


by Stephen Wolfram 

t appears that the basic laws of physics relevant to everyday phenomena are now known. Yet there are many 
everyday natural systems whose complex structure and behavior have so far defied even qualitative analysis. For 
example, the laws that govern the freezing of water and the conduction of heat have long been known, but 
analyzing their consequences for the intricate patterns of snowflake growth has not yet been possible. While many 

complex systems may be broken down into identical components, each obeying simple laws, the huge number of 
components that make up the whole system act together to yield very complex behavior. 

In some cases this complex behavior may be simulated numerically with just a few components. But in most cases 
the simulation requires too many components, and this direct approach fails. One must instead attempt to distill 

the mathematical essence of the process by which complex behavior is generated. The hope in such an 
approach is to identify fundamental mathematical mechanisms that are common to many different 

natural systems. Such commonality would correspond to universal features in the behavior of 
very different complex natural systems. 

To discover and analyze the mathematical basis for the generation of complexity, 
one must identify simple mathematical systems that capture the essence of 

the process. Cellular automata are a candidate class of such systems. This 
article surveys their nature and properties, concentrating on funda- 

mental mathematical features. Cellular automata promise to 
provide mathematical models for a wide variety of 

complex phenomema, from turbulence in fluids to 
patterns in biological growth. The general 

features of their behavior discussed here 
should form a basis for future 

detailed studies of such 
specific systems. 



The Nature of Cellular Automata 
and a Simple Example 

Cellular automata are simple mathemati- 
cal idealizations of natural systems. They 
consist of a lattice of discrete identical sites, 
each site taking on a finite set of, say, integer 
values. The values of the sites evolve in 
discrete time steps according to deterministic 
rules that specify the value of each site in 
terms of the values of neighboring sites. 
Cellular automata may thus be considered as 
discrete idealizations of the partial differen- 
tial equations often used to describe natural 
systems. Their discrete nature also allows an 
important analogy with digital computers: 
cellular automata may be viewed as parallel- 
processing computers of simple construction. 

As a first example of a cellular automaton, 
consider a line of sites, each with value 0 or 1 
(Fig. 1). Take the value of a site at position i 
on time step t to be a:. One very simple rule 
for the time evolution of these site values is 

mod 2 , 

where mod 2 indicates that the 0 or 1 
remainder after division by 2 is taken. Ac- 
cording to this rule, the value of a particular 
site is given by the sum modulo 2 (or, 
equivalently, the Boolean algebra "exclusive 
or") of the values of its left- and right-hand 
nearest neighbor sites on the previous time 
step. The rule is implemented simultaneously 
at each site.* Even with this very simple rule 
quite complicated behavior is nevertheless 
found. 

Fractal Patterns Grown from Cellular Au- 
tomata. First of all, consider evolution ac- 

*In the very simplest computer implementation a 
separate array o f  qdated site values must be 
maintained and copied back to the original site 
value array when the updating process is com- 
plete. 

Fig. 1. A typical configuration in the simple cellular automaton described by Eq. 1,  
consisting of a sequence of sites with values 0 or 1. Sites with value 1 are represented 
by squares; those with value 0 are blank. 

Fig. 2. A few time steps in the evolution of the simple cellular automaton defined by 
Eq. 1, starting from a "seed" containing a single nonzero site. Successive lines are 
obtained by successive applications of Eq. 1 at each site. According to this rule, the 
value qf each site is the sum modulo 2 qf the values of its two nearest neighbors on the 
previous time step. The pattern obtained with this simple seed is Pascal's triangle of 
binomial coefficients, reduced modulo 2. 
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Fig. 3. Many tune steps in the evolution of  the cellular automaton o f  Fig. 2, generated 
by applying the rule of Eq. 1 to about a quarter of a million site values. The pattern 
obtained is "self similar*': a part of the pattern, when magnified, is indistinguishable 
from the whole. The pattern has a fractal dimension of log3 = 1.59. 

cording to Eq. 1 from a "seed" consisting of 
a single site with value 1, all other sites 
having value 0. The pattern generated by 
evolution for a few time steps already 
exhibits some structure (Fig. 2). Figure 3 
shows the pattern generated after 500 time 
steps. Generation of this pattern required 
application of Eq. 1 to a quarter of a million 
site values. The pattern of Figs. 2 and 3 is an 
intricate one but exhibits some striking reg- 
ularities. One of these is "self-similarity." As 
illustrated in Fig. 3, portions of the pattern, 
when magnified, are indistinguishable from 
the whole. (Differences on small scales be- 
tween the original pattern and the magnified 
portion disappear when one considers the 
limiting pattern obtained after an intmite 
number of time steps.) The pattern is there- 
fore invariant under rescaling of lengths. 
Such a self-similar pattern is often called a 
fractal and may be characterized by a fractal 
dimension. The fractal dimension of the 
pattern in Fig. 3, for example, is log23 = 

log3/log2 = 1.59. Many natural systems, 
including snowflakes, appear to exhibit frac- 
tal patterns. (See Benoit B. Mandelbrot, The 
Fractal Geometry ofNature, W. H. Freeman 
and Company, 1982.) It is very possible that 
in many cases these fractal patterns are 
generated through evolution of cellular 
automata or analogous processes. 

I Self-organization in Cellular Automata. 
Figure 4 shows evolution according to Eq. 1 
from a "disordered" initial state. The values 
of sites in this initial state are randomly 
chosen: each site takes on the value 0 or 1 
with equal probability, independently of the 
values of other sites. Even though the initial 
state has no structure, evolution of the 
cellular automaton does manifest some 
structure in the form of many triangular 
'clearings." The spontaneous appearance of 
these clearings is a simple example of "self- 
organization." 

The pattern of Fig. 4 is strongly reminis- 
cent of the pattern of pigmentation found on 
the shells of certain mollusks (Fig. 5). It is 
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quite possible that the growth of these 
pigmentation patterns follows cellular au- 
tomaton rules. 

In systems that follow conventional 
thermodynamics, the second law of 
thermodynamics implies a progressive deg- 
radation of any initial structure and a univer- 
sal tendency to evolve with time to states of 
maximum entropy and maximum disorder. 
While many natural systems do tend toward 
disorder, a large class of systems, biological 
ones being prime examples, show a reverse 
trend: they spontaneously generate structure 
with time, even when starting from dis- 
ordered or structureless initial states. The 
cellular automaton in Fig. 4 is a simple 
example of such a self-organizing system. 
The mathematical basis of this behavior is 
revealed by considering global properties of 
the cellular automaton. Instead of following 
evolution from a particular initial state, as in 
Fig. 4, one follows the overall evolution of an 
ensemble of many different initial states. 

