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1. Introduction 

The basic components of cellular automata are discrete. But at least in some cases 
the aggregrate behaviour of large numbers of these components can be effectively 
continuous. As a result, it is possible to use cellular automata as models of continuum 
systems, such as fluids. 

The mathematical origins of continuum behaviour in cellular automata are much 
the same as they are for many physical systems. A gas, for example, consists of many 
discrete molecules. Nevertheless, on a large scale, it can be described as a fluid. 

Several conditions are necessary for the overall behaviour of a system with discrete 
elements to seem continuous. 

First, continuum behaviour must be associated with some kind of extensive quan­
tity. Such a quantity must be additive, and must be conserved in the dynamical 
evolution of the system. In a gas, one example of such a quantity is particle number. 
Other examples are energy and momentum. 

A continuum system such as a fluid has the feature that its state can be described 
(locally) by just a few extensive quantities. To describe the precise microscopic state 
of a real gas one must, of course, specify the precise configuration of molecules. But it 
is believed that unless the gas is highly rarefied, this precise configuration is irrelevant 
to the macroscopic behaviour of the gas. Only the values of the few, averaged, 
extensive quantities are significant, so that a fluid approximation can be used. 

The basis for this belief is embodied in the Second Law of thermodynamics. 
It seems that almost regardless of the initial microscopic configuration, collisions 
rapidly tend to randomize the configuration of gas molecules, so that at least for 
macroscopic purposes, it suffices to specify merely the values of certain average 
quantities. 

Originally presented at Cellular Automata '86 (June 1986). 
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The true basis for this phenomenon has never been very clear. Some descriptions 
of it can be given in terms of the apparent increase of coarse-grained entropy. But no 
fundamental derivation has ever been given. The investigation of cellular automaton 
models seems likely to provide some new insights. 

If microscopic randomization is assumed, then overall continuum behaviour can 
be derived using statistical mechanics. Based on master or transport equations, one can 
find partial differential equations satisfied by the densities of the extensive quantities 
conserved by the cellular automaton evolution. 

Thus for example there has been much recent work on cellular automata which 
reproduce the Navier-Stokes equations for viscous fluid flow (see various other CA 
'86 posters). 

Statistical mechanics, and the continuum equations derived from it, provide a 
considerably reduced description of the system. There may in fact be many systems 
with different detailed microscopic dynamics, which nevertheless yield identical 
large-scale statistical or continuum behaviour. Thus, for example, the Navier-Stokes 
equations describe the aggregrate behaviour of fluids such as air and water with very 
different microscopic constitutions. 

Given generic macroscopic behaviour, it is important for both theoretical and 
practical purposes to try and find the simplest microscopic dynamics which can 
reproduce the macroscopic behaviour. One may, for example, seek the simplest 
cellular automaton rule which reproduces a particular form of continuum behaviour. 
("Simplest" can be defined for example as requiring minimum storage space and 
minimum number of logical operations to implement.) 

Specific rules which reproduce given macroscopic behaviour can conceivably be 
produced by explicit construction. Different elements of the rules can for example 
be arranged to mimic particular forms of particle collisions, and so on. The result 
of such a procedure will be some rule with the desired behaviour. But it will most 
likely not be the simplest such rule. Finding the simplest rule is in general a difficult 
optimization problem. 

It is in some respects akin to problems such as logic circuit design in which 
a device with a particular form of overall behaviour must be constructed with the 
minimum number of circuit elements. Such problems have recently increasingly 
been tackled by iterative or adaptive procedures. Some dynamics in the space of 
possible circuits is defined, and the optimization process consists in applying this 
dynamics with certain constraints imposed. 

Thus one can consider finding minimal cellular automaton rules by various itera­
tive and adaptive procedures. 

Such methods are examples of a general approach to computer programming and 
other design problems which one expects will become increasingly common. At 
present, most systems are designed in a step-by-step fashion, with their complete 
progression of states foreseen in detail by the designer. But more efficient designs 
may potentially be found by a more "goal-oriented" approach. Having specified the 
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constraints, a definite adaptive or iterative procedure traverses the space of possible 
designs, seeking the one which optimizes some measure of success. The result will 
typically be a more efficient "computer-generated" design, whose operation cannot 
necessarily be "understood" in an explicit step-by-step fashion. 

This poster considers as an example the problem of finding the simplest cellular 
automaton rule which reproduces the one-dimensional diffusion equation. 

The potential interest of these investigations is severalfold. 

I . They may provide practical methods for solving problems related to continuum 
systems (and these methods may be compared in detail with existing methods). 

2. They provide examples of systems which exhibit the basic phenomena of 
thermodynamics, and should allow further elucidation of the foundations of 
thermodynamics. 

3. They give examples of the procedure of "adaptive programming". 

2. The Approach 

The diffusion equation can be derived by considering the behaviour of the aggregate 
density of a large number of particles, each of which executes a random walk. The 
random walk may result from collisions with other particles of the same kind (as in 
self diffusion), or from interactions with some separate stochastic background. 

