. 3 contains many congruent (inverted) triangles
with base lengths of 2% sites. At large times, the number of triangles of size
n=2% is given by T(n/2)=3T(n) so that T('n.)~n-1°gzs~n'l'59. The "fractal”
dimension [9] of the pattern is thus ~1.59. A uniform pattern, as generated by
rule 50, has fractal dimension two, while a line, as generated by rule 4, has frac-
tal dimension one.

Figure 2 shows that all "complex” cellular automaton rules yield asymptoti-
cally self-similar patterns. All give the same fractal dimension logs3~1.59 except
for rule 150 which gives a fractal dimension 1+loggp~1.69 where
¢=(1+V5)/2~1.618 is the "golden ratio".

Patterns generated by cellular automaton evolution from 'seeds" contain-
ing not one but several nonzero sites are found to be similar to those of fig. 2, at
least on scales much larger than the region of nonzero initial sites, and exhibit
the same fractal dimensions. The generation of self-similar patterns is thus a
generic feature of cellular automaton evolution from simple "seeds”". This result



may provide some explanation for the widespread occurrence of self similarity
in natural systems [9], and suggests the appearance of fractal dimensions ~1.59
and ~1.69.

Random initial states

Having considered "ordered" initial states with only a few nonzero sites, we
now turn to "disordered" initial states, in which each site is chosen indepen-
dently to have value 1 with probability pg, giving an initial density pg=pg of
nonzero sites.

Figure 4 shows the density of nonzero sites as a function of time in evolu-
tion according to three "complex” cellular automaton rules from a disordered
initial state with pg=0.2. For almost all initial densities, the density tends
rapidly to a fixed "equilibrium" limit (although in the case of rule 90, large
fluctuations are apparent even at large times). In a "mean field" approximation,
the evolution of the density could be estimated by a master equation: however,
the presence of non-Markovian eflects associated with feedback renders this
approach inaccurate in practice. Other methods nevertheless provide exact
results for the density in a few cases. One of these cases is rule 90, which exhi-
bits the simplifying feature of "additive superposition”. Patterns generated
from arbitrary initial configurations according to this rule may be obtained by
appropriate superpositions (addition modulo two) of displaced copies of the pat-
tern generated from a single initial nonzero site in fig. 3. The number of nonzero
sites in the pattern of fig. 3 after 7 time steps is equal to the number of odd
binomial coefficients in row 7 of Pascal's triangle, and is found by a geometrical
method to be {c.f. [10]) 21 Here #1(n) denotes the number of occurrences of
the digit 1 in the binary decomposition of the integer n (thus #,(0)=0, #,(1)=1,
#1(2)=1, #:(3)=2, and so on), and has a very irregular form as a function of n.
Whenever 7=2%, #,(7)=1 and there are only two nonzero sites in the pattern; the
maximum of 7 nonzero sites is achieved when 7=2¥—1. Superposing an initial
density pg of these patterns yields an analytical form for the result shown in fig.

4: pr = }é[l—(l—Zpo)zﬁ(ﬂ]. The additive superposition property of rule 90 is
shared by rule 150 (but by no other "complex” rules). The density for rule 150 is
found to be p, = }é[l—(l—Zpo)N’] where now N, is a product of factors x(j) associ-
ated with each sequence of j ones (delimited by zeroes) in the binary decompo-
sition of the integer 7. x{(j) is given by the recurrence relation
x{(7)=(2F £1)x(j —1) where the upper (lower) sign is taken for j odd (even), and
x(1)=3 (so that x(2)=5, x(3)=11 and so on).

Figure 5 shows the evolution of a disordered initial state with density %
according to each of the 32 possible elementary cellular automaton rules. As in
fig. 3, several classes of behaviour are evident. Rules such as 250 evolve rapidly
to uniform states. Rules such as 94 or 132 evolve after a few time steps to stable
patterns, sometimes involving several independent sections executing short-



period cycles. This behaviour is analogous to that found in dynamical systems
with limit points or limit cycles. "Complex" rules, such as 18 and 90, yield com-
plicated patterns, analogous to "strange attractors” in dynamical systems (e.g.
[11]). Although the values of initial sites are statistically uncorrelated, the cel-
lular automaton evolution is seen to generate definite structures. One charac-
teristic of this simple "self-organization” is the appearance of long correlated
sequences of sites, giving rise to the inverted triangles visible in fig. 5. Triangles
of all sizes are found, but their spectrum is exponentially damped. Denoting as
before the density of triangles of length n by T(n), one finds that for large n,
7(n) takes on the universal form A™ for all complex rules, and (almost) all initial
states. The value of A is found to be ~0.75 for all (complex) rules except the
"additive" ones 90 and 150, which instead give A=0.5. Once again, therefore, the
statistical properties of the patterns generated by cellular automaton evolution
are found to exhibit universality, and to be independent of the details of the cel-
lular automaton rule or the initial state.