It is convenient when investigating global 
properties to consider finite cellular autom- 
ata that contain a finite number N of sites 
whose values are subject to periodic bound- 
ary conditions. Such a finite cellular automa- 
ton may be represented as sites arranged, for 
example, around a circle. If each site has two 
possible values, as it does for the rule of Eq. 
1, there are a total of 2N possible states, or 
configurations, for the complete finie cellu- 
lar automaton. The global evolution of the 
cellular automaton may then be represented 
by a finite state transition graph plotted in 
the "state space" of the cellular automaton. 
Each of the 2N possible states of the com- 
plete cellular automaton (such as the state 
1 1010 1 1010 10 for a cellular automaton with 
twelve sites) is represented by a node, or 
point, in the graph, and a directed line 
connects each node to the node generated by 
a single application of the cellular automaton 
rule. The trajectory traced out in state space 
by the directed lines connecting one 
particular node to its successors thus cor- 
responds to the time evolution of the cellular 

Fig. 4. Evolution of the simple cellufar automaton defined by Eq. 1,from a disordered 
initial state in which each site is taken to have value 0 or 1 with equal, independent 
probabilities. Evolution of the cellular automaton even from such a random initial 
state yields some simpIe structure. 

Fig. 5. A "cone shell" with apigmentation pattern reminiscent of the pattern generated 
by the cellular automaton of Fig. 4. (Shell courtesy of P. Hut.) 
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automaton from the initial state represented 
by that particular node. The state transition 
graph of Fig. 6 shows all possible trajectories 
in statei,space for a cellular automaton with 
twelve sites evolving according to the simple 
rule of Eq. 1. 

A notable feature of Fig. 6 is the presence 
of trajectories that merge with time. While 
each state has a unique successor in time, it 
may have several predecessors or no pred- 
ecessors at all (as for states on the periphery 

Fig. 6. The global state transition graph 
for a finite cellular automaton consisting 
of twelve sites arranged around a circle 
and evolving according to the simple rule 
of Eq, 1. Each node in the graph repre- 
sents one of the 4096 possible states, or 
sequences of the twelve site values, of the 
cellular automaton. Each node is joined 
by a directed line to a successor node 
that corresponds to the state obtained by 
one time step o f  cellular automaton 
evolution. The state transition graph 
consists of many disconnected pieces, 
many of identical structure. Only one 
copy of each structurally identical piece 
is shown explicitly. Possible paths 
through the state transition graph rep- 
resent possible trajectories in the state 
space of the cellular automaton. The 
merging of these trajectories reflects the 
irreversibility of the cellular automaton 
evolution. Any initial state of this 
cellular automaton ultimately evolves to 
an "attractor" represented in the graph 
by a cycle. For this particular cellular 
automaton all configurations evolve to 
attractors in at most three time steps. 
(From 0. Martin, A. Odlyzko, and S. 
Wolfram, "Algebraic Properties of 
Cellular Automata," Bell Laboratories 
report (January 1983) and to be pub- 
lished in Communications in Mathemat- 
ical Physics.) 

of the state transition graph). The merging of 
trajectories implies that information is lost in 
the evolution of the cellular automaton: , 

knowledge of the state attained by the sys- 
tem at a particular time is not sufficient to 
determine its history uniquely, so that the 
evolution is irreversible. Starting with an 
initial ensemble in which all configurations 
occur with any distribution of probabilities, 
the irreversible evolution decreases the 
probabilities for some configurations and 

increases those for others. For example, after 
just one time step the probabilities for states 
on the periphery of the state transition graph 
in Fig. 6 are reduced to zero; such states 
may be given as initial conditions, but may 
never be generated through evolution of the 
cellular automaton. After many time steps 
only a small number of all the possible 
configurations actually occur. Those that do 
occur may be considered to lie on "attrac- 
tors" of the cellular automaton evolution. 
Moreover, if the attractor states have special 
"organized" features, these features will ap- 
pear spontaneously in the evolution of the 
cellular automaton. The possibility of self- 
organization is therefore a consequence of 
the irreversibility of the cellular automaton 
evolution, and the structures obtained 
through self-organization are determined by 
the characteristics of the attractors. 

The irreversibility of cellular automaton 
evolution revealed by Fig. 6 is to be con- 
trasted with the intrinsic reversibility of sys- 
tems described by conventional thermo- 
dynamics. At a microscopic level the trajec- 
tories representing the evolution of states in 
such systems never merge: each state has a 
unique predecessor, and no information is 
lost with time. Hence a completely dis- 
ordered ensemble, in which all possible states 
occur with equal probabilities, remains dis- 
ordered forever. Moreover, if nearby states 
are grouped (or "coarse-grained") together, 
as by imprecise measurements, then with 
time the probabilities for different groups of 
states will tend to equality, regardless of their 
initial values. In this way such systems tend 
with time to complete disorder and max- 
imum entropy, as prescribed by the second 
law of thermodynamics. Tendency to dis- 
order and increasing entropy are universal 
features of intrinsically reversible systems in 
statistical mechanics. Irreversible systems, 
such as the cellular automaton of Figs. 2, 3, 
and 4, counter this trend, but universal laws 
have yet to be found for their behavior and 
for the structures they may generate. One 
hopes that such general laws may ultimately 
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For odd N, II may be shown to divide 

- be abstracted from an investigation of the ing for each configuration a characteristic 
Q2(2k+l) - 211N=2k+ . 

comparatively simple examples provided by polynomial 
cellular automata. 

While there is every evidence that the N- I 

fundamental microscopic laws of physics are = aixi , 
intrinsically reversible (information-preserv- i=o 

ing, though not precisely time-reversal in- 
variant), many systems behave where x is a dummy variable, and the and in fact is almost always equal to this 
On a macroscopic scale and are ap- coefficient of xi is the value of the site at value (the first exception occurs for N = 37). 
propriatell' described by heversible laws. position i. In terms of characteristic poly- Here sordJ2) is a number theoretical func- 

the molecu- nomials, the cellular automaton rule of Eq. 1 tion defined to be the minimum positive 
lar interactions in a fluid are entirely re- takes on the particularly simple form integer j for which 2-7 = Â 1 modulo N. The 
versible, macroscopic descriptions of the maximum value of sordy(2), typically 
average velocity field in the fluid, using, say, achieved when N is prime, is (N-l)/2. The 
the Navier-Stokes equations, are irreversible = T(~)A'*)(~) (#- l )  , maximal cycle length is thus of order 2N12, 
and contain dissipative terms. Cellular au- approximately the square root of the total 
tomata provide mathematical models at this where number of possible states 2 .̂ 
macroscopic level. An unusual feature of this analysis is the 

T(x) = (x + x-l) appearance of number theoretical concepts. 
Number theory is inundated with complex 

Mathematical Analysis of a Simple results based on very simple premises. It 
Cellular Automaton and all arithmetic on the polynomial coeffi- may be part of the mathematical mechanism 

cients is performed modulo 2. The reduction by which natural systems of simple construc- 
modulo #-I implements periodic boundary tion yield complex behavior. 