The overall statistical behaviour of random walks is well known to be highly 
insensitive to the precise details of the walk. Thus for example walks whose steps 
are constrained to lie on various discrete lattices give in the large scale limit the same 
statistical behaviour as walks whose steps have no constraints. 

By constructing a cellular automaton rule which involves various discrete par­
ticles, whose total number is conserved, one should thus be able to reproduce the 
diffusion equation. 

A crucial issue, which relates to the foundations of thermodynamics, is the degree 
of randomness which is produced by a cellular automaton, or which, for that matter, 
is really necessary to reproduce macroscopic diffusion phenomena. 

Nevertheless, following the approach discussed in the introduction, one is con­
cerned not merely with finding some cellular automaton rule which reproduces dif­
fusion, but rather with finding the simplest or optimal one. One must delineate a 
class of rules capable of reproducing diffusion, and then search within these to find 
the optimal one. 

The conservation laws necessary for macroscopic diffusion turn out to be quite 
straightforward to ensure in a class of cellular automata. The capability for random­
ness generation cannot, it seems, be guaranteed directly by the structure of the rule, 
but must rather be deduced by studying the explicit behaviour of the system. 

Diffusion requires that a scalar quantity (which in some cases can be identified as 
a particle number) is additively conserved. 
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In the simplest cellular automata, one considers rules which specify the new value 
of a single site in terms of the values of a neighbourhood of sites around it on the 
previous time step. In most such rules, no additive quantities can be conserved. 
In addition, such rules are usually highly irreversible, so that they evolve towards 
attractors which contain only a subset of the possible states. The accessibility of 
only a subset of states makes an adequate degree of randomness less likely. It does 
however necessarily preclude diffusion equation behaviour; the various statistical 
mechanical tools used in derivations can still be applied, but now not to all possible 
states, but only to those on the attractor. 

There are several methods for constructing classes of cellular automata whose 
evolution satisfies certain conservation laws. (See Y. Pomeau "Invariant in cellular 
automata", J. Phys. A17 (1984) L415 and N. Margolus "Physics-like models of com­
putation", Physica lOD (1984) 81, both reprinted in Theory and Applications o/Cel­
lular Automata (edited by S. Wolfram).) The method used here involves considering 
cellular automata which map one block of sites into another block of the same size. 

In the simplest case, one considers a one-dimensional cellular automaton which 
maps pairs of binary site values to other pairs of binary values. The dynamics is 
chosen to be such that the boundaries of the pairs are taken to be at even and at odd 
sites on alternate time steps. 

Figure 2.1 shows patterns generated by all the 44 = 256 possible cellular automata 
of this kind. A variety of phenomena are observed. 

Most of the cellular automata of this class show neither additive conservation 
laws nor reversibility. But unlike cellular automata whose rules are constructed in 
the usual way, the conditions for conservation and reversibility in these blocked 
cellular automata are comparatively simple to state. 

The condition for reversibility is simply that the mapping from one set of blocks 
to another be a permutation (so that this mapping is invertible). (There are 24 such 
rules in the set shown in figure 2.1.) 

The condition for additive conservation laws is that for some values Vo and VI the 
quantity voNo + VI NI be conserved, where N; is the number of sites with value i in 
each possible block. 

Table 2.1 gives the possible rules which satisfy this condition. Two are reversible; 
two are not. Inspection of figure 2.1 shows that in none of the cases is sufficient 
randomness generated. 

As a result, one must conclude that two possible values at each site (k = 2) and 
block size 2 (b = 2) are not sufficient to yield diffusion equation behaviour. 

Figure 2.1. Patterns generated by evolution from disordered initial states according to all possible one- ~ 

dimensional k = 2, b = 2 blocked cellular automaton rules. These rules have 2 possible values at each 

site. They are updated by mapping each block of two adjacent sites on to another block of two sites. On 

one "half step", blocks which begin on even-numbered sites are updated; on the other "half step", blocks 

beginning at odd-numbered sites are updated. The rules are numbered as follows. The output blocks for 

each of the possible input blocks II, 10, 0 I and 00 are written down in order. Then each output block is 

converted to a base 4 digit. The resulting base 4 number is then quoted in base 10. 
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rill 1111111111---
rule 0 (0000) rule 1 (0001) ru I e 3 (0003) 

rule <4 (0010) rule 6 (0012) 

-rule 8 (0020) rule 9 (0021) rule 10 (0022) rule 11 (0023) 

rule 12 (0030) rule 13 (0031) ru I e 14 (0032) rule 15 (0033) 

rule 16 (0100) rule 17 (0101) rule 19 (0103) 

rule 20 (0110) rule 21 (0111) ru l e 22 (0112) rule 23 (0113) 
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rule 24 (0120) rule 25 (0121) rule 26 (0122) rule 27 (0123) 

i~ 
~ 

~ 

~~ 
~= = 
~ ~"<:>/ 

rule 28 (0130) rule 29 (0131) rule 30 (0132) rule 31 (0133) 

rule 32 (0200) rule 33 (0201) 

rule 36 (0210) rule 39 (0213) 

rule 40 (0220) ru l e 41 (0221) ru I e 42 (0222) rule 43 (0223) 

rule 44 (0230) rule 45 (0231) rule 46 (0232) rule 47 (0233) 

Figure 2.1 (continued). 
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.. .. ~. 

