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We present a complete set of rotationally invariant observables (HI) which characteri­
zes the 'shapes' of final states in c + e - annihilation. They are infrared stable when calcu­
lated in QCD perturbation theory. We compare the 'shapes' of final states from the pro­
cesses e + e - --+ qq, e + e - --+ qq (G) and from the three-gluon decays of heavy vector me­
sons. We also consider the production and decay of heavy quarks and leptons. Using a 
realistic model for the development of hadron jets, we find that for c.m. energies above 
about 10 GeV, these processes may be clearly distinguished by their distributions in 
the HI' We indicate how our analysis may be extended to deep inelastic lepton-hadron 
interactions and hadron-hadron collisions involving large transverse ' momenta. 

1. Introduction 

Quantum chromodynamics (QCD) provides an increasingly successful theory for 
strong interactions. One of its most striking predictions is the existence of gluons. 
Perhaps the most direct way in which to detect these new fundamental particles is 
to observe the jets of hadrons resulting from their production in e + e - annihilation. 
Experiments have shown that at high energies, final states in e + e - -+ hadrons usually 
consist predominantly of two jets of hadrons [1] presumably coming from the 
quark and antiquark resulting from the process of fig. 1. QCD explains this basic 
two-jet structure [2] but indicates that one of the final quarks should sometimes 
emit a gluon (G) as in fig. 2 [3] . Such processes would tend to lead to final states 
containing three jets. In addition, QCD suggests that resonances containing heavy 
quark pairs (for example, the 1/1 and T; denoted generically by n should decay pre-

J . dominantly into three gluons (fig. 3), again leading to three-jet final states [4]. It is, 
therefore, important to identify events in which three hadron jets are produced. 

A number of observables which characterize the 'shapes' of final states in e + e-

* Work supported in part by the US Department of Energy under Contract No. EY76-C-03-0068. 
A summary of parts of this work is contained in ref. [31]. 
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Fig. 1. The lowest-order diagram for the process e + e - .... qq. 
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Fig. 2. The lowest-order diagrams for the process e + e - .... qqG, where G is a vector gluon. 
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Fig. 3. The lowest-order diagram for the production and decay into three gluons of a vector 
meson (t) containing a pair of heavy quarks (Q). 

annihilation have been proposed for this purpose [5,6]. There is no natural axis 
defined in the final state in e + e - annihilation. An axis may, however, be found by 
demanding that it minimize some observable. Such a minimization has been the basis 
of previous experimental (sphericity) and theoretical (spherocity, thrust, acoplanarity) 
observables designed to measure the structure of final states in e + e - annihilation. 
For the observables of theoretical interest, the minimization ·has turned out to be 
inconvenient to implement [24]. Moreover, this procedure may induce spurious jet 
structure. The minimization would probably be satisfactory if all events had a two-
jet structure; according to QeD, however, more than 30% of the events in non­
resonant e+e- annihilation at c.m. energies around 20 GeV should consist of three 
or more jets, so that methods based on fmding an optimal two-jet axis appear sus­
pect. The problem of minimization can, however, be circumvented by measuring 
an observable which characterizes the 'shapes' of final states, but whose value does 
not depend on the axis used to evaluate it. A set of such observables exists, given 
by (the Yf1(n) are the usual spherical harmonics, and P1(cos cfJ) the Legendre poly­
nOmials) 
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(Ll) 

where the indices i andj run over the hadrons which are produced in the event, and 
!Pij is the angle between particles i and j. When the first form for the HI is used, one 
must choose a particular set of axes to evaluate the angles (n i ) of the momenta of 
the final-state particles, but the values of the HI deduced will be independent of the 
choice. Note that the HI constitute a complete set of shape parameters in a way that 
is made precise in sect. 2. Energy-momentum conservation requires that Ho ~ 1, 
HI = o. The process e+e- """* qq gives HI = 1 for even /, and HI = 0 for odd /, since 
the final quark momenta are collinear. 

The processes e + e - """* qqG and e + e - """* ~ """* GGG give final states for which there 
are many possible kinematic configurations, corresponding to a range of possible 
'shapes'. These processes therefore lead to distributions in the HI which are very 
different from the delta function due to e+e- """* qq. For example, the process 
e+ e- """* ~"""* GGG yields a da/dH2 which is nearly flat over the range 0.25 .;;;,. H2 .;;;,. 1 
allowed by kinematics, while e+e- """* qq gives only H2 = 1. The fragmentation of 
the quarks and gluons into hadrons serves to distort the distributions of 'shapes', 
but at sufficiently high energies 6/s ~ 10 GeV), hadronic final states resulting from 
each of the three subprocesses of figs. 1-3 should be clearly distinguished by mea­
suring their distributions in HI/Ho. 

The multi-jet final states resulting from decays of pairs both of heavy mesons 
carrying new flavors and of heavy leptons may also be identified by measurements 
of their 'shapes' using the HI. 

This paper is organized as follows. In sect. 2, we discuss various mathematical 
aspects of the HI, define the 'correlation function' F(x) and give examples of 
the HI for simple shapes. We also present some generalizations of the HI. In sect. 3, 
we discuss the defmition of jets in QeD and give arguments for the infrared finite­
ness of the HI calculated from perturbation theory. Sect. 4 describes our results for 
the processes e+e- """* qq, e+e- """* qqG, e+e- """* ~"""* GGG and for the production 
and decay of heavy quarks and leptons. In sect. 5, we present results for realistic 
hadronic fmal states formed by the various quark-gluon subprocesses discussed in 
sect. 4. Sect. 6 contains a brief discussion of a class of shape parameters which 
exploit the correlation between the direction of the incoming beam axis and the 
configuration of the final state. Sect. 7 considers the extension of our HI analysis 
to deep inelastic lepton-hadron interactions and in sect. 8 we give a very brief dis­
cussion of two-dimensional analogues of the HI. These are relevant to processes in 
which a natural plane is defined; the most important applications appear to be 
large P 1 hadron reactions and deep inelastic lepton-hadron scattering. The appendix 
summarizes the kinematics for three-jet production. 
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2. The harmonic moments HI and the correlation function F 

2.1. Properties of the HI 

Consider a sphere placed symmetrically around an e + e - annihilation event. Mark 
the point at which each produced particle pierces the sphere, and assign to it a weight 
equal to the magnitude of the momentum of the particle divided by the total center 
of mass energy. A convenient analogy to this system is a set of point masses placed 
on the surface of a sphere at each of the points (.Qa marked, and with magnitudes 
(mj) equal to the weights previolisly assigned. Momentum conservation for the par­
ticle event will cause the center of mass of the resulting body to be at its geometrical 
center and energy conservation requires its total mass to be one. Now, correspon­
ding to eq. (1.1), define 

+1 

HI == ~ :6 I ~ Ylm(.Q j) mjl2 = ~ mjml'l (cos <l>jj) , 
2/+ 1 m= - I I 1,/ 

(2.l) 

so that the values of the HI for the mass distribution will be the same as those for 
the particle event from which it was derived. In this section it will usually be conve­
nient to work with continuous distributions of mass on the surface of the sphere , 
rather than with sets of point masses, as above. Many of our results will also apply to 
the limiting case of point masses. 

