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Some approaches to the study of complex systems are outlined. They are encompassed 
by an emerging field of science concerned with the general analysis of complexity. 

Throughout the natural and artificial world one observes phenomena of great com

plexity. Yet research in physics and to some extent biology and other fields has 

shown that the basic components of many systems are quite simple. It is now a 

crucial problem for many areas of science to elucidate the mathematical mechanisms 

by which large numbers of such simple components, acting together, can produce 

behaviour of the great complexity observed. One hopes that it will be possible to 

formulate universal laws that describe such complexity. 

The second law of thermodynamics is an example of a general principle that 

governs the overall behaviour of many systems. It implies that initial order is pro

gressively degraded as a system evolves, so that in the end a state of maximal disorder 

and maximal entropy is reached. Many natural systems exhibit such behaviour. But 

there are also many systems that exhibit quite opposite behaviour, transforming ini

tial simplicity or disorder into great complexity. Many physical phenomena, among 

them dendritic crystal growth and fluid turbulence are of this kind. Biology provides 

the most extreme examples of such self-organization. 

The approach that I have taken over the last couple of years is to study mathemat

ical models that are as simple as possible in formulation, yet which appear to capture 

the essential features of complexity generation. My hope is that laws found to govern 

these particular systems will be sufficiently general to be applicable to a wide range 

of actual natural systems. 

The systems that I have studied are known as cellular automata. In the simplest 

case, a cellular automaton consists of a line of sites. Each site carries a value 0 or 1. 
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The configurations of the system are thus sequences of zeroes and ones. They evolve 
in a series of time steps. At each step, the value of each site is updated according to 
a specific rule. The rule depends on the value of a site, and the values of say its two 
nearest neighbours. So for example, the rule might be that the new site value is given 
by the sum of the old value of the site and its nearest neighbours, reduced modulo 
two (i.e. the remainder after division of the sum by two) . 

Even though the construction of cellular automata is very simple, their behaviour 
can be very complicated. And as a consequence, their analysis can be correspondingly 
difficult. In fact, there are reasons of principle to expect that there are no general 
methods that can universally be applied. 

The first step in studying cellular automata is to simulate them, and see explicitly 
how they behave. Figure I shows some examples of cellular automata evolving from 
simple seeds. In each picture, the cellular automaton starts on the top line from an 
initial state in which all the sites have value zero, except for one site in the middle, 
which has value one. Then successive lines down the page are calculated from the 
lines above by applying the cellular automaton rule at each site. 

Figure lea) shows one kind of pattern that can be generated by this procedure. 
Even though the rule is very simple (it can be stated in just one sentence, or a 
simple formula), and the initial seed is likewise simple, the pattern produced is quite 
complicated. Nevertheless, it exhibits very definite regularities. In particular, it is 
self-similar or fractal , in the sense that parts of it, when magnified, are similar to 
the whole. 

Figure 2 illustrates the application of a cellular automaton like the one in fig
ure lea) to the study of a natural phenomenon: the growth of dendritic crystals, 
such as snowflakes (as investigated by Norman Packard). The cellular automaton 
of figure I (a) is generalized to be on a planar hexagonal grid, rather than a line. 
Then a cellular automaton rule is devised to reproduce the microscopic properties of 
solidification. A set of partial differential equations provide a rather complete model 
for solidification. But to study the overall patterns of growth produced, one can use 
a model that includes only some specific features of the microscopic dynamics. The 
most significant feature is that a planar interface is unstable, and produces protrusions 

Figure 1. Patterns generated by evolution according to simple one-dimensional cellular automaton rules 

from simple initial conditions. 
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Figure 2. Snowflake growth simulation with a two-dimensional celJular automaton (courtesy of Norman 

H. Packard). 

with some characteristic length scale. The sizes of the sites in the cellular automaton 
correspond to this length scale, and the rules that govern their evolution incorporate 
the instability. With this simple caricature of the microscopic laws, one obtains 
patterns apparently very similar to those seen in actual snowflakes. It remains to 
carry out an actual experiment to find out whether the model indeed reproduces all 
the details of snowflakes. 

Figure I (b) shows a further example of a pattern generated by cellular automaton 
evolution from simple initial seeds. It illustrates a remarkable phenomenon: even 
though the seed and the cellular automaton rules are very simple, the pattern produced 
is very complicated. The specification of the seed and cellular automaton rule requires 
little information. But the pattern produced shows few simplifying features, and 
looks as if it could only be described by giving a large amount of information, 
explicitly specifying its intricate structure. 

Figure 1 is a rather concrete example of the fact that simple rules can lead to very 
complicated behaviour. This fact has consequences for models and methodologies in 
many areas of science. I suspect that the complexity observed in physical processes 
such as turbulent fluid flow is of much the same mathematical character as the 
complexity of the pattern in figure I (b). 

The phenomenon of figure I also has consequences for biology. It implies that 
complicated patterns of growth or pigmentation can arise from rather simple basic 
processes. In practice, however, more complicated processes may often be involved. 
In physics, it is a fair principle that the simplest model for any particular phenomenon 
is usually the right one. But in biology, accidents of history often invalidate this 
principle. It is only the improbability of very complicated arrangements that have 
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been reached by biological evolution that makes a criterion of simplicity at all 
relevant. And in fact it may no more be possible to understand the construction of 
a biological organism than a computer program: each is arranged to work, but a 
multitude of arbitrary choices is made in its construction. 

The method of investigation exemplified by figures 1 and 2 is what may be called 
"experimental mathematics". Mathematical rules are formulated, and then their 
consequences are observed. Such experiments have only recently become feasible, 
through the advent of interactive computing. They have made a new approach to 
science possible. 