The cellular automaton rule of Eq. 1 is conditions. The structure of the state tran- 
particularly simple and admits a rather corn- sition diagram may then be deduced from 
plete mathematical analysis. algebraic properties of the polynomial nx).  hhre (hleral Cellular Automata 

The fractal patterns of Figs. 2 and 3 may For even N one finds, for example, that the 
be characterized in a simple algebraic man- fraction of states on attractors is 2-^W, 
ner. If no reduction modulo 2 were Per- where D.,(N) is defmed as the largest integral 
formed, then the values of sites generated power of 2 that divides N (for example, 

The discussion so far has concentrated on 

from a single nonzero initial site would D(12) = 4). 
the particular cellular automaton rule given 

simply be the integers appearing in I%scal's Since a finite cellular automaton evolves by Eq. 1. This rule may be generalized in 

triangle of binomial coefficients. The pattern deterministically with a finite total number of 
several ways. One family of rules is obtained 

of nonzero sites in Figs. 2 and 3 is therefore possible states, it must ultimately enter a 
by allowing the value of a site to be an 

t h e  pattern of odd binomial coefficients in cycle in which it visits a sequence of states 
arbitrary function of the values of the site 

hscal's triangle- (See Stephen Wolfram, repeatedly. Such cycles are manifest as 
itself and of its two nearest neighbors on the 

"Geometry of Binomial Coefficients," to be closed loops in the state transition graph. previous time step: 

published in American Mathematical 
Monthly.) 

This algebraic approach may be extended 
to determine the structure of the state tran- 
sition diagram of Fig. 6. (See 0. Martin, A. 
Odlyzko, and S. Wolfram, "Algebraic 
Properties of Cellular Automata," Bell Labo- 
ratories report (January 1983) and to be 
published in Communications in Mathemati- 
cal Physics.) The analysis proceeds by writ- 

The algebraic analysis of Martin et al. shows 
that for the cellular automaton of Eq.1 the a(.'^') = ~(a! a(') (" , j Â 

maximal cycle length 11 (of which all other 
cycle lengths are divisors) is given for even N 
by A convenient notation illustrated in Fig. 7. 

assigns a "rule number" to each of the 256 
rules of this type. The rule number of Eq. 1 is 
90 in this notation. 

Further generalizations allow each site in 
a cellular automaton to take on an arbitrary 

Fall 1983 LOS ALAMOS SCIENCE 



Cellular Automata 

Universality Classes in Cellular 
Automata 

flute * 
1 ~ ~ ~ ~ ~ ~ - -  

Fig. 7. Assignment of rule numbers to cellular automata for which k = 2 and 
r = I. The values o f  sites obtained from each o f  the eight possible three-site 
neighborhoods are combined to form a binary number that is quoted as a decimal 
integer. The example shown is for the rule given by Eq. 1. 

number k of values and allow the value of a 
site to depend on the values of sites at a 
distance up to r on both sides, so that 

The number of different rules with given k 
and r grows as kk2r+1 and therefore becomes 
immense even for rather small k and r. 

Figure 8 shows examples of evolution 
according to some typical rules with various 
k and r values. Each rule leads to patterns 
that differ in detail. However, the examples 
suggest a very remarkable result: all patterns 
appear to fall into only four qualitative 
classes. These basic classes of behavior may 
be characterized empirically as follows: 

o Class 1-evolution leads to a homogene- 
ous state in which, for example, all sites have 
value 0; 
o Class 2-evolution leads to a set of 
stable or periodic structures that are sepa- 

rated and simple; 
o Class 3-evolution leads to a chaotic 
pattern; 
o Class 4-evolution leads to complex 
structures, sometimes long-lived. 

Examples of these classes are indicated in 
Fig. 8. 

The existence of only four qualitative 
classes implies considerable universality in 
the behavior of cellular automata; many 
features of cellular automata depend only on 
the class in which they lie and not on the 
precise details of their evolution. Such uni- 
versality is analogous, though probably not 
mathematically related, to the universality 
found in the equilibrium statistical mechanics 
of critical phenomena. In that case many 
systems with quite different detailed con- 
struction are found to lie in classes with 
critical exponents that depend only on gen- 
eral, primarily geometrical features of the 
systems and not on their detailed construc- 
tion. 

To proceed in analyzing universality in 
cellular automata, one must first give more 
quantitative definitions of the classes identi- 
fied above. One approach to such definitions 
is to consider the degree of predictability of 
the outcome of cellular automaton evolution, 
given knowledge of the initial state. For class 
1 cellular automata complete prediction is 
trivial: regardless of the initial state, the 
system always evolves to a unique homoge- 
neous state. Class 2 cellular automata have 
the feature that the effects of particular site 
values propagate only a finite distance, that - 
is, only to a finite number of neighboring 
sites. Thus a change in the value of a single . 
initial site affects only a finite region of sites 
around it, even after an infinite number o f  

- 

time steps. This behavior, illustrated in Fig. 
9, implies that prediction of a particular final 
site value requires knowledge of only a finite 
set of initial site values. In contrast, changes 
of initial site values in class 3 cellular autom- 
ata, again as illustrated in Fig. 9, almost 
always propagate at a finite speed forever 
and therefore affect more and more distant 
sites as time goes on. The value of a 
particular site after many time steps thus 
depends on an ever-increasing number of 
initial site values. If the initial state is dis- 
ordered, this dependence may lead to an 
apparently chaotic succession of values for a 
particular site. In class 3 cellular automata, 
therefore, prediction of the value of a site at 
infmite time would require knowledge of an 
infinite number of initial site values. Class 4 
cellular automata are distinguished by an 
even greater degree of unpredictability, as 
discussed below. 

Class 2 cellular automata may be con- 
sidered as "filters" that select particular 
features of the initial state. For example, a 
class 2 cellular automata may be constructed 
in which initial sequences 11 1 survive, but 
sites not in such sequences eventually attain 
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Fig. 8. Evolution of some typical cellular automata from on the values of sites up to r sites distant on both sides. 
disordered initial states. Each group of six patterns shows the Different colors represent different site values: black cor- 
evolution of various rules with particular values of k and r. responds to a value of 0, red to 1 ,  green to 2, blue to 3, and 
Sites take on k possible values, and the value of a site depends yellow to 4 .  The/act that these and other examples exhibit only 
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four qualitative classes of behavior (see text) suggests consider- examples on page 10 for which r = 2 evolve according to rules 
able universality in the behavior of cellular automata. The in which the value of a site depends only on the sum of the 
examples on page 10 for which r = 1 are labeled by rule values of the 2r + 1 sites in its neighborhood on the previous 
number (in the notation of Fig. 7) and behavior class. The time step. Such rules may be specvied by numerical codes C 
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such that the co(^cient of2f in the binary decomposition qfC and J. Condon o f  Bell Laboratories for their help in preparing 
gives the value attained by a site i f  its neighborhood had total these and other color pictures o f  cellular automata.) 
value j on the previous time step. These examples are labeled 
by code number and behavior class. (I am grateful to R. Pike 
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I 
class 2 

b 
class 4 class 4 

Fig. 9. Difference patterns showing the differences between the rule: for class 2 rules the effects have finite range; for class 
configurations generated by evolution, according to various 3 rules the effects propagate to neighboring sites indefinitely at 
cellular automaton rules, from initial states that differ in the a fixed speed; and for class 4 rules the effects also propagate 
value of a single site. Each deference pattern is labeled by the to neighboring sites indefinitely but at various speeds. The 
behavior class of the cellular automaton rule. The effects of difference patterns shown here are analogues of Green's 
changes in a single site value depend on the behavior class of functions for cellular automata. 

value 0. Such cellular automata are of prac- 
tical importance for digital image processing: 
they may be used to select and enhance 
particular patterns of pixels. After a suffi- 
ciently long time any class 2 cellular automa- 
ton evolves to a state consisting of blocks 
containing nonzero sites separated by re- 
gions of zero sites. The blocks have a simple 
form, typically consisting of repetitions of 
particular site values or sequences of site 
values (such as 10 10 10 . . .). The blocks 
either do not change with time (yielding 
vertical stripes in the patterns of Fig. 8) or 
cycle between a few states (yielding "railroad 
track" patterns). 