For continuous distributions of mass p(.Q), let 

(2.2) 

= :6 I J p(.Q) D~o(.Q) d.Q12 . 
m 

The HI provide a characterization of the mass distribution independent of the set of 
axes used to determine them. Each HI is, in fact, simply a sum of the absolute 
squares of the 2/ + 1 order-/ multipole moments of the mass distribution. Note that, 
unlike multipole moments, the HI [p] are not linear functionals of p: 
HI [PI + P2] -=1= HI [p 1] + HI [P2]' (A restricted linear superposition principle does, 
however, hold. See subsect. 4.6.) Note also that 0 ~HI/Ho ~ 1. 

To prove that the HI as defined in eq. (2.2) are indeed rotational invariants (inde­
pendent of choice of axes), define the multipole moments 

Then 

4n "5: m 2 
HI = 2/ + 1 ;: IAI I . 

(2.3) 

(2.4) 
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Now apply a rotation R to the coordinate axes. The multipole moments with respect 
to the new set of axes are 

so that 

= L{ D~m'(R -I)Jp(D)Ylm ' (D)dD, 
m 

= 6 [ L{ D~m'(R-I)Jp(D) Y;n'(D)dD] 
m m 

x [4. D~"m(R) J p(D) Y;n" * (D) dD] 
m 

= L{ 4. bm'm" [Jp(D) ylm'(D) dD] [Jp(D) Y;n"* (D) dD] 
m m 

21 + 1 
= -- HI · 

41T 

(2.5) 

(2.6) 

This completes the proof of the rotational invariance of the HI, which was, in fact, 
already manifest in the second definition of HI in eq. (1.1). 

Unlike multipole moments, the HI do not contain all the information necessary 
to reconstruct the mass distribution p(D). Information on the 'relative phases' of 
multipole moments of different orders has been lost. The relative amounts which 
multipole moments of a particular I but different m contribute to HI cannot be deter­
mined. For example , the two distributions [yg(D)+ Y~(D)] and [yg(D) 
+ Y~(QD)] (Q is any non-trivial rotation) will have the same HI. Use of the observ­
abIes discussed in subsect. 2.7 would, however, serve to remove this ambiguity. 

2.2. The correlation function F 

Although the HI do not uniquely determine p(D), they do determine the 
'density correlation function' * 

F(x = cos f3) = 2 Jp(ri) p*(nR (ex, f3, 'Y)) dn , 

* This is similar to the 'rotation function' used in crystallography (7) . 

(2.7) 
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where nand R are now both operators in the rotation group. The integral is over all 
possible rotations n, parametrized by three Euler angles. p(n) is the 'value of pat 
the point reached by applying the rotation operator .Q to the z-axis of the chosen 
coordinate system. p (DR) is the value of p at the point reached by applying first 
R, then n, to the z-axis. p(n) is given in terms of the multi pole moments defined 
in eq. (2.3) by 

- _ (2/+1)1/2 m I -
p(.Q) - 6 -4- Al Dmo(.Q) , 

I,m rr 
(2.8) 

so that 

( ' )1/2 - - 21 + 1 'I' - l' -
p(DR) = 6 -- At D ' ,,(.Q)D "o(R) . 

l' ,m' 4rr m m m 
(2.9) 

Substituting these forms into the definition (2.7), one obtains 

~ v'(21 + 1)(21' + 1) J ' -F(x=cos{3)= L..I Am(A~ )*DI (.Q) 
I,m ,l',m',m" 2rr I I mO 

I' * ... I'· 
XDm'm,,(.Q)D m"O (R(ex, (3, r)) dD. (2.10) 

= 6 4rr 1A7' 12 D~o(R(ex, (3, r)) 
I 

= 6 (21 + 1) HrPl (cos (3). 
I 

F(x) is clearly a rotational invariant: any rotation of the coordinate axes may be 
absorbed into a redefinition of the integration measure in eq. (2.7). Note that eq. 
(2.10) shows that f~lF(x) dx = 2Ho = 2. 

Since the PI(x) form a complete set of functions of x, all the information which 
the HI carry is, in fact, contained in the 'density correlation function' F(x) 
which may be calculated from them. 

2.3. The geometrical construction for F 

The form (2 .7) leads to a simple geometrical picture for F(x). Select a point P on 
the sphere. Draw around that point a circle C which sub tends an angle (3 with P at 
the center of the sphere, as illustrated in fig. 4. Then find the integral of p(.Q) 
around the circumference of the circle C, and multiply the result by the value of 
p(.Q) at P. F(cos (3) is now obtained by integrating over all possible points P on the 
sphere. 

As a first example of this procedure, take the mass on the surface of the sphere 
to be contained completely within two small circular caps (A,A') centered at anti­
podal points (an analogy to a 2-jet event). This mass distribution is shown in fig. 6. 

.. 
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CIRCLE OF ANGLE 13 IN 

GEOMETRICAL CONSTRUCTION FOR F(x) 

Fig. 4. Definition of the circle C used in the geometrical construction for the 'correlation 
function' F(x) . 

GEOMETRICAL CONSTRUCTION FOR F(x) 
FOR PA IR OF CAPS 

Fig. 5. Circles used in the geometrical construction for the 'correlation function' F(x) of a 
mass distribution consisting of two antipodal caps. 

CAPS of ong Ie A 

419 

Fig. 6. Mass distribution consisting of two antipodal caps with finite density subtending half-angles 
A at the center of the sphere. 
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Unless P lies within one of these caps, it can give no contribution to F(x), since 
pen) = 0 elsewhere . Choose P to be in one of the caps of finite density: If {3 is small, 
then C (the circle centered at P used to evaluate F(x)) will be within the p * 0 
region which surrounds the point P chosen, and for those values of (3, F(x) will 
therefore be non-zero. If {3 is larger, then C will lie in the region between A and A' , 
where p = O. For these values of (3, F(x) = O. Finally, if (3 is nearly n, then C will lie 
within the cap A' around the point antipodal to P on the sphere, so that F(;c) will 
again be non-zero. The three circles used in this estimation of F(x) are shown in 
fig. 5. We have now found the form of F(;c) for a mass distribution consisting of two 
small caps centered at antipodal points : F(x) will be large for x around ±1 and will 
fall rapidly to zero away from these points. 