~-rule 48 (0300) rule 49 (0301) 

ru t e 52 (0310) ru le 53 (0311) 

rule 56 (0320) ru le 57 (0321) 

rule 60 (0330) rule 61 (0331) 

III 
rule 64 (1000) rule 65 (1001) 

rule 68 (1010) rule 69 (1011) 

Figure 2.1 (continued). 

&\1 -rule 50 (0302) rule 51 (0303) 

rule 54 (0312 ) rule 55 (0313) 

rule 58 (0322) rule 59 (0323) 

rule 62 (0332) rule 63 (0333) 

rule 66 (1002) 
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rulo 72 (1020) rulo 73 (1021) 

rulo 76 (1030) 

rulo 80 (1100) rulo 81 (1101) 

rulo 84 (1110) rulo 85 (1111) 

rulo 88 (1120) rulo 89 (1121) 

rulo 92 (1130) rulo 93 (1131) 

Figure 2.1 (continued). 
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rulo 74 (1022) 

rulo 78 (1032) 

rulo 82 ( 1102 ) 

rulo 86 (1112 ) 

rulo 90 (1122 ) 

rulo 94 (1132) 

rulo 75 (1023) 

-• rule 79 (1033) 

r u I 0 83 (1103) 

rule 87 (1113) 

rule 91 (1123) 

rulo 95 (1133) 



I .. ' ... ".," ........ , .. . , 

rule 96 (1200) 

rule 112 (1300) 

, continued). Figure 21 ( 

II 

m '" III 
II 

II, 
rule 101 (1211) 

., .. 

• :~ w 
rule 109 (1231) 

III 

•• 
• 

W' IU" I~ ~ 'Il~ 

• 
I~ 

~ ~ 
rule 103 (1213) 

r U I e 111 (1233) 
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rule 120 (1320) rule 121 (1321) rule 122 (1322) rule 123 (1323) 

.u 
rule 124 (1330) rule 125 (1331) rule 126 (1332) rule 127 (1333) 

rule 128 (2000) rule 130 (2002) 

In- ' ..... ,.. . r ' ,., rrrlT 

ru l e 132 (2010) rule 133 (2011) rule 135 (2013) 

rule 136 (2020) rule 137 (2021) rule 138 (2022) rule 139 (2023) 

• rule 140 (2030) rule 141 (2031) ru Ie 142 (2032) rule 143 (2033) 

Figure 2.1 (continued), 
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<§ ~ ~~~ K~ 

~ ~ ~ ~ 
~~ 

!!!! ;;:-q 

rule 144 (2100) rule 145 (2101) rule 147 (2103) 

rule 148 (2110) rule 149 (2111) rule 150 (2112) rule 151 (2113) 

rule 152 (2120) rule 153 (2121) rule 154 (2122) rule 155 (2123) 

.... 
rule 156 (2130) rule 157 (2131) ru le 158 (2132) rule 159 (2133) 

rule 160 (2200) 

';lJ 
[ 

In -
rule 164 (2210) rule 165 (2211) rule 166 (2212) rule 167 (2213) 

Figure 2.1 (continued). 
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rule 168 (2220 ) 

rule 172 (2230) 

rule 176 (2300) 

rule 180 (2310) 

,. 
rule 184 (2320) 

rule 188 (2330) 

rule 169 (2221) 

rule 173 (2231) 

~. 

~ 
~ 
~ 
~ ~ 

rule 177 (2301) 

rule 181 (2311) 

ru I e 185 (2321) 

rule 189 (2331) 

Figure 2.1 (continued). 
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ru I e 170 (2222) 

ru I e 174 (2232) 

rule 182 (2312) 

rule 186 (2322) 

rule 190 (2332) 

rule 171 (2223) 

rule 175 (2233) 

-.. 
rule 179 (2303) 

rule 183 (2313) 

rul e 187 (2323) 

rule 191 (2333) 
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rul. 192 (3000) 

• r I pi" ."..,.. '1IIr , ..... " •• 

rul. 196 (3010) rule 199 (3013) 

rul. 200 (3020) ru I. 201 (3021) rul. 202 (3022) rule 203 (3023) 

rul. 204 (3030) ru I. 205 (3031) rul. 206 (3032) rule 207 (3033) 

rul. 208 (3100) rul. 209 (3101) rul. 210 (3102) rule 211 (3103) 

rul. 212 (3110) rul. 213 (3111) rul. 214 (3112) rule 215 (3113) 

Figure 2.1 (continued). 
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rule 216 (3120) rule 217 (3121) rule 218 (3122) rule 219 (3123) 

rule 220 (3130) ru l e 221 (3131) rule 222 (3132) rule 223 (3133) 

' ...... . ........ ""I' ., ...... 1~',;';~:'IIl~4~~~,·,~,··~,·~':· .. :..~~~\''!.~~~~,'\'''\" 

~'. 
'4~4 .. ,~~, ... 4 .. ~1~1I1I .. e. . .~ ,,~.~ '" ,', 
, 00 ~004444~ ~OOOO~' ~",,® ~ ,,,\,'¢;~,:, ~~'~4~00 ~~~ '~4°O' 4 • I .... ~f I I :", ~I~:', :. ~ '® ~ """,.§ 
'4444, 44444' :4~~, '4 00 4':4 ~,'® ~ ,''\-.\':,:':~. 