While class 2 cellular automata evolve to 
give persistent structures with small periods, 
class 3 cellular automata exhibit chaotic 
aperiodic behavior, as shown in Fig. 8. 
Although chaotic, the patterns generated by 
class 3 cellular automata are not completely 

random. In fact, as mentioned for the exam- 
ple of Eq. 1, they may exhibit important self- 
organizing behavior. In addition and again in 
contrast to class 2 cellular automata, the 
statistical properties of the states generated 
by many time steps of class 3 cellular 
automaton evolution are the same for almost 
all possible initial states. The large-time 
behavior of a class 3 cellular automaton is 
therefore determined by these common 
statistical properties. 

The configurations of an infinite cellular 
automaton consist of an infinite sequence of 
site values. These site values could be con- 
sidered as digits in a real number, so that 
each complete configuration would cor- 
respond to a single real number. The topol- 
ogy of the real numbers is, however, not 
exactly the same as the natural one for the 
configurations (the binary numbers 
0.1 1 1 1 1 1 . . . and 1.00000 . . . are identical, 

but the corresponding configurations are 
not). Instead, the configurations of an infinite 
cellular automaton form a Cantor set. Figure 
10 illustrates two constructions for a Cantor 
set. In construction (a) of Fig. 10, one starts 
with the set of real numbers in the interval 0 
to 1. First one excludes the middle third of 
the interval, then the middle third of each 
interval remaining, and so on. In the limit the 
set consists of an infinite number of discon- 
nected points. If positions in the interval are 
represented by ternimals (base 3 fractions, 
analogous to base 10 decimals), then the 
construction is seen to retain only points 
whose positions are represented by ternimals 
containing no 1's (the point 0.2202022 is 
therefore included; 0.220 1022 is excluded). 
An important feature of the limiting set is its 
self-similarity, or fractal form: a piece of the 
set, when magnified, is indistinguishable 
from the whole. This self-similarity is math- 
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ematically analogous to that found for the 
limiting two-dimensional pattern of Fig. 3. 

In construction (b) of Fig. 10, the Cantor 
set is formed from the "leaves" of an infinite 
binary tree. Each point in the set is reached 
by a unique path from the "root" (top as 
drawn) of the tree. This path is specified by 
an infinite sequence of binary digits, in which 
successive digits determine whether the left- 
or right-hand branch is taken at each suc- 
cessive level in the tree. Each point in the 
Cantor set corresponds uniquely to one 
idmite sequence of digits and thus to one 
configuration of an infinite cellular automa- 
ton. Evolution of the cellular automaton then.' 
corresponds to iterated mappings of the 
Cantor set to itself. (The locality of cellular 
automaton rules implies that the mappings 
are continuous.) This interpretation of cellua 
lar automata leads to analogies with the" 
theory of iterated mappings of intervals of 
the real line. (See Mitchell J. Feigenbaum, 
"Universal Behavior in Nonlinear Systems," 
Los Alamos Science, Vol. 1, No. l(1980): 
4-27.) 

Cantor sets are parameterized by their 
"dimensions." A convenient definition of 
dimension, based on construction (a) of Fig. 
10, is as follows. Divide the interval from 0 
to 1 into kn bins, each of width k-". Then let 
N(n) be the number of these bins that 
contain points in the set. For large n this. 
number behaves according to 

and d is defined as the "set dimension" of the 
Cantor set. If a set contained all points in the 
interval 0 to 1, then with this definition its 
dimension would simply be 1. Similarly, any 
finite number of segments of the real line 
would form a set with dimension 1. How- 
ever, the Cantor set of construction (a), 
which contains an infinite number of discon- 

E h b c t e d  pieces, has a dimension according to 
Eq. 2 of log32 = 0.63. 

An alternative definition of dimension, 
&agreeing with the previous one for present 

Fig. 10, Steps in two constructions of a Cantor set. At each step in construction (a), 
the middle third of all intervals is excluded. The first step thus excludes all points 
whose positions, when expressed as base 3 fractions, have a 1 in the first "temimal 
place" (by analogy with decimal place), the second step excludes all points whose 
posit10ns have a 1 in the second temimalplace, and so on. The limiting set obtained 
qfter an infinite number of steps consists of an infinite number of disconnected points 
whose positions contain no 1's. The set may be assigned a dimension, according to Eq. 
2, that equals log3 = 0.63. Construetion (b) reflects the topological structure of the 
Cantor set. Ivtfinite sequences of digits, representing cellular automaton configura- 
tions, are seen to correspond uniquely with DO& in the Cantor set. 
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equation 9 - z2 + Is. - 1 = 0. (See D. A. 
, Und, "Applications of Ergodic Theory and 
' Sofie Systems to Cellular Automata," Uni- 

I wsity of Washington preprint (April 1983) 
1 and to be published in Physics D; see also 
1 Martin et al; op. cit.) The greater the 

1 irreversibility in the cellular automaton evo- 
1 lution, the smaller is the dimension of the 
1 Cantor set corresponding to the attractors 

for the evolution. If the set of attractors for a 
cellular automaton has dimension 1, then 
essentially all the configurations of the 
cellular automaton may occur at large times. 

purposes, is based on self-similarity. Take 
the Cantor set of construction (a) in Fig. 10. 
Contract the set by a magnification factor 
k-1". By virtue of its self-similarity, the whole 
set is identical to a number, say M(m), of 
copies of this contracted copy. For large m, 
M(m) w f^"*, where again d is defined as the 
set dimension. 