The same procedure may be used to find F(x) for a uniform mass distribution 
('spherical' event). In this case, the circle C at angle (3 around any point on the sphere 
will contribute to F(x) an amount 2n, independent of (3 , so that F(x) = constant. 

The form of F(;c) for a uniform distribution of mass may also be found in other 
ways. pen) = 1/4n corresponds to a total mass 1 distributed uniformly on the sur­
face of the sphere. Substituting this form for pen) into eq. (2.7), one finds F(x) = 1. 
The constant value of F(x) for a uniform mass distribution found by the geometri­
cal method is thus determined to be 1. This result may also be obtained using the 
expression (2.10) for F(x) in terms of the HI . For a uniform mass distribution(with 
unit total mass), Ho = 1 and HI = 0 for I > 1. The formula (2.10) then gives F(x) = Po 
(cos (3) = 1. . 

2.4. Typical forms of F(x) and the HI for continuous mass distributions 

In this subsection, we consider some examples of the forms of F(;c) and the HI 
for various continuous mass distribution. The case of point masses (particle events) 
has several subtleties, and is discussed in subsect. 2.5. 

As a first example, we choose the two-cap mass distribution introduced in sub­
sect. 2.3. We take the density in the caps to be constant, and the total mass con­
tained within them to be 1. For this mass distribution 

(I odd) , 

[ sin2A dPII J2 
= (l - cosA)/(/+l) dx 

x=cos A 

(I even) , (2.11 ) 

(1-+00) , 

where A is half the angle subtended by the cap at the center of the sphere (see fig. 6). 
As for any mass distribution which is invariant under an inversion about the center 

--
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-- caps 
HL FOR ____ circles 'with angle A 

Fig. 7. The shape parameters HI for mass distributions consisting of caps and circles with angles 
A, as illustrated in figs. 6 and 8, respectively. Note that the inversion symmetry of both confi­
gurations leads to HI = 0 for odd I . The values of the HI only for I an even integer are, in fact, 
plotted in the figure; the points are joined for ease of reading. 

of the sphere, the HI in this case are zero for all odd values of I. The HI for a selection 
of values of A. are given in fig. 7. For comparison, the HI for circular line masses sub­
tending the same angles (see fig. 8) are also given (dashed lines). The points in fig. 7 
have been joined by smooth curves for ease of reading, but it should be noted that 
only the HI for even integer values of 1 are, in fact, plotted. The forms of F(x) for 

CIRCLES of ongle A 

Fig. 8. Mass distribution consisting of two antipodal circular line masses sub tending half-angles A 
at the center of the sphere. 
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F(x ) FOR CAPS of ongle >-. 
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Fig. 9. The 'correlation function' F(x) for mass distributions consisting of antipodal caps sub­
tending half-angles A at the center of the sphere (see fig . 6). A = 90° corresponds to a uniform 
distribution of mass on the sphere, while A = 0° represents two point masses placed at antipo­
dal points. 

caps of various sizes A (fig. 6) are plotted in fig. 9 . As expected on the basis of the 
geometrical construction described above, F(x) = 0 for Ix I .;;;; COS(2A), since in this 
case the circle C can never pass through a region of finite density. For A> 45° , F(x) 
is therefore never zero. To show the rate of convergence of the series expression for 
F(x) (see below), the value of IF(O)I has been plotted in fig . 10 as a function of the 
maximum I included in the sum (2.1 0), for various cap sizes. 

The cap mass distribution is analogous to an event consisting of two hadron jets. 
A loose analogy to a three-hadron jet event is provided by a band of finite density 
centered on the equator of the sphere, with angular thickness 2A > 0 (see fig. 11). 
If A = 0, this mass distribution reduces to a line mass around the equator of the 
sphere. In this case 

HI = 0 , (/ odd) , 

_ 2_((/-1)!!)2 
- IPI(O)I - (//2)!21/2 (l even) , (2.12) 

--I ' 
where, once again, the inversion symmetry of this mass distribution causes all the 

--
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Fig. 10. Example of the convergence of the series (2.10) for the 'correlation function' F(x). The 
value of IF(O) I for caps with half-angle ~ (see fig. 6) is plotted as a function of the value ([max) 
of I at which the series has been truncated. Only points for which Imax is an even integer are, in 
fact, plotted in the figure ; they are joined for ease of reading. The exact value of IF(O) I is zero 
for caps with ~ " 45° , and is 1 for ~ = 90° (corresponding to a uniform mass distribution). 

BAND of angle A 

Fig. 11. Mass distribution consisting of an equatorial band of finite density subtending an angle 
2~ at the center of the sphere. 
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GEOMETRI CAL CONSTRU CTION 
FOR F( x) FOR A BAND 

Fig. 12. Typical circles used in the geometrical construction for the 'correlation function ' F(x) 
for an equatorial band of mass. 

HI for odd I to vanish. If 'A =1= 0 , then 

1 sin A 

HI = ~ [J PI(Z) dz] 2 = 0 , 
sm - sin A 

(I odd) , 

[ COS2'A dPl I J2 
= 1(1 + 1) sin 'A ~ . ' 

x =sm A 

(I even) , (2.13) 

-[3' (1-+00). 

The geometrical construction described above gives some indication of the form 
of F(x) for an equatorial mass band . A circle of any size centered in the band will 
always lie within the band for some fraction of its circumference (see fig. 12). F(x) 
will , therefore, never be zero. Circles with small angular radii ~(=COS-lX) will usually 
lie completely inside the band so that F(x) will be large for x close to one. For 
smaller x (larger circle radii), much of the circles' circumferences will be outside the 
band of finite density, so that F(x) will then be smaller. Finally, when x approaches 
- 1, the circles centered at one point on the band will lie in the antipodal region of 
the band. For an equatorial band of mass, therefore, F(;.:) will be large for x near 
±1, and smaller, but not zero, in between. As the thickness 'A of the band decreases, 
so the widths of the peaks in F(x) around x = ±1 will decrease . The exact form of 
F(x) for equatorial mass bands of various thicknesses are shown in fig. 13. 

In the case 'A = 0° , corresponding to a line mass around the equator of the sphere , 
the series (2 .10) for F(x) may be summed exactly: 

(2.14) 

.. 
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F(x) FOR BANDS of angle A 
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Fig. 13. The 'correlation function' F(x) for mass distributions consisting of equatorial bands 
of finite density subtending a half-angle A at the center of the sphere (see fig. 11). A = 90° corre­
sponds to a uniform distribution of mass on the sphere. A = 0° corresponds to an equatorial line 
mass, for which F(x) may be obtained in closed form (eq. (2.14)). 

