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ABSTRACT 

The use of an effective coupling in QCD is investigated in the context 

of a simple class of processes which depend on only one kinematic invariant. 
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The coupling g(~2) in QeD depends on the renormalization point ~2 used 

to define it. Although the complete rate for any process must be independent 

of ~2, it may be that a suitable choice of ~2 will allow many of the higher 

order terms in the perturbation series for the rate to be absorbed into the 

coupling g(~2). In this paper I shall consider primarily processes which 

depend on only one kinematic invariant. For a particular value of ~2, all 

terms in these processes up to O(g4) may be absorbed into an effective 

coupling g(~2). but in higher orders, there exist terms which cannot be 

accounted for in this way. The choice of ~2 which causes the most terms in 

the perturbation series to be absorbed into the effective coupling is pro-

portional to the value of the kinematic invariant. However, the constant 

of proportionality, and hence the magnitude of the effective coupling for 

a particular value of the invariant, depends sensitively on the details of 

the process considered. I shall discuss at length processes of the form 

(C is a gluon) 

anything 

and then give a briefer discussion of several other processes. The non-

(1) 

Abelian nature of QeD introduces inessential complications into the discussion, 

and so I shall ignore it throughout. With this simplification (which is 

equivalent to considering QED rather than QeD), the square of the amplitude 

for (1) to order g6 is given by the classes of diagrams in Fig. 1. I assume 

that there can be no gluon corrections to the A or B lines (the gluon may be 

considered to carry conserved quantum numbers possessed by A but not by B). 

I take the effective ABC vertex to be of the form[Fl] 

F(s) 
(n/2) 

s g(l - --) 
~2 

(2) 
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where s is the invariant mass of the gluon, and I::, = mA - ~. 

If the quark mass (m ) were taken to be non-zero, then the gluon propagator 
q 

could be renormalized on shell, so that the diagrams giving corrections to 

single real gluon emission would not contribute. In that case the total rate 

for (1) is given by (removing a trivial phase space factor for the diagram {2}) 

1::,2 

J 2 
4 m 

q 

1 1
"2 ds 

F(s) Im[TI(s)]-­
s 

where TI(s) is the reduced gluon vacuum polarization operator, including 

(3) 

improper vacuum polarization diagrams such as {6a}. To lowest order, as usual 

Im[TI(s)] (4) 

4 To order g , therefore, taking n 0, the diagrams {2} and {4a} give 

r 

1l_4m2/1::,2 (5+~l]} 9 
9 

2 [ 2 [t log (:~) - %J] '" g l+~ (5) 
41f2 

q 

for 1::, 2 » m2. This rate clearly diverges as m2 ~ 0. For m 0, however, 
q q q 

2 
one must perform renormalization at s = ~ # 0. In that case, the diagram 

{4b} gives a contribution (a qq pair with zero invariant mass cannot be dis-

tinguished from a real gluon) 

(6) 
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if ~2 » m2 . Adding (5) and (6) the complete rate for the process (1) 
q 

to 0(g4) in the limit m2 ~ 0 becomes 
q 

r g2 (" 2) r + g:~~2) [~lOg (:~) - aJ] (7) 

where a = 5/9 if n = O. 

In eq. (7) I have displayed the fact that the couplings depend on the 

renormalization point ~2; they obey the renormalization group equation (RGE) 

~ ~ = S(g). Of course, the renormalizability of QeD guarantees that at each 

2 2 af af 
order in g the rate f cannot depend on ~ , so that ~ av = S(g)ag. Nevertheless, 

2 
by a suitable choice of ~ the expression in braces in (7) may be absorbed into 

the effective coupling g(~2). Keeping only the 0(g3) term in S(g) one has 

(e. g., [1]) 

2 2 
2 2 g (~O) 

g (~ ) '" -----::--:::---''-----
2 2 

g (~O) 
1- log 

l2n2 

2 2 
log (~ / A ) 

(8) 

h A ' 1" " [F2] d h 1 f were 1S a renorma 1zat1on group 1nvar1ant mass use to set t e sca e 0 

the effective coupling. If the constant a in eq. (7) were zero, then by 

h ' 2 c ooslng ~ ~2 the rate f could be rewritten (at least to 0(g4)) as 

2 
This expression for the rate could be written in terms of g(~ ) 

again by using the first form in eq. (8), giving 

f 
2( 2) (2 ( 2( 2) + g ~ log~) + g ~ log 
l2n2 ~2 l2n2 

2 2 J (:2)) + ... , (9) 