With these definitions the dimension of the 
Cantor "set of all possible configurations for 
an S i t e  one-dimensional cellular automa- 
ton is 1. A disordered ensemble, in which 
each possible configuration occurs with 
equal probability, thus has dimension 1. 
Figure 11 shows the behavior of the 
probabilities for the configurations of a typi- 
cal cellular automaton as a function of time, 

starting from such a disordered initial 
ensemble. As expected from the irre- 
versibility of cellular automaton evolution, 
exemplified by the state transition graph of 
Fig. 6, different configurations attain dif- 
ferent probabilities as evolution proceeds, 
and the probabilities for some configurations 
decrease to zero. This phenomenon is mani- 
fest in the "thinning" of configurations on 
successive time steps apparent in Fig. 11. 
The set of configurations that survive with 
nonzero probabilities after many time steps 
of cellular automaton evolution constitutes 
the ccattractors" for the evolution. This set is 
again a Cantor set; for the example of Fig. 
11 its dimension is  log,^ = 0.88, where K = 
1.755 is the real solution of the polynomial 

. &odic Theory and Information, John 
Wihy & Sons, 1965.) If the dimemion of tbe 

setwas 1, so that all possible sequences of 
gitebalues could occur, them the entropy of 

sequences would be maximal. Di- 
mensions lower than 1 correspond to sets in 
wfaiefa some sequences of site values are 
absent, so that the entropy is reduced. Thus 
the dimension of the attractor for a cellular 
automaton is directly related to the limiting 
entropy attained in its evolution, starting 
from a disordered ensemble of initial states. 
Dimension gives only a very coarse 

measure of the structure of the set of eon- 
figurations reached at large times in a 
cellular automaton. Formal language theory 
may provide a more complete characteriza- 
tion of the set. "Languages" consist of a set 
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of words, typically infinite in number, 
formed from a sequence of letters according 
to certain grammatical rules. Cellular 
automaton configurations are analogous to 
words in a formal language whose letters are 
the k possible values of each cellular automa- 
ton site. A grammar then gives a succinct 
specification for a set of cellular automaton 
configurations. 

Languages may be classified according to 
the complexity of the machines or computers 
necessary to generate them. A simple class 
of languages specified by "regular gram- 
mars" may be generated by finite state 
machines. A finite state machine is repre- 
sented by a state transition graph (analogous 
to the state transition graph for a finite 
cellular automaton illustrated in Fig. 6). The 
possible words in a regular grammar are 
generated by traversing all possible paths in 
the state transition graph. These words may 
be specified by "regular expressions" consist- 
ing of finite length sequences and arbitrary 
repetitions of these. For example, the regular 
expression 1(00)* 1 represents all sequences 
containing an even number of 0's (arbitrary 
repetition of the sequence 00) flanked by a 
pair of 1's. The set of configurations ob- 
tained at large times in class 2 cellular 
automata is found to form a regular lan- 
guage. It is likely that attractors for other 
classes of cellular automata correspond to 
more complicated languages. 

Analogy with Dynamical 
Systems Theory 

The three classes of cellular automaton 
behavior discussed so far are analogous to 
three classes of behavior found in the solu- 
tions to differential equations (continuous 
dynamical systems). For some differential 
equations the solutions obtained with any 
initial conditions approach a fixed point at 
large times. This behavior is analogous to 
class 1 cellular automaton behavior. In a 
second class of differential equations, the 
limiting solution at large times is a cycle in 
which the parameters vary periodically with 
time. These equations are analogous to class 
2 cellular automata. Finally, some differen- 
tial equations have been found to exhibit 
complicated, apparently chaotic behavior de- 
pending in detail on their initial conditions. 
With the initial conditions specified by deci- 
mals, the solutions to these differential equa- 
tions depend on progressively higher and 
higher order digits in the initial conditions. 
This phenomenon is analogous to the de- 
pendence of a particular site value on pro- 

Fig. 12. Evolution of a class 4 cellular automaton from several disordered initial 
states. The bottom example has been reproduced on a larger scale to show detail. In 
this cellular automaton, for which k = 2 and r = 2, the value of a site is 1 only f a  total 
of two or four sites out of the five in its neighborhood have the value 1 on the previous 
time step. For some initial states persistent structures are formed, some of which 
propagate with time. This cellular automaton is believed to support universal 
computation, so that with suitable initial states it may implement any finite algorithm. 
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Fig. 13. Persistent structures exhibited by the &s 4 cellular structures are almost sufficient to demonstrate a universal 
automaton o f  Fig. 12 as it evolves from initial states with computation capability for the cellular automaton. 
nonzero sites in a region of twenty or fewer sites. These 

gressively more distant initial site values in 
the evolution of a class 3 cellular automaton. 
The solutions to this final class of differential 
equations tend to "strange" or "chaotic" 
attractors (see Robert Shaw, "Strange At- 
tractors, Chaotic Behavior, and Information 
Flow," Zeitschrift fur Naturforschung 
36A(198 l):8O), which form Cantor sets in 
direct analogy with those found in class 3 
cellular automata. The correspondence be- 
tween classes of behavior found in cellular 
automata and those found in continuous 
dynamical systems supports the generality of 
these classes. Moreover, the greater mathe- 
matical simplicity of cellular automata sug- 
gests that investigation of their behavior may 
elucidate the behavior of continuous 
dynarnical systems. 

A Universal Computation Class 
of Cellular Automata 

Figure 12 shows patterns obtained by 
evolution from disordered initial states ac- 
cording to a class 4 cellular automaton rule. 
Complicated behavior is evident. In most 
cases all sites eventually "die" (attain value 
0). In some cases, however, persistent struc- 
tures that survive for an infinite time are 
generated, and a few of these persistent 
structures propagate with time. Figure 13 
shows all the persistent structures generated 
from initial states with nonzero sites in a 
region of twenty or fewer sites. Unlike the 
periodic structures of class 2 cellular au- 
tomata, these persistent structures have no 

simple patterns. In addition, the propagating 
structures allow site values at one position to 
affect arbitrarily distant sites after a suffi- 
ciently long time. No analogous behavior 
has yet been found in a continuous 
dynamical system. 

The complexity apparent in the behavior 
of class 4 cellular automata suggests the 
conjecture that these systems may be 
capable of universal computation. A com- 
puter may be regarded as a system in which 
definite rules are used to transform an initial 
sequence of, say, 1's and 0's to a final 
sequence of 1's and 0%. The initial sequence 
may be considered as a program and data 
stored in computer memory, and part of the 
final sequence may be considered as the 
result of the computation. Cellular automata 
may be considered as computers; their initial 
configurations represent programs and initial 
data, and their configurations after a long 
time contain the results of computations. 

A system is a universal computer if, givm 
a suitable initial program, its time evolution 
can implement any finite algorithm. (See 
Frank S. Beckman, Mathematical Founda- 
tions of Programming, Addison-Wesley Pub- 
lishing Co., 1980.) A universal computer 
need thus only be 'creprogra~med," not 
"rebuilt," to perform each possible calcula- 
tion. (All modem general-purpose electronic 
digital computers are, for practical purposes, 
universal computers; mechanical adding ma- 
chines were not.) If a cellular automaton is to 
be a universal computer, then, with a fixed 
rule for its time evolution, different initial 

configurations must encode all possible pro- 
grams. 

The only known method of proving that a 
system may act as a universal computer is to 
show that its computational capabilities are 
equivalent to those of another system al- 
ready classified as a universal computer. The 
Church-Turing thesis states that no system 
may have computational capabilities greater 
than those of universal computers. The thesis 
is supported by the proven equivalence of 
computational models such as Turing ma- 
chines, string-manipulation systems, ideal- 
ized neural networks, digital computers, and 
cellular automata. While mathematical sys- 
tems with computational power beyond that 
of universal computers may be imagined, it 
seems likely that no such systems could be 
built with physical components. This conjec- 
ture could in principle be proved by showing 
that all physical systems could be simulated 
by a universal computer. The main obstruc- 
tion to such a proof involves quantum me- 
chanics. 