This result may be understood on the basis of the geometrical construction for Ff?c) 
described above. Consider any point on the equator (all are equivalent). The mass 
density measured with respect to this point is given by 

da(D.) = [s(a) + S(a - 7T)] d(c~s (J)da , 
27T Sin (J 

(2 .15) 

where (J is the polar angle defined in subsect. 2.3 (cos (J = x) and a is an azimuthal 
angle. Integrating over the angle a, and summing over all possible points chosen on 
the equator, one finds F(x) = 2/( 7T sin (J) , which is eq. (2.15). 

The curve for A = 90° in fig. 13. corresponds to a uniform distribu tion of mass 
on the sphere. This case is analogous to a phase-space (isotropic) distribution of par­
ticles. 

We now discuss the behavior of the HI at large I and the convergence of the series 
for Ff?c). For piecewise differentiable density functions with azimuthal symmetry, 
p(x), the formula (2.2) for the HI may be integrated by parts to give 

JdP(X) 2 
HI = I [p(x)fl(x)] - ~ fl(x) dxl , 

1 

fl(x) = J PI(y) dy =~ Pi1(x) (2.16) 
x 

(I-HO) , 
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where a suitable sum over the continuous pieces of p(x) is understood. Hence in 
most cases, 

(I ~ 00) . (2.17) 

This may be seen explicitly from the expressions (2.11) and (2.13) for the HI for 
cap and band mass distributions. For mass distributions with special symmetries, 
the HI may decrease fasten than 1-3. For example, if p(x) ~ xn in each hemisphere, 
then HI _1-3- 2n for large I. Reasonably smooth mass distributions, therefore, give 
rise to a series for F(x) whose terms decrease like 1-2 or faster for large I, so that 
the sum converges. In practice, this asymptotic behavior does not set in until very 
large values of 1 are reached. 

2.5. F(x) and the HI for point mass distributions 

To begin this subsection, we discuss the values of the HI for a few point mass dis· 
tributions. The results are summarized in table 1. In the 'triangle' configuration, three 
equal point masses are taken to lie at the vertices of an equilateral triangle contained 
within the sphere. Note that this mass distribution is not invariant under inversions, 
so that the HI for it are non-zero even for odd values of I. Notice also that the values 
of HI do not always decrease smoothly with I; they are slightly enhanced when 1 is a 
multiple of the periodicity of the mass distribution. 

The most distinctive feature of the HI for point mass distributions is their beha­
vior at large I. In subsect. 2.4, we showed that the HI for continuous mass distribu­
tions decrease at least as fast as 1/13 as 1 ~ 00. On the other hand, the HI for point 

Table 1 
Values of the HI for some simple point mass distributions 

Mass distribu tion 

Uniform Two Equatorial Triangle Square 
antipodal line 
points 

Ho 1 1 1 1 1 
HI 0 0 0 0 0 
H2 0 1 0.25 0.25 0.25 
H3 0 0 0 0.63 0 
H4 0 1 0.14 0.14 0.69 
Hs 0 0 0 0.27 0 
H6 0 1 0.10 0.55 0.34 
H7 0 0 0 0.18 0 
Hs 0 1 0.08 0.28 0.64 

.' 

. , 
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mass distributions tend to a constant for large I. The fact that the HI do not decrease 
with I for point mass distributions is evidenced by the case of two-jet events, for 
which H 21 = 1, H 21+ 1 = O. For a poin t mass distribution 

p(.Q) = 6 mio(.Q - .Qi) , 
i 

so that the corresponding F(x) as defined by eq. (2.7) is 

F(x) = 2~ mimj ° (cos ct>ij - x) , 
1,/ 

(2.18) 

(2.19) 

where ct>ij is the angle between the masses i andj. For particle events , the mi in (2.19) 
are replaced by Ipil!Ys. There will be a contribution to the sum in (2.19) from the 
case i;' j of 

(2.20) 

The behavior of the HI for large I is most conveniently studied using the second 
form in the basic definition (2.1). As I tends to infinity, only the terms where cos ct>ij 
= ±1 survive; the other contributions decrease like l/Y/. The HI, therefore, tend to 
a non-zero limit as 1-+ 00 given by 

lim '[H21 +H21+tl =26 m; , 
1-+ 00 i 

(2 .21a) 

lim [H21 - H21+tl = 2 6mimj' , (2 .21b) 
1-+ 00 i,j' 

where in (2.21 b), we sum over all pairs of particles i and i' which are back-to-back 
(cos ct>jj' = - 1). For two-jet events, the two sums in (2.21a,b) are equal so that 
H21 = 1, H 21+ 1 = O. In most cases, the sum in (2.21 b) is zero and we find that HI 
tends to the same limit for odd and even I. Note that the value of this limit is just 
one half the coefficient of 0(1 - x) in F(x). This is evident from the Legendre 
expansion (2.10) for F(x). 

2.6. Energy correlation functions and their relation to F(x) 

For particle events, we define the two-detector energy correlation function 

F (a a )=~ Ipltlpb 
2 l' 2 I II I ' al a2 s 

(2 .22) 

where Ip Ii are the total three-momenta (or energies, if all the particles are massless) 
incident on detectors covering the regions ai of total solid angle lail. We form the 
rotationally invariant observable F2 by averaging F2 over all possible positions for 
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the detectors, while maintaining their relative orientation. In the limit I OJ 1-+ 0, F 2 

becomes a function only of the angle ~ between the two point detectors, and is 
identical to F(cos m. Hence the HI are simply the coefficients in the Legendre expan­
sion for F2 in the limit 10jl-+ 0 *. The set of HI and F(x) provides the same informa­
tion about the shape of events, but the information is differently arranged in the two 
cases. However, while the HI are infrared stable and therefore computable in QeD 
perturbation theory for finite I, the limit of the HI as 1-+ 00 is not. Since F(x) probes 
this limit through the sum (2.10), it too is not infrared stable. This failing of F(x) 
will be discussed in more detail in sub sect. 3.4. 

It is possible to regain results for F 2 in the case 10jl =f. 0 from F(;c) by integra­
ting it over x with a suitable weighting function. For example, if the OJ are caps of 
angular radius [) with centers an angle X apart, then 

(2.23) 

where the flex) are defined in eq. (2.16). This series converges for finite [) even 
though the HI do not decrease with I. On comparing eq. (2.23) with eq. (2.10), 
one sees that the series for F 2 (01, 02) has an extra 1/13 convergence factor com­
pared to that for F(x). From eq. (2.23) it is possible to relate the mean value of F2 
over events to the mean values of the HI. However, the distributions of events in 
HI and in F2 are not related. We shall discuss the distribution Cl/o) do/dF2 in a 
later publication [29]. 

