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Transverse-momentum and angular distributions of hadroproduced muon pairs 
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We study the angular distribution of muons in the dimuon rest frame from pp ---> fkjiX at high energy 
and large dimuon mass. Including smearing due to quark transverse momenta, we show that the Drell-Yan 
model predicts a polar angular distribution in the t -channel helicity frame of 1 + acos28 with a ~ 0.8. 
Experimental deviations from this prediction would cast serious doubt on the Drell-Yan picture. 

Datal on the cross section for pp- p.'ji.x as a 
function of the p.'ji. invariant mass suggest that the 
p.-pair spectrum is dominated by a few narrow 
resonances (I/!, I/!', T, ... ), superimposed on a sig­
nificant continuum. The normalization, mass 
dependence, and scaling properties of the con­
tinuum were predicted rather accurately on the 
basis of the Drell-Yan modeF illustrated in Fig. 
1. The quark x distributions used in the model 
coincide with those deduced from studies of lepton­
hadron interactions3; x is the fraction of proton 
longitudinal momentum carried by a quark. Fur­
ther tests of the Drell-Yan model are imperative. 
In this article we provide predictions for the an­
gular distribution of the muons in their center­
of-mass system with respect to both t- and s­
channel reference axes. For this it is necessary 
to make an explicit quantitative study of the ef­
fects of allowing the quarks to carry finite mom­
enta transverse to the direction of the incident 
hadron momentum_ Transverse momenta distort 
the angular distributions of the muons. 

In computations with quark-parton models, it 
has often been assumed that only the quark mom­
entum components parallel to the incident hadron 
momentum direction need be considered. How­
ever, it is clear that the finite size of the proton 
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FIG. 1. Drell-Yan diagram for the production of 
massive dimuon pairs in pp collisions. q denotes a 
quark and q an antiquark. 
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implies that the quarks within have finite com ­
ponents of momentum k in all directions. As is 
evident from Fig. 1, the dimuon system is pro­
duced with transverse momentum P T = 0 unless 
the quarks themselves have finite k T • By con­
trast, the data4 exhibit a (lp T 1>1JIl which increases 
with Q2 =M,.n2 up to MJJij. "'" 3 GeV2, and then levels 
off at ( IPT 1>1lii "'" 1.16 ± 0.12 GeV up to the largest 
masses measured (Mllii ~ 15 GeV). In the Drell­
Yan model, (P T 2)1lii = 2(k T 2). for s-oo and MIlii-oo. 
Quark transverse momenta are deduced also from 
other processes,5 with ( IkT I> in the range 0.5 to 
1 GeV.6 

We suppose therefore that there exists a prob­
ability distribution Gj/p(Xj , KTj ) for finding in a 
proton a quark of type i with momentum kj 

= «(vs / 2)lx j , kTJ ). According to the Drell-Yan mod­
el, the differential cross section for the process 
pp - p."jix is 

:4~ = 2;: J dx ldx2d2i{Tld2i{T2 0 (4)(P - kl - k2) 
• 

da 
=2 dMIJIl2dyd2P T . (1) 

Here "7 denotes an antiquark. We take the quarks 
to be massless7 so that the muons from qq - p.p. 
have an angular distributionS aa/dcose*a: (1 
+ cos2 e *) in their center-of-mass system, with 
9 * measured relative to the quark momentum 
direction. 

As in the work of Feynman, Field, and Fox,6 
for example, we assume that the quark distribu­
tion functions may be factored into x-dependent 
and IkT I-dependent parts, 

G(x,kT)=XR-lXG(x)f(lkTI), (2) 

with XR2=[X2+4k//s ]. For xG(x), we employ the 
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TABLE 1- Possible choices for the quark transverse-momentum distributions. The value of A is determined from 
fits to ( I P T 1)"iL' 

Model f(k T ) (k/ ). (k T ). A </l T2). (GeV2) (l kTI). (GeV) 

Exponential e -AlkTI 6/ 71.2 2/71. . 71. = 2.7 GeV-1 0.8 0.7 

Gaussian e -AkT2 1/ 71. t ( 7T/A)1 /2 71. = 1.2 GeV-2 0.8 0 .8 

Inver se power (k T2 + Af" A/ (n -2) (n -lhtrB(~,n - ~) 
n = 4 71./ 2 "' 0.6-JI 
n = 8 71./ 6 "' 0.35-JI 
n = 4 for q; 

n = 8 for q 

Field-Feynman quark distributions,3 while we 
investigate three different forms for the kT de­
pendence. Our choices are summarized in Table 
1. The values for n in our function (k T 2 +Ar" are 
motivated by constituent-counting rules. 9 The 
only free parameter in each case is A. We de­
termine it by requiring that Eq. (1) reproduce the 
result (PT>"ji=1.16±0.12 GeV for large M"ji. In 
Fig. 2, we show the transverse-momentum dis­
tribution provided by our models, at y "" 0 and 
MJIli = 5 GeV. Similar results are obtained for other 
values of MJIli. Although all our models yield the 
same PT-integrated cross section and (lp T I>JIli' 
some differences are apparent in Fig. 2, par­
ticularly the value of the cross section at P T = O. 
Changes in the quark x distributions do not ap­
preciably alter any of our results. The curves in 
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FIG. 2. Differential cross section da/ d4p= 2da/ 
dM ~lidydP T2 versus P T at y"' 0, M ~Ii= 5 GeV and Plab 

= 400 GeV /e . y is the c .m. r apidity of the dimuon. 
Results obtained from our three models are s hown . 