A cellular automaton may be proved 
capable of universal computation by identify- 
ing structures that act as the essential com- 
ponents of digital computers, such as wires, 
NAND gates, memories, and clocks. The 
persistent structures illustrated in Fig. 13 
provide many of the necessary components, 
strongly suggesting that the cellular automa- 
ton of Figs. 12 and 13 is a universal 
computer. One important missing compo- 
nent is a "clock" that generates an h f i i t e  
sequence of "pulses"; starting from an initial 
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configuration containing a finite number of 
nonzero sites, such a structure would give 
rise to  an ever-increasing number of nonzero 
sites. If such a structure exists, it can un- 
doubtedly be found by careful investigation, 
although it is probably too large to  be found 
by any practical exhaustive search. If the 
cellular automaton of Figs. 12 and 13 is 
indeed capable of universal computation, 
then, despite its very simple construction, it 
is in some sense capable of arbitrarily com- 
plicated behavior. 

Several complicated cellular automata 
have been proved capable of universal com- 
putation. A one-dimensional cellular autom- 
aton with eighteen possible values at each 
site (and nearest neighbor interactions) has 
been shown equivalent to  the simplest known 
universal Turing machine. In two dimensions 
several cellular automata with just two states 
per site and interactions between nearest 
neighbor sites (including diagonally adjacent 
sites, giving a nine-site neighborhood) are 
known to be equivalent to universal digital 
computers. The best known of these cellular 
automata is the "Game of Life" invented by 
Conway in the early 1970s and simulated 
extensively ever since. (See Elwyn R. 
Berlekamp, John H. Conway, and Richard 
K. Guy, Winning Ways, Academic Press, 
1982 and Martin Gardner, Wheels, Life, and 
Other Mathematical Amusements, W. H. 
Freeman and Company, October 1983. 
The Life rule takes a site to have value 1 if 
three and only three of its eight neighbors are 
1 or if four are 1 and the site itself was 1 on 
the previous time step.) Structures analogous 
to those of Fig. 13 have been identified in the 
Game of Life. In addition, a clock structure, 
dubbed the glider gun, was found after a long 
search. 

By definition, any universal computer may 
in principle be simulated by any other uni- 
versal computer. The simulation proceeds by 
emulating the elementary operations in the 
first universal computer by sets of operations 
in the second universal computer, as in an 
"interpreter" program. The simulation is in 
general only faster or slower by a fixed finite 
factor, independent of the size or duration of 
a computation. Thus the behavior of a uni- 
versal computer given particular input may 
be determined only in a time of the same 
order as the time required to run that 
universal computer explicitly. In general the 
behavior of a universal computer cannot be 
predicted and can be determined only by a 
procedure equivalent to observing the univer- 
sal computer itself. 

If class 4 cellular automata are indeed 

universal computers, then their behavior 
may be considered completely unpredictable. 
For class 3 cellular automata the values of 
particular sites after a long time depend on 
an ever-increasing number of initial sites. For 
class 4 cellular automata this dependence is 
by an algorithm of arbitrary complexity, and 
the values of the sites can essentially be 
found only by explicit observation of the 
cellular automaton evolution. The apparent 
unpredictability of class 4 cellular automata 
introduces a new level of uncertainty into the 
behavior of natural systems. 

The unpredictability of universal com- 
puter behavior implies that propositions con- 
cerning the limiting behavior of universal 
computers at indefinitely large times are 
formally undecidable. For example, it is 
undecidable whether a particular universal 
computer, given particular input data, will 
reach a special "halt" state after a finite time 
or will continue its computation forever. 
Explicit simulations can be run only for finite 
times and thus cannot determine such infinite 
time behavior. Results may be obtained for 
some special input data, but no general 
(finie) algorithm or procedure may even in 
principle be given. If class 4 cellular autom- 
ata are indeed universal computers, then it is 
undecidable (in general) whether a particular 
initial state will ultimately evolve to the null 
configuration (in which all sites have value 0) 
or will generate persistent structures. As is 
typical for such generally undecidable 
propositions, particular cases may be de- 
cided. In fact, the halting of the cellular 
automaton of Figs. 12 and 13 for all initial 
states with nonzero sites in a region of 
twenty sites has been determined by explicit 
simulation. In general, the halting prob- 
ability, or fraction of initial configurations 
ultimately evolving to the null configuration, 
is a noncomputable number. However, the 
explicit results for small initial patterns sug- 
gest that for the cellular automaton of Figs. 
12 and 13, this halting probability is approx- 
imately 0.93. 

In an infinite disordered configuration all 
possible sequences of site values appear at 
some point, albeit perhaps with very small 
probability. Each of these sequences may be 
considered to represent a possible "pro- 
gram"; thus with an infmite disordered initial 
state, a class 4 automaton may be con- 
sidered to execute (in parallel) all possible 
programs. Programs that generate structures 
of arbitrarily great complexity occur, at least 
with indefinitely small probabilities. Thus, 
for example, somewhere on the i n f i t e  line a 
sequence that evolves to a self-reproducing 

structure should occur. After a sufficiently 
long time this configuration may reproduce 
many times, so that it ultimately dominates 
the behavior of the cellular automaton. Even 
though the a priori probabililty for the 
occurrence of a self-reproducing structure in 
the initial state is very small, its a posteriori 
probability after many time steps of cellular 
automaton evolution may be very large. The 
possibility that arbitrarily complex behavior 
seeded by features of the initial state can 
occur in class 4 cellular automata with 
indefinitely low probability prevents the tak- 
ing of meaningful statistical averages over 
infinite volume (length). It also suggests that 
in some sense any class 4 cellular automaton 
with an infinite disordered initial state is a 
microcosm of the universe. 

In extensive samples of cellular automaton 
rules, it is found that as k and r increase, 
class 3 behavior becomes progressively more 
dominant. Class 4 behavior occurs only for k 
> 2 or r > 1; it becomes more common for 
larger k and r but remains at the few percent 
level. The fact that class 4 cellular automata 
exist with only three values per site and 
nearest neighbor interactions implies that the 
threshold in complexity of construction 
necessary to allow arbitrarily complex 
behavior is very low. However, even among 
systems of more complex construction, only 
a small fraction appear capable of arbitrarily 
complex behavior. This suggests that some 
physical systems may be characterized by a 
capability for class 4 behavior and universal 
computation; it is the evolution of such 
systems that may be responsible for very 
complex structures found in nature. 