• 
"4 ..... 4' I • I I 1"" ® ~ """ .@" 1~~:'~~~4~~~~444~'~~'4' ~ ~ ,,\,\,:,:.~ ,"~ 

4'44~' ' ~~4~ , '4 ~ ~ ,-...;" ,,:.@ " ~ 
.' ~~' ~004"" ~4~::~' ~ ,''\-.\':':~<~ I 4. I .. '" ... 4'" I' 1~~,,4.' •• ~4~::~~~4~~~~ ~ ,'~~\':~\~ ,~\\~.,~ 

ru I e 224 (3200) rule 225 (3201) ru I e 226 (3202) ru I e 227 (3203) 

rule 228 (3210) r u I e 229 (3211) ru I e 230 (3212) ru I e 231 (3213) 

rule 232 (3220) ru I e 233 (3221) rule 234 (3222) ru I e 235 (3223) 

rule 236 (3230) rule 237 (3231) ru I e 238 (3232) rule 239 (3233) 

Figure 2.1 (continued). 

342 



Minimal Cellular Automaton Approximations to Continuum Systems ( 19861 

ru I e 240 (3300) ru I e 241 (3301) rule 242 (3302) rule 243 (3303) 

rule 244 (3310) ru l e 245 (3311) rule 246 (3312) rule 247 (3313) 

rule 248 (3320) rule 249 (3321) rule 250 (3322) rule 251 (3323) 

ru le 252 (3330 ) rule 253 (3331) rule 254 (3332) rule 255 (3333) 

Figure 2.1 (continued). 

no + n I constant 216 invertible 

228 identity 
232 
212 

no + n I mod 2 constant 27 invertible 

39 invertible 
23 
43 

Table 2.1. k = 2, b = 2 block cellular automaton rules as illustrated in fi gure 2. 1, with certain conservation 

laws relating to the total numbers n ; of si tes with values i. 
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r 
rul. 197631684 (452781630)rul. 197633124 (452783610) rule '99757124 (456781230) 

»~ rrlt~l~~);~ I~l~~~n 
: E:.' 

-"I 
.. ' 

~):! 0. :m.;1 ~: ~ ~ ::~~ B if rigl : 6' . . ' ., . 
a ~.~ ~<'.lq=" ,~ :- i9 ,::.' 

~ Ii' . ~~~ " 'd~ Q. , " ' " 
):! ,~, •• ~. ~ ~ " ' 

~Q.\~'~ ~ ~ Y~o6~'t·~ .. : . .. . ..:. ... -: 
rul. 207079524 (472581630)rul. 207080964 (472583610) rul. 209204964 (476581230) rul. 209206404 (476583210) 

rule 371919204 (8567"'3210) 

rule 379240164 (872541630)rul. 379241604 (872543610) rul. 381365604 (876541230) rul. 381367044 (876543210) 

Figure 2.2. Patterns generated by all k = 3, b = 2 rules which are reversible and conserve the number 

of binary bits in each configuration. These rules are candidates for simulation of the one-dimensional 

diffusion equation. 

It turns out that k = 2, b = 3 is also not sufficient. 
As a result, one must consider k = 3, b = 2 rules. (A rough estimate of the "com­

plexity" of rules can be obtained from the number of bits necessary, without compres­

sion, to specify their complete rule tables. This number is given by log2 ((kb)<k
b»). 

It is slightly larger for k = 3, b = 2 than for k = 2, b = 3.) 
With k = 3, there is slightly more freedom in the definition of additive quantities. 

One might, for example, consider adding the numerical values of sites. It turns out, 
again, that the set of rules with this quantity conserved is too highly constrained to 
allow a sufficient degree of randomness generation. 

An alternative class of rules are those which conserve not the sum of the numerical 
values of sites, but the total number of binary bits contained in these values. There are 
16 possible rules which satisfy this condition, and are reversible. Patterns generated 
by them are illustrated in figure 2.2. 

Some of these rules obviously do not show sufficient randomness to yield diffusion 
behaviour. But others require more sophisticated analysis. 
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3. Randomization and Thermodynamics 

It is observed that many systems, starting from almost any state, evolve rapidly to 
states which seem for practical purposes random. The sense in which the states are 
random is that their properties (say, statistical ones) are typical of the ensemble of all 
possible states. Several explanations and conditions for such randomness have been 
given. No complete understanding yet exists. 