2.7. Generalizations of the HI 

The HI form a complete set of rotationally invariant shape parameters bilinear 
in the density function p. One can find further rotationally invariant shape param­
eters only by considering higher powers of p, or equivalently, the multipole moments 
Aim defined in eq. (2.3). To find shape parameters of degree n in p, one must com­
bine the n spherical tensors A;?j in such a way as to form a scalar under the rota-

I 
tion group. This may be done using 3j symbols. For example, the degree 3 analogue 

* As discussed in sub sect. 2.4, one must, in practice, know the values of the HI up to rather high 
I in order to obtain a good approximation to F(x). Note that the mean F(x) has been com-
puted directly for the process e + e - .... qq (G) in ref. [28], and all the processes discussed in this 
paper in ref. [29]. In these references, the form of <F(x» for detectors at a fixed angle to the beam 
a1lis have also been calculated. The resulting correlation functions may be expressed as a Le-
gendre expansion analogous to (2.10), in terms 'of the non-rotationally-invariant observables 
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(2.24) 

In this formalism the HI are given by the only scalar (spin-O) combination of two 
spherical tensors: 

(-li..j2T+I HI == T?112 = 41T L; (11 
m l,m2 m] m2 

(2.25) 

where, of course, the result is only non-zero if 11 = 12 = I. The formalism may easily 
be used to construct higher degree shape parameters, but for n > 3 there is more 
than one way of combining n spherical tensors to give a scalar. 

The complete set of T~ ... In appear rather powerful since they determine pen) 
up to an arbitrary overall rotation. (This is easy to show for the two-dimensional 
analogues of the TFl .. . 12 which are generalizations of the CI observables discussed 
in sect. 8.) 

It turns out that observables formed from combinations of various Tl1121 pro­
vide a test for planes of particles in e + e- annihilation events *: the observables 
vanish for events in which all the particles are coplanar, but have a non-zero value 
for isotropic events. They, therefore, offer the possibility of a direct discrimination 
between events arising from the production of three quarks and gluons (e.g., e + e­
-+ ~ -+ GGG) and pure phase-space events. The~e observables are discussed in more 
detail in ref. [17]. 

3. Infrared stability 

Graphs in which gluons or quarks may be soft, or may become collinear, receive 
divergent contributions from these kinematic configurations. The Kinoshita-Lee­
Nauenberg (KLN) theorem guarantees, however, that in the total cross section such 
divergences cancel, leaving a finite result [8]. The divergences encountered in the 
calculation of the moments of the HI, 

fHPda 
(HP)=_1 - (3.1) 

I fda' 

* The simplest example of this class of observables is 

where Pi is a unit vector along the momentum Pi of particle i. 
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are very similar to those involved in the calculation of the total cross section. It 
seems very probable, therefore, that they should cancel in the same way. 

In eq. (3.1), we are implicitly calculating the moments of the HI for final states 
consisting of free quarks and gluons. We discuss the procedure in detail in subsect. 
3.2. In reality, one must calculate the HI for final states consisting of hadrons. We 
discuss this in subsect. 3.3. Our discussion there will require precise definition of a 
jet, and since this problem provides a useful introduction, we shall consider it first. 

3.1. Jets 

A typical quark or gluon jet is shown schematically in fig . 14. Such a jet would 
be indistinguishable from a single particle by a detector with energy resolution grea­
ter than € and angular resolution greater than 8. (€ and 8 are normalized so that a 
detector which only counts the total cross section and cannot distinguish any details 
of the final state has € = 8 = 1.) To order gO (g is the QeD coupling constant) the 
only diagram for production of two jets by a virtual photon is that of fig. 15. To 
order g2 , there are two types of diagram which lead to two-jet fmal states. Examples 
are given in figs. 16a, b. For the diagram of fig. 16a to contribute to the 2-jet cross 
section, either the gluon or quark must have an energy ~e.E, or they must be trave­
ling in the same direction to within 8. If these conditions are not satisfied, then the 
detector will be able to tell that three, rather than two, particles were produced, and 
the event will be classified as a three-jet one. In order to regularize the calculation of 
diagrams such as those in fig. 16, one must assign the gluon a fictitious mass, 11. Then 
the probability corresponding to diagrams like fig. 16b will contain terms of the form 
[log I1]P,u, 0 ~P,u ~ 2. Diagrams like fig . 16a will contain terms of the form 
[log 8]PIi [log €]PE [log I1]P,u, 0 ~ P li + PE + P,u ~ 2. 

If 8 and € are both taken to be one, that is, if the detector is never able to dis­
tinguish a 'three-jet' event, so that it measures only the total cross section, then the 
KLN theorem guarantees that it will measure a finite cross section to any order in g2 . 

A TYPICAL JET 

~ .... -----
-:::-:J: 

. -- --

Fig. 14. Schematic form of a typical quark or gluon jet. Particles within the jet must either have 
an energy less than a fraction E of the energy of the primary particle, or must travel at an angle 
less than Ii with respect to it. 
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BORN TERM FOR Y"-qq(G) 

« q 

Fig. 15. The lowest order diagram for the process 'Y * ... qq. 

Specifically, to order g2 , the terms in [log J.l]Pj.t in the loop and tree graphs will can­
cel, so long as 0 = e = 1. It turns out that the cancellation of J.l-dependent terms occurs, 
at every order in g2 , even if 0, e =1= 1 [25]. (This result was verified explicitly to 
0(g2) in ref. [2] and essentially to O(g4) in ref. [9].) This means that the cross sec­
tion for production of two or three jets at O(g2) is free of divergences, as long as e and 
o are both finite. If either of e and 0 is set to zero, then a divergent cross section 
will be obtained. The cross section would be for production of, say, a quark, with 
no associated gluons. Since any quark produced will always radiate some gluons, such 
a cross section is not physically meaningful. 

The cross section at O(g2) for inclusive production of a quark from a virtual pho­
ton is shown in fig. 17, as a function of the fractional energy x, of the quark. For 
the quark to have its maximum energy (x = 1), the kinematics of the process (see the 
appendix) require no gluons, of any energy, to have been produced. However, pro­
cesses like that in fig. 16b can occur, and give rise to a divergent cross section just at 
x = 1. That is, they contribute terms to the differential cross section like -co(l - x), 
where c is a positive constant which diverges when J.l = O. The integral of da/dx 
shown in fig. 17 over x from 0 to 1 is rendered finite by the presence of the 0 func­
tion at x = 1 (to see this, one must first regularize by taking J.l =1= 0; the relevant formu­
las are given in sect. 4). This corresponds to the total cross section at O(g2), which is 
known to be finite from the KLN theorem. 

