Commentary

Some Elements of Mathematica Design

Stephen Wolfram

% ‘ J { J HY DON'T YOU MAKE ListPlot work with com-
plex numbers?” an experienced Mathematica user
once asked me. “What should it do?” I responded.

“Make a plot in the complex plane,” he said. “Plot each point

using the real and imaginary parts as = and y coordinates.”

For a moment, it seemed like a pretty good idea. I had often

needed to make such a plot myself. [had usually defined a simple
function to do it:

ComplexListPlot[list_] :=
ListPlot[Transpose[{Re[List], Im[List]}]].

Perhaps ListPlot should do this automatically.

But then [realized the problem. Say 1 did
ListPlot[{5, 6, 3+I}]. I would get a plot with three points in the
complex plane. The first two would be on the real axis. But
what if [just did ListPlot[{5, 6}]? Something completely differ-
ent would happen. Now ListPlot would do what it usually does
and use 5 and 6 as y coordinates. What a mess!

So what, you may ask. Wouldn’t anyone who was plotting a
list know whether it was a list of complex numbers or not?
Perhaps so if they had just typed in the list. But if the list was
generated by a program, it is not so clear. What would happen
for example if ListPlot was used to generate a sequence of pic-
tures for an animation? Perhaps the animation would show the
imaginary parts of numbers decreasing. But then suddenly if all
the imaginary parts happened to be zero, ListPlot would do
something completely different. The user would be justifiably
confused.

Needless to say, ListPlot was not extended to handle com-
plex number lists. In fact, I remembered I had thought about
this possibility when I originally designed ListPlot and had
decided at that time that it was a bad idea. But the story illus-
trates that getting a good design can be quite a subtle matter.

In fact, in building the whole Mathematica system, the part 1
spent longest on was the design. And if you write programs or
packages in Mathematica, you should also be spending a signif-

Stephen Wolfram is president of Wolfram Research, Inc., and the main designer and
documenter of the kernel of Mathematica. He can be reached at the Wolfram Research
address, or by electronic mail at swluri.com.

14 THE MATHEMATICA JOURNAL © 1992 Miller Freeman Publications

icant part of your time on design. It isn’t enough to have a great
set of features or algorithms. You need to have a good overall
design. Otherwise, nobody will be able to use what you do at
anything but a superficial level. And quite possibly, you won't
even be able to use it yourself if you come back to it a few
months later.

I am not claiming that good design is easy to do. In fact, com-
puter system design is certainly one of the most difficult things |
have ever done. You have to understand the functionality you are
trying to achieve very clearly. And, you often have to puzzle fora
long time, trying to work out the simplest, most obvious way to
have something work. Then you have to check that you haven't
missed any strange cases, as in the ListPlot example above.

People often underestimate how important good design is.
They think that what matters is only the set of features you have.
Features are certainly nice. (How could someone responsible for
a system with nearly a thousand built-in functions think other-
wise?) But when it comes to really using a system, what is at least
as crucial is how all those features fit together. If the features are
designed properly, it is easy to create your own features from
what is already there. If the features are designed poorly, all you
can do is use the features already provided, one at a time.

In a sense, system design is a rather thankless task. If you get
the design right, most people don’t notice it. The system just
“does the right thing.” It is only when something goes wrong
with the design that people notice.

Indeed, I am therefore rather happy that I so rarely hear com-
ments about the design of Mathematica. In fact, the only consis-
tent response | hear is from people who know Mathematica quite
well and who try to use other systems. They never really notice
the design until it isn’t there any more.

So what constitutes good design? The single most important
element I believe is consistency. Everything needs to work in as
consistent a way as possible, so people can build up as simple a
conceptual model as possible. For example, if you have func-
tions to name, you should make the names as systematic as pos-
sible. Saving a few letters here or there may make names faster to
type, but much more time is spent trying to remember the correct
name than typing a few more letters.