Through computers, many complex systems are for the first time becoming 
amenable to scientific investigation. The revolution associated with the introduc
tion of computers in science may well be as fundamental as, say, the revolution in 
biology associated with the introduction of the telescope. But the revolution is just 
beginning. And most of the very easy questions have yet to be answered, or even 
asked. Like many other aspects of computing, the analysis of complex systems by 
computer is an area where so little is known that there is no formal training that is of 
much advantage. The field is in the exciting stage that anyone, whether a certified 
scientist or not, can potentially contribute. 

Based on my observations from computer experiments such as those of figure 1, 
I have started to formulate a mathematical theory of cellular automata. I have had to 
use ideas and methods from many different fields. The two most fruitful so far are 
dynamical systems theory and the theory of computation. 

Dynamical systems theory was developed to describe the global properties of 
solutions to differential equations. Cellular automata can be thought of as discrete 
idealizations of partial differential equations, and studied using dynamical systems 
theory. The basic method is to consider the evolution of cellular automata from 
all its possible initial states, not just say those consisting of a simple seed, as in 
figure 1. Figure 3 shows examples of patterns produced by the evolution of cellular 
automata with typical initial states, in which the value of each site is chosen at 
random. Even though the initial states are disordered, the systems organizing itself 
through its dynamical evolution, spontaneously generating complicated patterns. 
Four basic classes of behaviour are found, illustrated by the four parts of figure 3. 
The first three are analogous to the fixed points, limit cycles and strange attractors 
found in differential equations and other dynamical systems. They can be studied 
using quantities from dynamical systems theory such as entropy (which measures the 
information content of the patterns), and Lyapunov exponents (which measure the 
instability, or rate of information propagation). 

Cellular automata can not only be simulated by computers: they can also be 
considered as computers in their own right, processing the information corresponding 
to their configurations. The initial state for a cellular automaton is a sequence of 
digits, say ones and zeroes. It is directly analogous to the sequence of digits that 
appears in the memory of a standard digital electronic computer. In both cases the 
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Figure 3. Four classes of behaviour found in evolution of one-dimensional cellular automata from disor

dered initial states. 

sequences of digits are then processed according to some definite rules: in the first 
case the cellular automaton rules, and in the second case the instructions of the 
computer's central processing unit. Finally some new sequence of digits is produced 
that can be considered as the result or output of the computation. 

Different cellular automata carry out computations with different levels of com
plexity. Some cellular automata, of which figure 3(d) is probably an example, are 
capable of computations as sophisticated as any standard digital computer. They can 
act as universal computers, capable of carrying out any finite computation, or of per
forming arbitrary information processing. The propagating structures in figure 3(d) 
are like signals, interacting according to particular logical rules. 

If cellular automata such as the one in figure 3(d) can act as universal computers, 
then they are in a sense capable of the most complicated conceivable behaviour. Even 
though their basic structure is simple, their overall behaviour can be as complex as 
in any system. 

This complexity implies limitations of principle on analyses which can be made of 
such systems. One way to find out how a system behaves in particular circumstances 
is always to simulate each step in its evolution explicitly. One may ask whether there 
can be a better way. Any procedure for predicting the behaviour of a system can be 
considered as an algorithm, to be carried out using a computer. For the prediction to 
be effective, it must short cut the evolution of the system itself. To do this it must 
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perform a computation that is more sophisticated than the system itself is capable of. 
But if the system itself can act as a universal computer, then this is impossible. The 
behaviour of the system can thus be found effectively only by explicit simulation. No 
computational short cut is possible. The system must be considered "computationally 
irreducible". 

Theoretical physics has conventionally been concerned with systems that are 
computationally reducible, and amenable for example to exact solution by analytical 
methods. But I suspect that many of the systems for which no exact solutions are 
now known are in fact computationally irreducible. As a consequence, at least some 
aspects of their behaviour, quite possibly including many of the interesting ones, can 
be worked out only through explicit simulation or observation. Many asymptotic 
questions about their infinite time behaviour thus cannot be answered by any finite 
computations, and are thus formally undecidable. 

In biology, computational irreducibility is probably even more generic than in 
physics, and as a result, it may be even more difficult to apply conventional theoret
ical methods in biology than in physics. The development of an organism from its 
genetic code may well be a computational irreducible process. Effectively the only 
way to find out the overall characteristics of the organism may be to grow it explic
itly. This would make large-scale computer-aided design of biological organisms, 
or "biological engineering", effectively impossible: only explicit search methods 
analogous to Darwinian evolution could be used. 

Complex systems theory is a new and rapidly developing field. Much remains to 
be done. The ideas and principles that have already been proposed must be studied 
in a multitude of actual examples. And new principles must be sought. 

Complex systems theory cuts across the boundaries between conventional scien
tific disciplines. It makes use of ideas, methods and examples from many disparate 
fields. And its results should be widely applicable to a great variety of scientific and 
engineering problems. 

Complex systems theory is now gaining momentum, and is beginning to develop 
into a scientific discipline in its own right. I suspect that the sociology of this process 
is crucial to the future vitality and success of the field . Several previous initiatives in 
the direction of complex systems theory made in the past have failed to develop their 
potential for largely sociological reasons. One example is cybernetics, in which the 
detailed mathematical results of control theory came to dominate the field, obscuring 
the original more general goals. One of the disappointments in complex systems 
theory so far is that the approaches and content of most of the papers that appear reflect 
rather closely the training and background of their authors. Only time will ultimately 
tell the fate of complex systems theory. But as of now the future looks bright. 
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