0(g2) CONTRIBUTIONS TO y"-qq(G) 

':/;i~ --~I q 

(a) 

(b) 

Fig. 16. Examples of terms at O(g2) in the amplitude squared for the process 'Y * ... qq (G). The 
first diagram will contribute either to the two- or three-jet cross section, depending on the mo­
mentum of the gluon, while the second will contribute only to two-jet production. 
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dO' 
dx 

(arbitrary 
units) 

.2 

e + e - -q + ANYTHING 

TO ORDER g2 

.4 .6 

, 
r-
,2 JETS -., 

3 JETS' , 

.8 

, , , 
I 
I , , 
I , , , , , , 

_E __ 

-c8( I- x) 

Fig. 17. The differential cross section for the process e + e - -> q + anything calculated to order 
i, as a function of the fractional energy, x, of the quark. The final state is considered to con­
tain two jets ifx > 1 - e, and to contain three jets if the quark hasx < 1 - e. Only the process 
e + e - -> qqG (fig. 16a) contributes to 3-jet production, but both e + e - -> qqG (fig. 16a) and 
e + e - -> qq (figs. 15 and 16b) can give rise to two-jet final states. The infrared divergences in the 
cross sections for these processes cancel when the total two-jet production cross section is com­
puted. 

Let us now introduce the energy resolution e. Quarks with x > 1 - e will be 
assumed to belong to 2-jet events, while those with e < x < 1 - e will be dis­
tinguished as belonging to three-jet events. If e is taken to be 0, then all of the 
sharply rising 3-particle production cross section will be included in the 3-jet 
cross section, while the negative delta function associated with the two-par­
ticle production process will not be included. Clearly, with this choice for e, 
the '3-jet' production cross section will be infinite. As discussed above, how­
ever, such a choice for e is not physically sensible. If a finite value for e is 
chosen, then the two- and three-jet configurations will be defined as indicated 
in fig. 17, and their cross sections will be separately finite. 

The above discussion is incomplete because it ignores divergences associated 
with collinear quarks and gluons. In fact, one must only include in the 3-jet sample 
events in which all the quarks and gluons are separated by angles greater than O. 
(Only if the quarks are taken to be massless does the collinear quark and gluon 
configuration lead to a divergence but collinear gluon pairs inevitably give diver-

.' 
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gent contributions.) Instead of making cuts in both angle and energy, one may 
cut only in kT or H2 in order to isolate three-jet events. 
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The conclusion of this discussion is, therefore, that, while it is sensible to ask 
for the total cross section to any order in g2 , it is not sensible to ask for the total 
probability that, say, two jets are produced to that order, unless one has speci­
fied reasonable values for the resolution parameters € and 0 which delineate two­
and three-jet production. 

3.2. Moments of the HI for final states of quarks and gluons 

Now let us return to the evaluation of the (Hi>. We shall begin by ignoring 
the fact that the quarks and gluons produced by the virtual photon will eventually 
be combined into hadrons. At first we simply calculate (Hi> for final states consis­
ting of free quarks and gluons. To do this, we must evaluate the expression (3.1), 
where the integral is over all possible kinematic configurations for the final state, 
and in HI a sum is done over all the particles in each final-state configuration. The 
numerator of (3.1) may be written as 

~ f do p L.J - - --HI dx 1 ... dxn . 
diagrams dx 1 .. · dx n 

(3.2) 

First consider evaluating this for Ho . Clearly, in every kinematic configuration,Ho 
will simply be 1. Then (3.2) reduces to an expression for the total cross section, 
which is known to be finite. Now consider evaluating (H2 >. For the result to be 
sensible, it must be independent of the gluon mass (infrared cut-off) p, when the 
integral over all kinematic configurations (0 = € = 1) is done. To order g2 , one may 
construct H2 explicitly, and check that the integral (3 .2) is independent of p . This 
is done in sect. 4. The integral is found to divide into two parts. The first is identical 
to the total cross section, while the second contains a weighting function which 
vanishes in all kinematic configurations for which divergences occur in the differen­
tial cross section *. Note that the particularly simple fqrm for H2 in the case of 
3-particle final states (see eq. (4.9)) will not persist in higher orders: only at O(g2) 
is the divergent term encountered in the calculation of the moments of H2 exactly 
the total cross section. 

Perturbation theory can only be valid if successive terms in the perturbation 
expansion are, on average, progressively smaller. In QED, the breakdown of the per­
turbation expansion in the infrared region is well-known. The same phenomenon 
occurs in QCD. If the main contribution to the expectation value of an observable 
comes from a kinematic region close to an infrared divergence , then its value de­
duced from perturbation theory must be suspect. The parameter which governs the 
applicability of perturbation theory to the process e + e - ~ qqG is presumably 

* Divergences in differential cross sections are typically of the form [log klt/kl' where kl is the 
transverse momentum between two of the final quarks or gluons. Cancellations occur between 
processes in which k 1 is strictly zero and those in which it is small. The difference of the HI 
between these two configurations is O(kr), and so gives no infrared divergences when the inte­
gral over kl is performed. 
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~ (s )/(1 - X 1)( 1 - X 2), where X 1 (X 2) are the fractional energies of the q(V and 
as(s) is the QCD (running) coupling constant evaluated at the c.m. energy under 
consideration. As Xl, X2 -+ 1, this parameter becomes large and the qqG final state 
becomes indistinguishable from qq with Xl = X2 = 1. When the parameter is large, 
higher orders in the perturbation expansion will be no less important than the low 
orders under consideration. The results for the total cross section and (as we shall 
argue below) for the moments of the HI are finite at each order in the perturbation 
expansion. However, the actual finite numerical values may be modified significantly 
by the inclusion of higher orders. It is believed that this phenomenon does not occur 
for the total cross section. Thisis exemplified by the O(g2) contribution to the total 
cross section, which is smaller than the lowest-order term by a factor of as(s)/rr. 
Some moments of the cross section will, while remaining finite, probe kinematic 
regions close to infrared divergences to a greater extent than the total cross section. 
These moments should remain finite, but may well receive numerically important 
contributions from higher-order effects. This phenomenon occurs for some of the 
high-order moments of, for example, H2 , in the process e + e - -+ qqG (see subsect 
4.4). 

Cancellations of J.L-dependent terms in the total cross section come when a tree 
graph at one order ing2 gives rise to (almost) the same final-state kinematic confi­
guration as loop graphs of the same order. So long as an observable does not distin­
guish between the canceling graphs (that is, it gives them all the same weight in an 
integral of the type (3.2», the integrals for its moments should experience the 
same cancellations of J.L-dependent terms as occur in the integral for the total cross 
section. The HI have this property. The decomposition of the integral for (H2 ) men­
tioned above is one consequence. In a divergent kinematic configuration, different 
graphs are treated the same, just as in the calculation of the total cross section. 