71. = 2 .5 GeV 2 1.25 (q) 0 .95 (q) 

0.40 (q) 0.55 (7j) 

Fig. 2 are absolutely normalized inasmuch as the 
Field-Feynman x distributions are themselves 
normalized. After integrating over P T, we obtain 
distributions d 2(J/ dM dy at y ~ 0 in good agreement 
with those of previous computations 2 and with 
recent data. 1 

Examining the variation of (lp T I>"ji as MJIli 
changes, we find that in all cases (lpT I>"ji is nearly 
independent of MJIli for M,.-p.:<:: 3.5 GeV. Below 3.5 
GeV, all but the Gaussian show a fall of (Ip T I>JIli 
from -1.1 GeV to -0.8 for MJIli-0.5 GeV, in qual­
itative agreement with the data. 4 While pleasing, 
the agreement at low mass should perhaps be re­
garded as fortuitous since there are theoretical 
and experimental reasons for lack of confidence 
in the model for M $ 4 GeV. We are mostly con-
cerned here with large MJIli. .. 

Having determined acceptable forms for !(kT), 
we turn to a discussion of the angular distribution 
of muons in the dimuon center-of-mass frame. 
With the advent of la.rge angular acceptance ex­
periments on pp - IJ./iX, a measurement of this 
important distribution becomes possible. If the 
quarks have no momentum transverse to the mom­
enta of their parent hadrons, then the muons 
should exhibit the same (approximately 1 + cos2 e *) 
distribution with respect to the incident hadron 
axis as they must with respect to the quark axis. 
In the IJ."jI rest fra~e, convenient polar axes for 
the discussion of this angular distribution are the 
beam direction (t-channel or Gottfried-Jackson 
frame) or the recoil (X) momentum direction (s­
channel helicity or Jacob-Wick frame). We write 
the final angular distributions integrated over cf> 

asB (1 + a cos 28), and we discuss our results in 
terms of a. 

The most direct technical method for obtaining 
a is to compute angular moments t1 of the Drell­
Yan cross section. For the moment t~, we replace 
a in Eq. (1) by D~o (CP', 8',0)8-, with D~ = f(3 cos 28' 
-1). Here (8' , CP ') are angles which define the 
quark direction relative to our chosen system of 
reference axes. Noting further that 
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j dxldx.pikTldZ({T204(P - kl - k 2) =t jdO'XR1XR2 , 

(3) 

we derive 

viOt~dald4p=t L: f dO'XIGI/P(Xl)XP1/p(X2) 
I 

X/I ( IkTlI }f7( IkT21 )D~o a. 
(4) 

In Eq. (4), the XI and kTi must be expressed in 
terms of 9' and CP'. Finally, 

3vTOt~ 
a= 0 

4-l1Ot2 
(5 ) 

We also evaluated the moments t~ and t~, con­
nected with cp dependence, and we shall discuss 
their values elsewhere. A summary of our re­
sults for a is presented in Fig. 3. All our com­
putations are done at P1ab = 400 GeV Ie, but little 
change is observed in the values of a for P1ab 

= 1200 GeV Ie. Again taking MI.rlI = 5 GeV as a typ­
ical mass in the Drell-Yan continuum region, 
we show in Fig. 3(a) the variation of a versus xF 

for the dimuon. In the t-channel frame, a is 
nearly independent of X F, but a va:ries consider­
ably if s-channel axes are used. The rapid vari­
ation of a in the s-channel frame at small P T and 
small x F is due simply to the fact that the s-chan­
nel axes are ill-defined in this kinematic regime. 
(The recoil system is nearly motionless.) In the 
small P T , small xF region which contributes most 
to the cross section, the t-channel frame is there­
fore preferable. 

In Fig. 3{b), we present the variation of at with 
MI.rlI at X F f'::j 0 for our three models. After a rapid 
rise at small M",-p" at becomes roughly constant, 
taking on values a t .<:0.8 forM",jl.<:5 GeV. Finally, 
we comment on the P T dependence of a, not shown 
here. For MiMi. and x F, our results exhibit a sys­
tematic decrease of a as P T is increased. 
For large enough P T , at becomes negative, cor­
responding to preferential muon emission trans­
verse to the beam axis. 

We conclude that if t-channel axes are used, 
the naive Drell-Yan model prediction dal dcos e 
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FIG. 3. (a) O! versus X F = 2PL /1S at Mp jJ =5 GeV for 
our exponential model. P L is the C.m. longitudinal mo­
mentum of the dimuon. The solid (dashed) curve shows 
values of O! determined with respect to the s-channel 
(t - channel) polar axis. (h) O! versus M p jJ at x F '" 0 for 
all three models. The t -channel axes are used. In (a) 
and (h), results are averaged over P T and are for Plab 

=400 GeV/c . 

a: (1 + a cos2 e), with a'" 1, is nearly preserved 
even after integration over quark transverse mom­
enta. Measurement of large deviations of a from 
unity (Le., a ~ 0.8) at large Mij,(> 4 GeV) and mod­
est P T would cast serious doubt on the validity 
of the naive Drell-Ya:n picture. 10 
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