The possibility for universal computation 
in cellular automata implies that arbitrary 
computations may in principle be performed 
by cellular automata. This suggests that 
cellular automata could be used as practical 
parallel-processing computers. The mech- 
anisms for information processing found in 
most natural systems (with the exception of 
those, for example, in molecular genetics) 
appear closer to those of cellular automata 
than to those of Turing machines or conven- 
tional serial-processing digital computers. 
Thus one may suppose that many natural 
systems could be simulated more efficiently 
by cellular automata than by conventional 
computers.  I n  practical terms the 
homogeneity of cellular automata leads to 
simple implementation by integrated circuits. 
A simple one-dimensional universal cellular 
automaton with perhaps a million sites and a 
time step as short as a billionth of a second 
could perhaps be fabricated with current 
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Fig. 14. simulation network for symmetric-&b automaton os now Included zh the network shown only when tie 
rules with k = 2 and r = 1. Each rule is specified by the number necessary blocks are three or fewer sites long. Rules 90 and 
obtained as shown in Fig. 7, and its behavior class is indicated 150 are additive class 3 rules, rule 204 is the identity rule, and 
by shades of gray: light gray corresponds to class 1, medium rules 170 and 240 are left- and right-shift rules, respectively. 
gray to class 2, and dark gray to class 3. Rule A is considered Attractive simulation paths are indicated by bold lines. 
to simulate rule B i f  there exist blocks o f  site values that evolve (Network courtesy of J. Milnor.) . 

under rule A as single sites would evolve under rule B. 

technology on a single silicon wafer (the one- 
dimensional homogeneous structure makes 
defects easy to map out). Conventional pro- 
gramming methodology is, of course, of little 
utility for such a system. The development of 
a new methodology is a difficult but impor- 
tant challenge. Perhaps tasks such as image 
processing, which are directly suitable for 

A Basis for universality ? 

cellular automata, should be considered first, empirical result. Techniques trom computa- 
tion theory may provide a basis, and ulti- 
mately a proof, of this result. 

The first crucial observation is that with 
special initial states one cellular automaton 
may behave just like another. In this way 

The existence of four classes of cellular one cellular automaton may be considered to 
automata was presented above as a largely "simulate" another. A single site with a 
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particular value in one cellular automaton 
may be simulated by a fixed block of sites in 
another; after a fixed number of time steps, 
the evolution of these blocks imitates the 
single time-step evolution of sites in the first 
cellular automaton. For example, sites with 
value 0 and 1 in the first cellular automaton 
may be simulated by blocks of sites 00 and 
11, respectively, in the second cellular 
automaton, and two time steps of evolution 
in the second cellular automaton correspond 
to one time step in the first. Then, with a 
special initial state containing 11 and 00 but 
not 01 and 10 blocks, the second cellular 
automaton may simulate the first. 

Figure 14 gives the network that repre- 
sents the simulation capabilities of sym- 
metric cellular automata with k = 2 and r = 

1. (Only simulations involving blocks of 
length less than four sites were included in 
the construction of the network.) If a cellular 
automaton is computationally universal, 
then with a sufficiently long encoding it 
should be able to simulate any other cellular 
automaton, so that a path should exist from 
the node that represents its rule to nodes 
representing all other possible rules. 

An example of the simulation of one 
cellular automaton by another is the simula- 
tion of the additive rule 90 (Eq. 1) by the 
class 3 rule 18. A rule 1 8 cellular automaton 
behaves exactly like a rule 90 cellular 
automaton if alternate sites in the initial 
configuration have value 0 (so that 0 and 1 
in rule 90 are represented by 00 and 01 in 
rule 18) and alternate time steps are con- 
sidered. Figure 15 shows evolution accord- 
ing to rule 18 from a disordered initial state. 
Two "phases" are clearly evident: one in 
which sites at even-numbered positions have 
value 0 and one in which sites at odd- 
numbered positions have value 0. The 
boundaries between these regions execute 
approximately random walks and eventually 
annihilate in pairs, leaving a system consist- 
ing of blocks of sites that evolve according to 
the additive rule 90. (Cf. P. Grassberger, 
"Chaos and Diffusion in Deterministic 

Fig. 15. Evolution of the class 3 cellular automaton rule 18 from a disordered initial 
state with pairs of sites combined. The pair of site values 00 is shown as black, 01 as 
red, 10 as green, and 11 as blue. At large times two phases are clearly evident, 
separated by "defects'' that execute approximately random walks and ultimately 
annihilate in pairs. In each phase alternate sites have value 0, and the other sites 
evolve according to the additive rule 90. Thus for almost all initial states rule 18 
behaves like rule 90 at large times. Rule 18 therefore follows an attractive simulation 
path to rule 90. 

Fig. 16. Evolution of the class 2 cellular automaton rule 94 from an initial state in 
which the members o f  most pairs of sites have the same values, so that the digrams 00 
and 11 predominate and the sequences 010 and 101 are nearly absent. (Color 
designations are the same as in Fig. 15.) Class 3 behavior occurs, but is unstable; 
class 2 behavior is "seeded" by 10 and 01 digrams and ultimately dominates. Rule 94 
exhibits a repulsive simulation path to the class 3 additive rule 90 and an attractive 
path to the identity rule 204. 
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we11 organized that as soon as an error 
shows up in any one part of it, the system 
automatically senses whether this error mat- 
ters Qr not. If it doesn't matter, the system 
continues to operate without paying any 
attention to it. If the error seems to be 
important, the system blocks that region out, 
by-passes it and proceeds along other chan- 
nels. ?'he system then andyzes the region 
separately at leisure and corrects what goes 
on there, and if correction is impossible the 
system just blocks the region off and by- 
passes it forever. . . . 

"To apply the philosophy underlying 
natural automata to artificial automata we 
must understand complicated mechanisms 
better than we do, we must have elaborate 
statistics about what goes wrong, and we 
must have much more perfect statistical 
information about the milieu in which a 
mechanism lives than we now have. An 
automaton cannot be separated from the 
milieu to which it responds" (ibid., pp 

\, ' 
' \ \  

71-72). \. /. \ \. 1, L ' . 
From artZcid automata "one gets a ve 

strong impression that complication, or 
reductive potentiality in an organization9 is 
egenerative, that an organization which 

synthesizes something is necessarily more 
d, of a higher order, than the 

ation it synthesizes" (ibid., p. 79). 
defeats degeneracy. Although the 

mplicated aggregation of many elemmtwy 
rts necessary to form a living organism is 
ermodynamicd4y highly improbable, once 

such a peculiar accident occurs, the rules of 
probability do not apply because the or- 
ganism can reproduce itself provided the 
milieu is reasonable-and a reasonable 
milieu is thermodynamically much less h- 
probable. Thus probability leaves a loophole 

at is pierced by self-reproduction. 
Is it possible for an artscial automaton to 

reproduce itself? Further, is it possible for a 
machine to produce something that is more 
complicated than its& in the sense that the 
offspring can perform more dMcult and 
involved tasks than the progenitor? These 

A three-dimemiom1 object grown from a sirzgle cube to the thirtieth generation (dark 
cubes). The w & l  shows ody one oc- cf the three-dimnswml structure* This 
figure and the twu others illustrating this urticle are from Re G. Schrandt and S. M. 
h, "On Recursive& D&ed Geometrical Objects and Patterns of Growth," Los 
A lmos Scien@c &&oratory reprt  LA -3762, November 1%7 d are u&o reprinted 
in Arthur W. B w h ,  editor, Essays on Cellular Automata, Udversi@ of i'llinois Press, 
1970. 
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neighborhood consisting of the four cells 
orthogonal to it. Influenced by the work of 
McCulloch and Pitts, von Neumann used a 
physiological simile of idealized neurons to 
help define these states. The states and 
transition rules among them were designed 
to perform both logical and growth opera- 
tions. He recognized, of course, that his 
construction might not be the minimal or 
optimal one, and it was later shown by 
Edwin Roger Banks that a universal self- 
reproducing automaton was possible with 
only four allowed states per cell. 