A common approach is based on ergodicity. Only reversible systems can be 

ergodic. The condition for ergodicity is that starting from any initial state, the 
evolution of the system eventually visits all possible states. The state transition 
diagram for the system thus consists of a single large cycle. If a system is ergodic, 
then at least after a sufficiently long time, it must evolve to an arbitrary, and thus 
"typical" state. In practice, however, the maximum period of time necessary to 
reach arbitrary states is usually astronomically large (it is typically exponential in the 
system size, and comparable to the recurrence time). Evolution for practical times 
reaches only some small subset of possible states. 

What must now be explained is why these states seem random. 
This is a subtle issue. There are always special choices of initial conditions 

for which the states reached are far from random. For example, one could choose 
initial conditions which are obtained from some orderly state by time reversal of the 
dynamics for some number of steps. These initial conditions would yield evolution 
which would not show degradation to randomness: rather it would suddenly yield 
orderly behaviour, seemingly violating the Second Law of thermodynamics. 

One approach often taken is to consider the dependence of the evolution on small 
changes in initial conditions. It is supposed that the initial conditions cannot be 
determined precisely, so that in practice, measurements or experimental preparations 
can be guaranteed to yield only one of an ensemble of states, which differ slightly. 
The effects of small changes in initial conditions can be seen quite clearly in cellular 
automata. 

One considers the evolution of a cellular automaton from two states, which differ 
say by a change in the value of a single site. The pattern of differences between states 
produced as a function of time shows the effect of this small initial perturbation. 
Figure 3.1 shows such difference patterns for the rules of figure 2.2. In some cases, 
initial changes remain localized; the evolution in such cases may be considered 
"stable". (Notice that in a reversible cellular automaton, the effects of changes in 
initial conditions can never die out completely, because information on the initial 
state must be preserved.) In other cases ("class 3" cellular automata), small initial 
changes are progressively amplified by the evolution. Change of the value of one 
site can ultimately affect the values of sites an arbitrary distance away. The patterns 
produced by such cellular automata can thus be considered unstable with respect to 
arbitrarily small perturbations. 
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rul. 197631684 (452781638)rule Ul7633t24 ( 452783618 ) rule 199757124 (456781238) rule 199758564 (4567832 18) 

rule 2818751524 (472581638)rule 287888964 ( 472583610) rule 289284964 (476581238) rule 289286484 (476583218) 

rule 3&9792324 (852741638)rule 369793764 (852743618) rule 371917764 (856741 238) rule 371919284 (856743218) 

I 
rul. 379248164 (872541638)rule 379241684 (81254~6,e) rule 381365684 (876541230) rule 381367844 (8765432 10) 

Figure 3.1. Difference patterns for the rules of figure 2.2. The patterns show the evolution of the difference 

between two random configurations which initially differ just by a change in a single bit. Some rules are 

seen to be stable under such perturbations; for other rules, the effect of these changes grows with time. 

The rate of growth gives the Lyapunov exponent of dynamical systems theory. Such instability leads to a 

sensitive dependence on the initial conditions for the evolution. 

This phenomenon is central to much of what has been studied in the theory of 
chaotic dynamical systems. It implies that with incomplete knowledge of initial 
conditions, a time must ultimately come at which the results of measurements can 
no longer be predicted, because they depend on unknown features of the initial 
conditions. 

It is not however guaranteed that the system will at this point be random. Its 
randomness depends on the randomness of the unknown features of the initial con­
ditions. It is by no means clear in fact that in actual experiments, these features are 
indeed adequately random. Certainly one can consider cases in which for example 
only a few cellular automaton sites are nonzero, and all sites beyond some point are 
zero. In this case, randomness in final configurations cannot be directly attributed to 
random unknown data in the initial conditions. 

A further, related, problem is the exact definition of "apparently random" states. 
A sequence or configuration is commonly considered "random" if no pattern can be 
discerned in it, so that no procedure can be used to predict additional elements of 
it, or to compress the information associated with it. The meaning of randomness 
depends on the kinds of pattern recognition which are considered. 

If one starts with an orderly initial state, all states generated with time can be 
specified by giving this state, and the number of steps required to generate them. Such 
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a specification will usually represent a substantial compression in the information as­

sociated with the state. Yet despite the possibility for such compression, many aspects 

of the state may still seem random. Although compression is possible, it may not be 

revealed by the kinds of statistical procedures commonly used to analyse the states. 

Figure 3.2 shows examples of some simple k = 2, r = 1 cellular automata 

which illustrate this phenomenon. In each case, a simple initial condition is chosen, 

consisting of a single nonzero site. With these initial conditions, some cellular 

automata yield simple patterns, and sequences of sites in these patterns are for 

example periodic. Other cellular automata yield slightly more complicated, self 

similar, patterns. But here again sequences of site values are almost periodic, and are 

readily predictable. Some cellular automata, however, can yield apparently random 

sequences even starting from these simple initial conditions. The two simplest 

examples (found by explicit search) are rules 30 and 45. In both cases, the sequences 

generated seem random according to all standard statistical tests (see S. Wolfram, 

"Random sequence generation by cellular automata", Adv. Applied Math. 7 (1986) 

123 and in Theory and Applications o/Cellular Automata). Figure 3.3 shows a more 

detailed example of evolution according to rule 30. 