Any variable which is proportional to the energies of the final particles will have 
the same value for kinematic configurations which differ simply by the addition of 
a gluon of indefinitely low energy. However, one must also demand that the vari­
ables do not distinguish between configurations containing a single particle and two 
(or more) nearly collinear particles with the same total energy [5,6]. The HI fulflll 
both requirements. It, therefore, seems very reasonable to expect that the infrared 
divergences associated with the calculation of their moments to every order in g2 
will cancel in the manner described above. The same cancellation should occur for 
the moments of 'spherocity' but not for those of 'sphericity', since the latter is 
not linear in the momenta of nearly collinear final particles *. 
* 

spherocity = (~)2 min[ 6 Ipill 61Pil ]2 , 
n i i 

sphericity = ~ min [6 Ipi1 2/6 lPil 2 ] , 
i i 

where the pi are the momenta of the particles i transverse to the jet axis which is defined by 
demanding tnat the values of the variables be minimal. See ref. [6] for discussions of other 
variables. 

.. 
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The linearity in momenta of the HI is advantageous at the hadron as well as the 
quark and gluon level. For example, the values of the HI are essentially unaffected 
by decays with small internal transverse momenta; they have the same value whether 
the parent particles or their decay products are measured. 

3.3. Moments of the HI for hadronic final states 

Further problems appear when one attempts to calculate the moments of the 
HI (or 'spherocity', 'thrust' and so on) for genuine processes involving the produc­
tion ofhadrons rather than of quarks and gluons. For example, at O(g2), one must 
decide whether a quark and soft gluon will fragment into hadrons as a quark or like 
a quark and a gluon. This means that in order to estimate the production of hadrons, 
one must divide up the O(g2) cross section into 2- and 3-jets parts by using sensible 
values for the parameters 8 and € which distinguish the two. Then, in the two-jet 
region, we assume that it is a two-quark state which fragments to hadrons, while 
in the three-jet region, the gluon as well as the two quarks are taken to fragment 
separately into hadrons. 

It is as if the formation of the final hadron state provides a measuring apparatus 
with finite resolution for the subprocess involving quarks and gluons. The' confi­
guration of the final hadron state is unaffected by small changes in the energies 
and momenta of the quarks and gluon which generate them. Only a large deviation 
in the energies of the quarks from those of the process e + e - -+ qq is reflected by 
the appearance of three hadron jets in the fmal state ; smaller deviations are beyond 
the 'resolution' of the hadrons in the final state. The 'resolution' of the hadrons 
will be determined by the model for their production by the 'fragmentation' of 
quarks and gluons. To be exact, this fragmentation should be taken to depend 
on the total c.m. energy, Ys. Such s dependence, which involves mixing between 
quark and gluon fragmentation functions , is believed to be given by simple renor­
malization group equations. However, the necessary formalism has so far been deve­
loped only for Single-hadron inclusive distributions (10] *. In order to make realis­
tic estimates for the moments of HI, we require a model for the generation of a 
complete hadronic final state. For this purpose, we use the model developed by 
Field and Feynman (18], despite the fact that it exhibits exact scaling at asympto­
tic energies. Fortunately, the model turned out to be adequate, and our final results 
are essentially independent of the arbitrary cut-offs (€, 8) between two- and three­
jet events. 

3.4. The infrared instability of F(x) 

From the formula (2.20), one finds that the coefficient of the 8(1 - x) term in 
F(x) is 2 "£IE1 Is, which is not infrared stable against collinear divergences. Since 

* The s dependence of the fragmentation is partly accounted for by our inclusion of O(g2) pro­
cesses. The remaining s dependence has contributions both at O(g2) (whose form depends 
on the separation of two- and three-jet events) and from higher-order processes. 
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f ~l F(x) dx = 2, this divergent contribution must be absorbed by a compel!sating 
divergence at other values of x. The presence of divergences in F(x) is to be expec­
ted, since events containing two particles which are arbitrarily close in angle will 
be weighted differently in the computation of F(x) from those containing a single 
particle which carries the sum of their energies, because the two particles cannot 
pass through the same point detector. It is clear that to the lowest order in g2 for any 
process, there will be no infrared divergences in F(x), and that in the next order, 
divergences will appear only at those values of x for which the lowest-order F(x) 
is non-zero (e.g., for e + e - ~ qq(G) to O(g2), divergences appear only at x = ± 1). 
In higher orders, divergences will occur at all values of x. 

The energy correlation F2(01, 02) defined by eq. (2.22) is formally infrared 
stable so long as the 10il are non-zero *. However, as the angular size {j of the 
detectors tends to zero, F2 (0 I , 02) will become infrared unstable. For final 
states consisting of free quarks and gluons,F2 (01, 02) might serve as a satisfac­
tory measure. However, for genuine hadronic final states, the formation of the 
final state from quarks and gluons introduces a finite angular resolution, whose 
size cannot at present be deduced directly from QeD. Unless {j is very large, the 
unknown resolution associated with the formation of hadrons will be the most 
important quantity in determining F 2 , thereby rendering it useless. If one choo­
ses a large value of {j, very little information will be obtained unless the integra­
tion over the areas 10il is performed using a non-trivial weight function, in which 
case essentially the HI will be obtained. 

4. Results for idealized jets 

In this section, we present our results on the cross sections and HI moments 
for the production of free quarks and gluons by a virtual photon. Sect. 5 discusses 
the results obtained using a realistic model for the fragmentation of the quarks and 
gluons into hadrons. 

We consider first the cross section for the process e + e - ~ qqG, which proceeds 
(in lowest order) through the diagrams of fig. 18. Defining (see the appendix) 

IPql = 1x IYs, 

IPql = 1X2Ys, 

IpGI = 1X3Ys, 

(4.1) 

* Note that although <F2(01, 02» can be obtained from <F(x» by smearing inx, the distributions 
of events in F(x) and F2(0l> 02) are not related in any simple way. 

.' 
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~
q 

y G 

e q 

Fig. 18. The lowest-order diagrams for the process e + e - ... qqG. 

~---_/ 
/e'~~--~ 

Fig. 19. The lowest-order diagram for the process e + e - ... qq. 
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where ys is the total c.m. energy (the virtual photon mass), and taking a finite gluon 
mass J.1 as a regularizer, one finds that the differential cross section for this process 
(summed over the colors of the final particles) is given by * 

do 2Cis --- = 00 - ----,-----
dx 1 dx 2 31T (l-xl)(1 - X2) 

Here 00 is the lowest-order cross section for the process e + e - -+ qq shown in fig. '19, 
and Cis = g2 j41T is the QeD coupling constant. 