Global properties

One may restrict a cellular automaton to contain a finite number N of sites
(arranged, for example, on a circle). Then the total number of possible
configurations in the “phase space" of the system is 2¥. Cellular automaton evo-
lution consists in the iteration of a mapping between these configurations, with
each configuration tracing out a trajectory in phase space. For complex cellular
automata one finds that initially nearby trajectories (corresponding to
configurations differing at only a few sites) diverge exponentially with time (so
that the number of differing sites increases linearly), and the mapping from ini-
tial to final configurations becomes apparently “random" after a few time steps
(although deviations from a uniform random mapping remain).

Cellular automaton rules have the important property that they may map
several initial configurations to the same final configuration, so that the
corresponding trajectories merge, and microscopically irreversible time evolu-
tion occurs* Starting from an initial ensemble in which all 2" possible
configurations occur with equal probabilities (corresponding to complete
"disorder”), cellular automaton evolution thus irreversibly "concentrates" the
probabilities in the ensemble into a small fraction of all the possible
configurations, thereby reducing the entropy of the ensemble. The properties of
these few "attractor" configurations (or cycles) then dominate ensemble aver-
ages, leading to statistically similar results independent of the initial state (c.f.

[12]).

* Reversible cellular automata may nevertheless be constructed, for example by allowing a
configuration to be determined by two previous configurations, in analogy with the finite
difference form of a second-order differential equation in time (E.Fredkin and N.Margolus,
private communication).




In a cellular automaton of finite size, every trajectory must eventually be
periodic, or must merge with a periodic trajectory. In practice, the length of
the "transient” before a trajectory merges is typically {N. The lengths of
periodic cycles could in principle be ~2¥, but in practice are typically g2V/%.
For rules 90 and 150 period lengths may be obtained by algebraic methods [13],
and depend on number theoretical properties of N.

The cellular automata considered here are entirely deterministic. However,
simulation of some natural processes requires introduction of "noise” into the
local rules, yielding non-deterministic cellular automata (a simple example is
the Ising model at finite temperature). An arbitrarily small amount of noise
prevents stable cyclic behaviour, and causes all 2" possible states to be visited
in evolution from any initial state. However, the statistical properties of struc-
tures generated in the evolution appear to degrade continuously as the intensity
of noise is increased.

Conclusions

Cellular automata may be used as mathematical models for physical, bio-
logical and computational systems. They are simple in construction, and thus
potentially amenable to precise mathematical analysis, yet are capable of com-
plicated behaviour. This article has outlined a first step in the analysis of the
(non-equilibrium) statistical mechanics of cellular automata, and has described
some generic features of their behaviour, such as the formation of particular
self-similar patterns. Further investigations along these lines may reveal gen-
eral universal features of irreversible and non-equilibrium statistical systems
analogous to those found in equilibrium reversible systems.
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Figure captions
Figure 1: Example of a set of local rules for an elementary cellular automaton.

Figure 2: Growth of patterns from simple seeds according to each of the 32 pos-
sible legal elementary cellular automaton rules. Configurations at successive
time steps are shown on successive lines. Sites with value 1 are represented by
stars, and those with value 0 by blanks. The evolution is shown until a particular
configuration appears for the second time, or for at most 20 time steps.

Figure 3: Algebraic and geometrical constructions for the pattern generated by
evolution according to the modulo two rule 90 from a "seed" consisting of a sin-
gle nonzero site.

Figure 4: Time evolution of the density of nonzero sites obtained with a disor-
dered initial state of density 0.2.

Figure 5: Evolution of a "disordered" initial state with density 0.5 according to
each of the 32 possible legal elementary cellular automaton rules. (Periodic
boundary conditions are assumed, but are inessential.) The evolution is shown
until a particular configuration appears for the second time, or for at most 30
time steps.



Figure 1: Example of a set of local rules for an elementary cellular automaton.
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Figure 3: Algebraic and geometrical constructions for the pattern generated by
evolution according to the modulo two rule 90 from a "seed"” consisting of a sin-
gle nonzero site.
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Figure 2: Growth of patterns from simple seeds according to each of the 32 pos-
sible legal elementary cellular automaton rules. Configurations at successive
time steps are shown on successive lines. Sites with value 1 are represented by
stars, and those with value 0 by blanks. The evolution is shown until a particular
configuration appears for the second time, or for at most 20 time steps.
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Figure 4. Time evolution of the density of nonzero sites obtained with a disor-
dered initial state of density 0.2.
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Figure 5: Evolution of a "disordered” initial state with density 0.5 according to
each of the 32 possible legal elementary cellular automaton rules. (Periodic
boundary conditions are assumed, but are inessential.) The evolution is shown
until a particular configuration appears for the second time, or for at most 30
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