The phenomenon observed in this case occurs in other mathematical systems. 

Even though a simple specification for 7r, for example, can be given, its digit sequence, 

once generated, seems random for all practical purposes. The fractional parts of 

successive powers of 3/2, which can be generated by a k = 6, r = I cellular 

automaton, provide another example. In all cases, what is observed is that a sequence 

which can be generated easily can be hard to invert or compress. This phenomenon 

is the basis for the possibility of pseudorandom number generation or cryptography. 

Given a short seed or key as an initial specification, there are algorithms (such as 

that of figure 3.3) which yield long sequences from which the simplicity of the initial 

conditions is not apparent. The dynamics of the evolution has effectively "encrypted" 

the initial data to the point where it cannot be recovered by any simple computation. 

Computation theory provides a characterization of this phenomenon. The process 

of generating a sequence is in the polynomial time class P. But the process of recog­

nizing the origins of the sequence is in the class NP of non-deterministic polynomial 

time computations. It seems that P *- NP so that there exist at least some cases in 

which the problem of recognition cannot be solved by a polynomial time computation. 

It is clear that an exhaustive search through all possible initial conditions would 

reveal whether any "simple" one yielded a particular sequence. But the number of 

such possible initial conditions is exponentially large, so that such a search could 

take an exponentially long time. As a result, it would rapidly become infeasible. 
The standard statistical tests of randomness applied to physical systems are com­

putationally quite simple. As a result, they are unable to detect regularities that 

require say exponential time computations to recognize. Thus if a system "encrypts" 

its initial data to the same degree as that of say figure 3.3 does, it will yield behaviour 

that appears random for practical purposes. 
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rule 18 (aeataBle ) r u l e 38 (&8811119 ) 

ru l e 45 ( e0 101'81) ru l e 73 ( 01eeleOl ) 

ru l e 105 ( 8 11 01e81 ) rule 110 (81181118 ) 

ru l e 158 (1e0181 10 ) ru l. 169 ( 181e1ee1 ) 

Figure 3.2. Examples of patterns generated by various simple k = 2, r = I cellular automata, evolving 

from a single nonzero initial site. Some rules are seen to give comparatively simple patterns, while other 

ru les give patterns which seem in many respects random. The generation of randomness in this way may 

well be the source of thermodynamic behaviour in many systems. It is necessary for the reproduction of 

continuum phenomena such as diffus ion. 
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Figure 3.3. The pattern generated by k = 2, r = I rule 30 starting from a single site initial seed. This rule 

has the form 

a; = (aj_1 + aj + aj+1 + ajaj+ l) mod 2. 

Despite the simplicity of this rule, the patterns it generates are so complicated as to seem in many respects 

random. Thus for example the centre column in this picture seems random for at least a million sites 

according to standard statistical randomness tests. This rule is probably the simplest cellular automaton 

which generates random behaviour in this way. It was found by an explicit search over all possible rules. 

I believe that most of the randomization associated with thermodynamic behaviour 
is ofthe mathematical type illustrated in figure 3.3. Even though the initial conditions 
are simple, the system encrypts them to the point where no feasible measurements or 
computations can recover them. 

4. The Winning Rule 

The phenomenon of randomization from simple initial conditions occurs in some but 
not all of the candidate diffusion equation cellular automata of figure 2.2. Figure 4.1 
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rul. 187631684 (452781638)rul. 197633124 (45278361.) rul. 188757124 (456781238) rul. 188758584 (45678321.) 

rul. 207079524 (472581630)rul. 207080.64 (472583610) rul. 209204964 (476581238) rul. 289286484 (476583211) 

~ I ~ I 
rul. 369792324 (852741638)rul. 369793764 (852743618) rule 371917764 (856741238) rul. 371918284 (85674321.) 

~ I ~ I 
rul. 379240164 (872541630)rul. 379241604 (872543610) rul. 381365604 (876541238) rul. 3813670« (876543210) 

Figure 4.1. Patterns generated by the k = 3, b = 2 blocked cellular automata of figure 2.2, starting from 

a simple initial condition. The cellular automata are shown on a size 80 lattice with periodic boundary 

conditions. The initial condition consists of a block of 20 sites with value I in the centre of the system. 

Most of the rules are seen to give rise to simple periodic patterns. 

shows evolution from a simple initial condition for all of these rules. Only one 
rule, and its (2,1) conjugate, show randomization in this case. Figure 4.2 shows the 
longer time evolution of this rule, on a size 80 with periodic boundary conditions. 
Regularities are still seen, but many features seem random. 

The degree of randomness generated by this rule can be tested by applying certain 
statistical procedures. A simple one is the computation of coarse-grained entropy. 
Figure 4.3 shows the coarse-grained entropy for the system. It is seen to tend rapidly 
to a maximum value, as expected for an apparently random system. 