4 
which agrees with (7) (with a = 0) to O(g ), but contains further higher-order 

terms. The form (9) is a conventional renormalization group improved' estimate 

for f. 
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For any physical value of n, however, a is non-zero. Hence are-expansion 

of r = g2(~2) in terms of g(~2) will not give the correct form (7); the 'constant' 

term proportional to a will be missing. A simple trick may, however, be used 

to remedy this deficiency. . 2 2 2 2 2 
Instead of chooslng ~ = ~ , take ~ = ~ In and 

arrange n so that the term in brackets in eq. (7) vanishes (i.e., n = exp(3a». 

In that case, the 'renormalization group improved' estimate r = g2(~2/n2) will 

4 agree with the full perturbation theory result, at least to order g Instead 

of taking i 2 2 2 
~ In , one could take ~ ~2 , 2 

but replace the A in the eq. (8) 

for 
2 2 

g (~ ) by an 
-2 2 2 [F2] 

effective A = n A 

At 0(g2) (in the 'unimproved' perturbation series) the coupling is fixed. 

Higher-order terms may be interpreted as inducing a dependence of the coupling 

2 
on ~. Since this dependence is governed by the RGE, some of the higher-order 

terms in the perturbation series for r are determined. In particular, the 
2 

coefficient of the log (~2) in eq. (7) is determined. However, the constant 
~ 

a is not, and depends on the value of n which characterizes the ABG vertex. 

2 
Hence the choice of ~ A2/n2 lOn r -_ 2( 2) h O h 0 h u g ~ W lC glves t e correct non-

4 logarithmic term at O(g ) depends on n. Alternatively, the effective value 

2 (A 2) 0 0 0 0 (4) d h g u lS sensltlve to constant terms at g an ence 

to n[F3]. Table 1 gives the values of a and n for various n[F4]. Note the 

large difference of n from one in all cases, and the strong dependence of n on 

Let us temporarily ignore 0(g6) and higher terms. Then eq. (7) gives the n. 

exact rate for the process (1) which could, in principle, be measured experi-

mentally. The experimental measurement could be used to determine the effective 

QeD coupling. Of course, the measured size of the coupling could be fit to the 

formula of eq. (8) and an effective value of A2 deduced. However, because of 

the presence of constant terms, this effective A2 will differ from the true A2. 

It is clear from Table 1 that the difference is rather large, and depends 

considerably on n. To 0(g4) the rates for all processes which depend on 
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only one invariant will have the form (7), so that the same phenomena will 

+ -occur. For example, if the measured cross-section for e e ~ hadrons is 

2 2 2 2 
fit to the naive QCD prediction (1 + g (Q )/4TI )crO then the effective A 

deduced will not necessarily be even close to the true value of A2. To 

2 + -obtain a better estimate of the true A from the experimental cree e ~ hadrons), 

one must compute the constant a in (F is the effective number of quark 

flavors) 

" z "0 (1+ g:~{) [1+ g:~~2) [(3~~2F) log (~~) + ~ + O(g 4)}) . 
(10) 

Agreement between values of A2 deduced from experimental measurements of 

various processes without making at least this correction is clearly not a 

direct prediction of QCD. Rather it will occur only if (unlike the case of 

changing n) the constant a does not differ significantly between the processes 

considered. 

I return now to the process (1), and discuss the 0(g6) contributions to its 

rate. Examples of the relevant classes of diagrams are given in Fig. 1. The 

iterated ('improper') 0(g2) vacuum polarization diagrams ({6a}, {6b}) contribute 

g: 2 [t 10g2 (~~) - 2 a log (~~) + b~ 
(4TI ) ~ ~ ~ 

(11) 

to r, while the diagrams involving true 0(g4) vacuum polarization contribute 

g6 [1 (~2) l 
2 2 4 log -Z 7 b~ 

(4TI ) ~ 

(12) 

The coefficient of the 10g2 in (11) corresponds to the 0(g6) term in the 

expansion of the effective coupling (8) deduced from the 0(g3) term in S(g) , 

while the coefficient of the log in (12) corresponds 5 to the O(g ) term [2] in 

B(g) [F5] . 4 
The coefficient of the log in (11) depends on the constant a at O(g ). 
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If the effective coupling is computed from ~~ = B(g) keeping up to 0(g5) in 