If you write a Mathematica package, one of the most impor-
tant kinds of consistency to maintain is consistency with the rest

of Mathematica. Needless to say, I believe the overall design of
Mathematica is fairly good and worth maintaining consistency
with. But more important, most people who try to use your
package will already know how to use Mathematica. So, if your
package works in a way that is consistent with Mathematica,
people will be able to learn to use your package much more
easily.

When I design Mathematica packages, I tend to adopt a rather
extreme approach. I like to insist that every single design feature
in my package have a definite precedent in Mathematica. Math-
ematica is a broad enough system that almost any design issue
you face in a package will probably have come up somewhere in
the design of Mathematica itself. In almost all cases, I find that by
far the best thing to do is to resolve the design issue the same way
Mathematica does.

First, some thought was probably put into how Mathematica
resolves the issue. But more important, if you use a mechanism
which people have already learned using other parts of Mathe-
matica, they will not have to learn from something new to use
your package. And in addition, by following the standards of
other parts of Mathematica, you will often find that you can
more easily exchange data with other functions in Mathematica.

Let us say you are designing a function that will use a
sequence of data points. Sometimes, you just want to specify the
y coordinates for these data points. Sometimes, you want to
specify both z and y coordinates. What functions in Mathemat-
fca already have to deal with data like this? ListPlot is an exam-
ple. It lets you specify either a list of y values, or a list of two-
element lists of (z, y) pairs. You should probably make your
function work just the same way. Indeed, several functions in
Mathematica as well as ListPlot already work this way. Exam-
ples are Interpolation and Fit. If you use this same format for
your data, you will always be able to use any of these standard
Mathematica functions to manipulate your data— without ever
having to do any kind of conversion.

As with most things, the idea of precedents must, however, be
exercised with some care. If you use a precedent, you must use it
fully. One of the worst things is to have a function that works
almost like an existing function. People will find it very difficult
to remember exactly what the differences or exceptions are. If
you find a precedent that does not quite fit your needs, you
should look for another precedent, rather than trying to adapt
the first one you found. And, if you really cannot find any

appropriate precedent at all, you should invent a completely new
scheme. If, at all possible, you should make your new scheme
work in a way quite different from the precedents it just missed
— that way, people will be less likely to get confused. In addition,
if you invent a new scheme, you should try to use it as widely as
possible. People will not remember the scheme unless they see it
fairly often.

I have talked of consistency within Mathematica. What about
consistency with other knowledge people have? Obviously one
should try to make things in Mathematica work in a way that is
as close as possible to the way they work in mathematics or in
some other application area. But one must recognize that Math-
ematica — and computers in general — are a new medium for
expressing ideas, and sometimes one must make changes.

Of course, some existing computational usage has been much
constrained by the particular limitations of FORTRAN and the
like. Mathematica does not have these constraints, and one
should not imitate them. In an example like the one above,
where data could be specified either as {y;, w3, ...} or
{{zy, yi}, {z2, w2}, ...}, 1 have seen people put an extra inte-
ger parameter into their function to say which form the data
will be in. No doubt, this is necessary in a FORTRAN subrou-
tine call, but it is completely unnecessary and confusing in Math-
ematica. Or worse, | have seen people use a parameter that can
take values, say one through seven, to represent different func-
tional forms. Mathematica is a symbolic language: Why not just
have the user give those functional forms explicitly, rather than
having to remember a strange integer code for them?

Many more things can be said about good design in Mathe-
matica, and perhaps they will be said in future columns in this
journal. But when you have come up with a design, how can you
tell if it is a good design? The best test I know is to try to docu-
ment the design. You must force yourself not to gloss over
important details. But, if the final description is easy to write,
short, and flows well, the design is probably good. If you find it
difficult to write the description, you have to cover many differ-
ent cases and so on, something is probably wrong with the
design.

If so, then it is time to remember what your package was orig-
inally supposed to do and to ask, “What is really the obvious
way to do this?” Don’t stop asking until you've figured it out. Be
glad you don’t have to design something with 843 functions.

VOLUME 2, ISSUE2 15