Table 4.1 gives the block transformations for this rule. Interpretations in terms 
of particles and so on can be given. But it is noteworthy that making the rule 
"increasingly mixing" by including transitions for various other blocks does not 
yield an increase in the randomness of the overall behaviour. In fact, as figures 2.2 
and 4.1 show, such "additional mixing" usually leads to simpler overall behaviour. 
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Figure 4.2. Longer sequences generated by one rule from figure 4.1 which seems to generate randomness 

from simple initial conditions. The patterns on this page were made on a size 80 lattice, with a size 20 

initial block. The patterns on the next page were made with a size 21 initial block. The degradation of 

orderly initial conditions into apparent randomness is clearly visible in these pictures. 
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Figure 4.2 (continued). 
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Figure 4.3. Timedevelopmentofthecoarse­

grained entropy associated with the process 

of figure 4.2. The density of bits was com­

puted in 10 bins across the system. Then the 

densities Pi found were combined to give 

the entropy 

s = - L Pi log Pi. 

This coarse-grained entropy is seen to tend 

to a maximum, as expected from the Sec­

ond Law of thermodynamics. 

The large scale average density of bits in evolution according to the rule of table 
4.1 should satisfy a diffusion equation. Figure 4.4 shows the microscopic dynamics 
of this rule for the cases of low and high bit density. At low bit densities, the rule 
exhibits particle dynamic phenomena, as might be seen in a rarefied gas. At high 
bit densities, however, it acts like a dense gas, and defects or particles executing 
apparently random walks can be seen. 

22 -) 11 
21 -) 21 
20 -) 02 
12-)J2 
11-) 22 
10-)10 
02 -) 20 
0 1 -) 01 
00 -) 00 

Table 4.1. Block transitions which define the k = 3, b = 2 rule which reproduces the 

diffusion equation. Blocks which change under the rule are shown in bold. The rule is 

applied on alternate time steps to even and odd blocks in the one-dimensional cellular 

automaton configuration. The rule is arranged to be reversible, so that each block has 

a unique predecessor as well as a unique successor under the time evolution. It is also 

bit conserving. so that the total number of binary bits in each block is invariant under 

these transitions. 

The microscopic configurations of this system are highly sensitive to small 
changes in initial conditions. Figure 4.5 shows the pattern of differences associ­
ated with the change in single initial site value. The pattern of differences is seen to 
expand at a fixed "speed of sound". 

The overall average behaviour of this system however obeys the diffusion equa­
tion, and so is insensitive to small changes. This phenomenon is just the same as 
occurs in real gases. 

The cellular automaton of table 4.1 can be considered as a system which contains 
particles executing random walks. What is perhaps remarkable about it is that the 
randomness necessary to produce appropriate average behaviour in these walks is 
generated intrinsically by the system, apparently at a low computational cost. 
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Figure 4.4. Microscopic diffusion at two densities in the minimal cellular automaton approximation to the 

one-dimensional diffusion equation. 
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Figure 4.4 (continued). 
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Figure 4.5. Difference pattern for the rule of figure 4.2. This shows the bits which change as a result of a 

change in a single initial bit in a random initial configuration. 

One can consider this system as a random sequence generator. The effectiveness 
of the system as a model for diffusion is related to its effectiveness as a random 
sequence generator. 

One issue is what the global behaviour of the system on a finite lattice is. Since 
the system is reversible, all states lie on cycles. Table 4.2 gives the multiplicities and 
sizes of these cycles for various lattice sizes. 

The lattice sizes so far investigated are not large enough to determine whether the 
maximum cycle time for the system does indeed increase exponentially with its size. 

The exact sets of cycles that occur for particular lattice sizes depend on the number­
theoretical properties of the lattice size. It is clear that the system is not ergodic, since 
there are often many distinct cycles. Some of these cycles may however be largely 
spurious. For example, when the lattice size is not prime, there are classes of initial 
states whose site values show a periodicity which is some divisor of the lattice size. 
Such classes of states must lie on distinct cycles. 

For complete randomization to occur, the system should have no conservation 
laws other than that of total bit number. The presence of multiple cycles implies that 
some other conservation laws may exist. However, no simple invariant quantities 
seem likely to be associated with these additional conservation laws. 
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size 7 

total number: 1918; number distinct lengths: 6 

3 x 6, 2 x 5, 8 x 4, 24 x 3, 174 x 2, 1707 x I 

size 9 

total number: 17135; number distinct lengths: II 

I x 12, I x 10, I x 9, 7 x 8, 12 x 7, 19 x 6, 31 x 5, 93 x 4, 182 x 3, 1537 x 2, 15251 x I 

size II 

total number: 24219; number distinct lengths: 143 

4 x 816,4 x 672, 4 x 654,12 x 547, 4 x 540, 4 x 372, 8 x 366, 4 x 354, 12 x 349, 4 x 342,6 x 330, 12 x 315 

4 x 312, 2 x 270,12 x 264, 2 x 246, 12 x 244, 8 x 240,12 x 239, 8 x 234, 8 x 225 , 8 x 222, 24 x 220, 24 x 2 19 