B(g)[F4], and then this coupling, evaluated at ~2 = ~2, is used to estimate 

the rate for (1) using r = g2(~2), then not only will the constant term at 

4 missed, but also a part of the 6 O(g ) be log at O(g ). Of course, the same 

choice of n which accounts for the constant at O(g 4) will also account for the 

6 
log at O(g). However, the constant terms b 

d f h r -- g2(A2/n2). f 0 h b 25 2/27 unaccounte or even w en u., I n = ,t en 1 = 81 - ~ 

and the full form of r to 0(g6) is [3] 

222 2 
+ (g (~)) [1. 1 2 (~) 

2 · 9 og 2 
4~ ~ 

- 11;8 log (::) + (_ (3) - ;~ + 66;8)J] 
(l3) 

I showed above that to 0(g4), a suitable choice of n allows the rate for (1) 

to be written simply as g2(~2/n2). The value of n is chosen so that the 

, f h' 1" 'd ' f f' l' g2 ( A 2 I n 2) expanSlon 0 t e renorma lzatlon group lmprove e ectlve coup lng u., 

(obtained from ~ ~ = B(g)) in terms of g2(~~) agrees with the explicit 

perturbation theory result (7) for r to 0(g4(~~)). However, if g2(~2/n2) is 

expanded to 0(g6(~~)) there is no longer a choice of n such that r(~2/n2) = 

2 2 2 6 2 
g (~ In ) to O(g (~O)). This is because the equation to determine log (n) both 

depends on g2(~~) and in general has no real roots (if only the 0(g6) terms 

are considered, the quadratic equation for log (n) has no real roots). Hence 

the trick of changing the renormalization point or of modifying the effective 

2 4 6 
A to account for the constant terms at O(g ) cannot be used at O(g ), and the 

2 naive prescription for including higher-order effects by replacing the g 

2 2 
encountered in a lowest-order calculation by g (~ ) has failed. Nevertheless, 

whereas the effective value of A2 is very sensitive to the 0(g4) terms in r, 
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it is not p~rticularly affected by the 0(g6) terms, at least for g2 sufficiently 

small that perturbation theory shoyld be reliable. -2 The change in A due to 

b is the 0(g6) constant term in r. 
2 

For reasonable values of g , the change 

is less than about 25%. 

I shall now discuss briefly the effective coupling in quark-quark scattering 

through one-gluon exchange,again ignoring non-Abelian effects. The amplitude 

for this process is proportional to the real part of the improper gluon vacuum 

polarization, which is related to Im[rr] by a once-subtracted dispersion relation 

(assuming m 1 0, and taking ~ 0): 
q 

Rerrr(t)] 1 
co 

J ( __ 1 __ - l)Im[rr(s)]ds 
2 s-t s 

4m 
q 

This is very closely related to the formula (3) for r when n = O. In the 

(14) 

limit m + 0, Re[rr(t)] 
q 

4 - r to 0 (g ), and in fact, for all terms in Im[rr (s) ] 

of the form (m2/s)p (p ~ 0) the principal part of the l/(s-t) integral in (14) 

vanishes as m + 0, so that the result holds. 
q 

At 0(g6), Im[rr(s)] contains 

2 
a term log(s/m ). In that case the results for rand -Re[rr(t)] differ 

2 
by "9 l; (2). 

The result for the qq scattering amplitude (which may be deduc.ed directly from 

the calculation of Kallen and Sabry [4][F6]) is 

2 2 [ 2 2 (-\)- ~J A(t) AO(t)g (~ ) l+g (~ ) [llog 
41T2 3 

~ 

222 

(g 4~i ») [t 10g2 Ct2 ) 
13 

(~t2 ) + - 108 log 

+ (1;(3) + 66:8)J + O(g6~ (15) 

where t is the invariant mass transferred along the gluon. It is clear that 

the conclusions reached above for the process (1) also apply here. 
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I now give several further examples of the phenomena discussed above. 

The first is the anomalous magnetic moment (K) of a charged lepton (~) in QED. 

2 2 2 2 2 
Using the lowest-order result, K = e (~ )/8~ , the RGE gives (~ »m) [6] 

e 

2 2 ~ 2 2 
2 

K = e (~) 1 + e (~ ) [} log (m~) _ j 
8~2 4~2 ].1 

2 2 2 2 2 

+ (e4~i ») [i log 
2 (~-i) + (i - 2a) log (m~) _ ~ 

~ ].1 

+ •... ] 

Explicit perturbation theory calculations show that (e.g., [7]) 

a = - ( 197 ~2 ~2 3) 
144 + 12 - :2 log 2 + 4 ~(3) ~ 0.328, 

b ~ - 1.2 

If one makes the conventional choice ].12 o then (see [F4]) the logarithms 

2 2 
in (16) become log (m~/me)' If ~ = e, they therefore do not contribute. 