The logical trick employed to make the 
automaton universal was to make it capable 
of reading any axiomatic description of any 
other automaton, including itself, and to 
include its own axiomatic description in its 
memory. This trick was close to that used by 
Turing in his universal computing machine. 
The basic organs of the automaton included 
a tape unit that could store information on 
and read from an indefinitely extendible 
linear array of cells, or tape, and a construct- 
ing unit containing a finite control unit and 
an indefinitely long constructing arm that 
could construct any automaton whose de- 
scription was stored in the tape unit. Realiza- 
tion of the 29-state self-reproducing cellular 
automaton required some 200,000 cells. 

Von Neumann died in 1957 and did not 
complete this construction (it was completed 
by Arthur Burks). Neither did he complete 
his plans for two other models of self- 
reproducing automata. In one, based on the 
29-state cellular automaton, the basic ele- 
ment was to be neuron-like and have fatigue 
mechanisms as well as a threshold for excita- 
tion. The other was to be a continuous model 
of self-reproduction described by a system of 
nonlinear partial differential equations of the 
type that govern diffusion in a fluid. Von 
Neumann thus hoped to proceed from the 
discrete to the continuous. He was inspired 
by the abilities of natural automata and 
emphasized that the nervous system was not 
purely digital but was a mixed analog-digital 
system. 

Much effort since von Neumann's time 
has gone into investigating the simulation 
capabilities of cellular automata. Can one 
define appropriate sets of states and transi- 
tion rules to simulate natural phenomena? 
Ulam was among the first to use cellular 
automata in this way. He investigated 
growth patterns of simple finie systems, 
simple in that each cell had only two states 
and obeyed some simple transition rule. 
Even very simple growth rules may yield 
highly complex patterns, both periodic said 
aperiodic. "The main feature of cellular 
automata," Ulam points out, "is that simple 
recipes repeated many times may lead to 
very complicated behavior. Information 
analysts might look at some final pattern said 
infer that it contains a large amount of 
information, when in fact the pattern is 
generated by a very simple process. Perhaps 
the behavior of an animal or even ourselves 
could be reduced to two or three pages of 
simple rules applied in turn many times!" 
(private conversation, October 1983). 
Ulam's study of the growth patterns of 
cellular automata had as one of its aims "to 
throw a sidelight on the question of how 
much 'information' is necessary to describe 
the seemingly enormously elaborate struc- 
tures of living objects" (ibid.). His work with 
Holladay and with Schrandt on an electronic 
computing machine at Los Alamos in 1967 
produced a great number of such patterns. 
Properties of their morphology were 
surveyed in both space and time. U l m  and 
Schrandt experimented with "contests" in 
which two starting configurations were al- 
lowed to grow until they collided. Then a 
fight would ensue, and sometimes one con- 
figuration would annihilate the other. They 
also explored three-dimensional automata. 

Another early investigator of cellular 
automata was Ed Fredkin. Around 1960 he 
began to explore the possibility that all 
physical phenomena down to the quantum 
mechanical level could be simulated by 
cellular automata. Perhaps the physical 
world is a discrete space-time lattice of 

A pattern grown according to a recursive 
rule from three noncontigwus squares 
at the vertices o f  an approximately equi- 
lateral triangle. A square of the next 
generation is formed i f  (a) U is con- 
tiguous to one and only one square o f  the 
current generation, and (b) it touches no 
other previously occupied square except 

the square should be its *'grand- 
parent" In addition, of Ms set cfpro- 
spective squecres qf the (w-l)th genera- 
tion 5~atvtfyws condition @), dll squares 
that would touch each other we 
eliminated. However, squares that have 
the someparent are allowed to touch. 

information bits that evolve according to 
simple rules. In other words, the 
universe is one enormous cellular antoma- 
ton. 

There have been many other workers in 
this field. Several important mathematical 
results OB cellular automata were obtained 
by Moore and Holland (University of Mich- 
igan) in the 1960s. The "Gases of Life," an 
example of a two-dimensional cellular 
automaton with very complex behavior, was 
invented by Conway (Cambridge University) 
around 1970 and extensively investigated for 
several years thereafter. 
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Cellular automata have been used in bio- 
logical studies (sometimes under the names 
of "tesselation automata" or b'hornogeneous 
structures") to model several aspects of the 
growth and behavior of organisms. They 
have been analyzed as parallel-processing 
computers (often under the name of "iter- 
ative arrays"). They have also been applied 
to problems in number theory under the 
name "stunted trees" and have been con- 
sidered in ergodic theory, as endomorphisms 
of the "dynarnical" shift system. 

A workshop on cellular automata at Los 
Alamos in March 1983 was attended by 
researchers from many different fields. The 
proceedings of this workshop will be pub- 
lished in the journal Physica D said will also 
be issued as a book by North-Holland 
Publishing Co. 

In all this effort the work of Stephen 
Wolfram most closely approaches von Neu- 
mann's dream of abstracting from examples 
of complicated automata new concepts rele- 

vant to information theory and analogous to 
the concepts of thermodynamics. Wolfram 
has made a systematic study of one-dimen- 
sional cellular automata and has identified 
four general classes of behavior, as described 
in the preceding article. 

Three of these classes exhibit behavior 
analogous to the limit points, limit cycles, 
and strange attractors found in studies of 
nonlinear ordinary differential equations and 
transformation iterations. Such equations 
characterize dissipative systems, systems in 
which structure may arise spontaneously 
even from a disordered initial state. Fluids 
and living organisms are examples of such 
systems. (Non-dissipative systems, in con- 
trast, tend toward disordered states of max- 
imal entropy and are described by the laws 
of thermodynamics.) The fourth class mim- 
ics the behavior of universal Turing ma- 
chines. Wolfram speculates that his identifi- 
cation of universal classes of behavior in 
cellular automata may represent a first step 

in the formulation of general laws for com- 
plex self-organizing systems. He says that 
what he is looking for is a new con- 
cept-maybe it will be complexity or maybe 
something else-that like entropy will be 
always increasing (or decreasing) in such a 
system and will be manifest in both the 
microscopic laws governing evolution of the 
system and in its macroscopic behavior. It 
may be closest to what von Neumann had in 
mind as he sought a correct definition of 
complexity. We can never know. We can 
only wish Wolfram luck in finding it. rn 
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