12 x 194, 8x 183, 12 x 179, 14 x 174, 12 x 169,36x 168,4x 162, 12 x 161,8 x 159, 12 x 153, 18 x 150 

12 x 149,36 x 148, 12 x 143, 12 x 141,24 x 139, 10 x 138, 12 x 137, 12 x 135,6 x 130, 36 x 126,36 x 124 

12 x 121 , 40x 120, 12 x 119, 12x 117,24 x 115, 28x 114, 12 x 110, 12 x 109, 48 x 108, 24 x 103, 36x 102 

28x96, 12 x95,48x94,48x93,24x9 1,46x90,48x89, 12 x 86, 12x85, 16 x84, 12 x83,24x8 1,24x80 

12 x 79, 26 x78, 12 x 77, 24 x75, 24x 74,60 x73, 64 x 72, 24x 71 , 32 x 69, 72 x68, 12 x 67, 84x 66, 60 x65 

24 x 64, 64 x 63,168 x 60,36 x 59, 32 x 57, 48 x 56, 48 x 55, 168 x 54, 12 x 52, 24 x 51,12 x 50,108 x 49 

l64 x 48,84x 47, 132 x 46, 124 x 45 , 108 x 44, 168 x43, 266 x 42, 132x4 1, 72x40,96x39, 156 x38 

96 x 37,136 x 36,132 x 35,108 x 34,116 x 33, 72 x 32, 84 x 31 , 218 x 30, 60 x 29, 84 x 28,156 x 27, 258 x 26 

192 x 25, 140 x 24, 168 x 23, 162 x 22, 408 x 21, 222 x 20, 360 x 19, 304 x 18,372 x 17, 492 x 16, 101 8 x 15 

498 x 14,528x 13, 576x 12,546 x 11 , 612x 10, 1415x9, 1710 x8, 1194 x7, 1740x6,495 x 5, 1248 x4 

1725 x 3, 1460 x2, 1190 x I 

Table 4.2. Cycles in finite size systems evolving according to the rule of table 4.1. In each case, the 

cellular automaton is taken to have periodic boundary conditions. The multiplicities and sizes of all cycles 

are given. For width II , the cycles have lengths which contain all primes up to 149, excluding 101 , 107, 

113, 127 and 131. An ergodic system would have just one cycle. 

5. Discussion 

This poster has illustrated a simple cellular automaton rule which exhibits continuum 
average behaviour in the large scale limit. It is possible to construct similar rules in 
two dimensions, and to give various other kinds of continuum behaviour (see several 
CA '86 posters) . 

In each case, one may compare the cellular automaton rules with traditional 
approaches to emulating these continuum systems on digital computers. In the con­
ventional approach, one starts from partial differential equations, then makes discrete 
numerical approximations to them. These approximations involve considering a dis­
crete lattice of points. But unlike in cellular automata, each of these lattice points 
carries a continuous variable which represents the precise value of a continuum quan­
tity, such as particle density, at that point. In actual computer implementations, the 
continuous variable is represented by a floating-point number, say 64 bits in length. 
The number is updated in a sequence of time steps, according to a discrete rule. The 
rule in general involves arithmetic operations, which cannot be carried out precisely 
on the finite precision number. As a result, low-order bits of the number are truncated. 
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Numerical analysis has studied in detail the propagation of such round-off errors, and 
has suggested schemes which minimize their effects. 

In a cellular automaton, the values of variables such as particle density are stored 
in a distributed fashion. It is necessary to average over a region of the system to find 
the values of such macroscopic variables. Each bit which contributes to this average 
is however treated according to a precise deterministic rule, and each bit is equally 
important. Nevertheless, the need for averaging introduces 1/.JN fluctuations in 
the values of measured quantities. For some systems, such as turbulent ones, only 
statistical averages are expected to be reproducible. But in others, such as the 
diffusion equation, the need for averaging represents a limit on accuracy. 

One can imagine a hybrid of cellular automaton and numerical analysis schemes. 
Consider the case of the diffusion equation. On a lattice of sites, one stores values 
which consist of sequences of bits. The high-order bits are encoded digitally, so that 
n bits can represent 2n possible numbers of particles. The low-order bits are however 
encoded in unary, and correspond to individual particles. The update scheme can 
conserve the total number of particles. 

Viewed as a numerical analysis procedure, the dynamics of the low-order bits 
represents a dynamics of round-off errors. Instead of systematically truncating the 
numbers, their low-order bits are modified according to dynamics which yields 
effectively random behaviour. The result is similar to random round-off, but includes 
a precise particle conservation law. 

By adjusting the number of unary and digital bits, one can determine the tradeoffs 
between cellular automaton and numerical analysis approaches. 

One of the major issues in numerical analysis is convergence. This is very difficult 
to prove for all but the simplest equations and the simplest schemes. But in cellular 
automata, the analogue of convergence is the process of coming to "thermodynamic" 
equilibrium. Thus the problem of "convergence" is related to a fundamental problem 
of physics. 
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