However, if ~ = ].1, they will contribute and generate a large part of the 

(16a) 

(16b) 

difference between K and K. In practice there are also terms arising from ].1 e 

the presence of new diagrams in the ~ case, containing both e and ].1 loops, 

and in addition 

Nevertheless the 

by the RGE [ 6 ] . 

2 2 
terms of order m 1m , which are not amenable to a RGE analysis. e ].1 

coefficients of the logarithmic terms at 0(e6) are determined 

From eq. (16) one may deduce the value of n which would allow 

4 the complete O(e ) term to be absorbed into the effective coupling. The 

result is n ~ 2.7. 

The second example is the decay of positronium. The rate for the decay 

of the IsO state is given by [8] 

r fO e4 ("2) G + e:~{) B log (~) - ~ + ... ] (17) 

a = (5 - ~42) ~ 2.53 



yielding n ~ 6.7. 
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For the 3S state, [9] 
1 

a ~ 10.3 

so that n ~ 172. 2 It is clear from this example that the effective value of A 

deduced from QQ + GGG decays may differ considerably from the true A2. The 

+ -complete cross-section (averaged over the initial spins) for e e annihilation 

in the nonrelativistic limit is of the form (17), but with [10] a (17 - 19n2/12), 

corresponding to n ~ 2.8. 

Finally it should be pointed out that in QED there exist low-energy 

theorems which show that the cross-sections for certain processes (for example, 

2 2 
ye + ye [11]) in the nonrelativistic limit are proportional simply to e (~ ), 

and contain no constant terms. In QCD, however, analogous low-energy theorems 

are rendered useless by the strong coupling of the theory in the low-energy 

domain. 

In this paper I have considered only 'processes which depend on one kinematic 

invariant. For processes which involve two . invariants (e.g., the total cross-

section for deep inelastic lepton-hadron scattering) similar results should 

4 hold, but the value of n which causes all O(g ) terms to be absorbed into the 

effective coupling will then consist of a dimensionless combination of the 

invartants. 

I am grateful to several people for discussions, especially G. C. Fox, 

H. D. Politzer and A. E. Terrano. 
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Footnotes 

Fl: Gauge invariance formally requires n > 0, but the limit n ~ 0 may be 

taken without damage. n is governed by, for example, the spins of A 

and B. By changing n one essentially changes the process under con-

sideration. 

F2: 2 4 Note that the construction for A works only to O(g). In higher orders, 

it is necessary to specify the coupling constant by giving its size at 

2 2 
~ = ~O ' where ~O is a fixed reference mass. This procedure is many 

cases more satisfactory in general, since it avoids the exponential 

. .. f ~2 sensltlvlty 0 11 

F3: The sensitivity is to be expected because 

F4: 

( A~ ) 4 log A; + O(g ). 

n = 3 corresponds to the well-known case nO * ~ yy It is conventional in 

QED to define e2 from the low-energy limit of ye ~ ye, that is, at 

2 
~O = O. In this case the first formula in (8) fails; the assumption 

2 2 
~O » me is incorrect. ~~en the exact formula is used, the logarithm for 

2 2 2 
~O = 0 becomes log (~/me) [2]. 

F5: To 0(g6) the inclusion of the 0(g5) term in S(g) results simply in the 

2 2 2 
1 (g (~O») 

addition of - 4 2 
4n 

2 
log (~) to the denominator in eq. (8). 

~O 

To 

obtain the exact result one must solve a complicated transcendental equation 
2 

for log (~) in terms of g. 
~O 

F6: The results for some of the necessary integrals are given in [5]. For 

t > 0, - n2 /9 is added to the 0(g6) constant term. 
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n a n 

0 5/9 2.3 

1 8/9 3.8 

2 19/18 4.9 

3 7/6 5.8 

4 5/4 6.5 

10 11581/7560 10.0 

Table 1: The corrections to the effective value of A (n) resulting from the 

inclusion of constant terms (a) at 0(g4) for various forms of 

A ~ BG transition. 

Figure Caption 

Fig. 1: 
6 

Typical diagrams contributing to A ~ BG to order g . 

I~anything 
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