The cross section for e+e- -+ qq at order g2 resulting from the interference of 
the diagrams of fig. 20 with the lowest-order diagram (fig. 19.) is [2] 

4CiS { 1 2 S 3 S 7 1 2} = 00 - 8(l-xd8(l-X2) - -log -+ -log- - -+-1T 
31T 2 J.12 2 J.12 4 6 

(4.3) 

(Note that each 'wave-function renormalization' diagram occurs only once in the 
product of figs. 19 and 20.) 

Integrating the differential cross sections (4.2) and (4.3) over the final particles' 
phase space, one finds that the total cross section for e+e- annihilation into free 

* Note that, for simplicity, we always take the initial e+ and e- to be unpolarized. 
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q 

+ ~ 
q 

+ ~ 
Fig. 20. Contributions to the process e + e - .... qq at order g2 . 

quarks and gluons to order g2 is finite and independent of /.1. It is given by [26] 

a = ao (1 + '; + O(g4)) . (4.4) 

In the case of this total cross section, there are good arguments based on the renor­
malization group [11] which suggest that the relevant coupling constant in (4.4) is 
~(s) given by * 

121T 
~(s) ==- -(3-3 ---2F- )- I-og(s/ A 2) . (4.5) 

(JIe take F= 4 and A = 0.5 GeV, but our results are not sensitive to these choices.) 
We assume that the as appearing in the differential cross sections (4.2) and (4.3) 
should also be the as(s) given in eq. (4.5). 

4.2. Decays of heavy quark resonances 

It seems reasonable to guess that the decay of a heavy QQ resonance ~ with 
JP = 1 - into hadrons will be initiated by its decay to three gluons, as in fig. 21 
[4] . We assume that the quarks Q and Q behave as if free at the time of the 
annihilation. Then the differential cross section for the decay ~ ~ GGG is 

(4.6) 

where x 3 = 2 - Xl - X 2 ' The cross section (4.6) is identical to that for the decay of 
positronium into three photons [13] . Note that it is finite throughout the physical 
region. (It is the only mechanism for ~ ~ GGG at O(g6), so that if the total cross 

* Note, however, that the A 2 which appears in this formula may well differ considerable from 
the values deduced from measurements of other processes, or from the 'true' A 2 [12]. 
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GGG DECAY OF HEAVY QQ RESONANCE 

Fig. 21. The lowest-order diagram for the decay of a heavy vector meson (t) containing a pair 
of heavy quarks (Q) into three gluons. 

section for t"""* GGG at O(g6) is to be finite, then so must the cross section for the 
process of fig. 21 be.) 

The process t """* 'Y. """* qq illustrated in fig. 22 may also contribute to the hadro­
nic decay of the t. The ratio of the total decay rates of the t due to the diagrams of 
figs. 22 and 21 may be estimated as (eQ is the charge of the Q quark) 

B == r(t"""* 'Y. """* qq) 
r(t"""*GGG) 

(4.7) 

where we have assumed (without much justification) that the coupling constant rele­
vant to the process of fig. 21 is O!s(mf). The sensitivity of eq. (4.7) to the value of o!s 

makes an estimate of B for the T difficult. It seems likely, however, that 

(4 .8) 

A number of t decays other than to GGG and qq may also be considered. The 
main ones of interest are 

The first of these processes might be interesting [14] because the gluon jets will have 
higher energies than in t"""* GGG, and so presumably will be better collimated. The 

qq DECAY OF HEAVY QQ RESONANCE ~ 
q 

Q 

~ 
Q q 

Fig. 22. The lowest-order diagram for the electromagnetic decay of a heavy vector meson (r) 
containing a pair of heavy quarks (Q) into a pair of light quarks (q). 



440 

decay 

G.C. Fox, S. Wolfram / Event shapes in e+e- annihilation 

t -+ G (glueball) 
'---).GG 

should give somewhat different gluon energy and angular distributions than t -+ GGG, 
but the effect is difficult to estimate reliably. 

4.3. The HI moments 

For a 2·jet event, H2 = 1. For a three-jet event (see the appendix for the defini­
tions of I/>ij) 

H2 = * :0 I :0xiY~(ni)12 
m 

= * [3(x 1 + x2 COS2 1/>12 + X3 COS2 1/>13) - 2F 
+ 3x ~ sin 2 I/> 12 [cos I/> 12 - cos I/> 13]2 

+ * [x 2 sin2 1/>12 + x3 sin2 1/>13 F 
= Hxi +x~ +x~ + 2x1X2P2 (cos 1/>12) 

+ 2x2 X3P2(COS 1/>23) + 2X3X1P2(COS 1/>31)] 

= 1 _ 6(1 - X 1)(1 - X 2)(1 - X 3 ) 

X1 X 2 X 3 

(4.9) 

This formula realizes the claim made in sect. 3 that H2 may be divided into a con­
stant term and a term which damps the divergence in the 3-jet differential cross sec· 
tion (4.2). 

To evaluate the moments of H2 for the process e+ e- -+ qqG, we write 

Jda + J(Hf - 1) da 

(Hf>=-------------­
Jda 

(4.10) 

The f da is given to O(g2) by eq. (4.4). In the case P = 1, it is possible to evaluate 
f (H2 - 1) da in closed form. Including the contribution from 2-jet events at O(g°), 
the final result for (H2> to O(g2) is * 
* Evaluation of (HI> for three-particle final states requires integration over the two phase-space 

variables x 1 and x2' The integrals over x2 may always be done in terms of elementary functions, 
but the integration over x 1 always involves dilogarithms [15]. Integration by parts reduces 
the dilogarithm integrals to the canonical forms [16] 

° J 10g(xl +x) 
----- dx = Li2(- l) = _ ~1T2 , 

1 

or ° JIOg(l - X) . 12 
x dx = LI2(l) = 61T • 

1 

.' 

.. 
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(4.11) 

:=::01-I.4o:s 

:=::0 1 - 2.0/log(s/ A 2 ) • 

The coefficients (c) of O:s for some higher moments of H2 are given in table 2. Values 
of the moments for various c.m. energies (y's) are also given there, using A = 0.5 
GeV. Note the negative values obtained for some of the higher moments of H2 at 
low y's. These unphysical results are signals of the breakdown of perturbation theory. 
As higher moments of H2 are evaluated, so the region in the differential cross section 
closer and closer to the 2-jet limit is probed. However, as discussed in subsect. 3.2, 
the lowest order in the perturbation expansion is no longer a good estimate of the 
differential cross section in this region. Results which depend critically on the beha­
vior of the e + e - """* qqG cross section for kinematic configurations close to that for 
e+ e- """* qq cannot, therefore, be determined reliably from an O(g2) estimate. These 
difficulties in practice effect only the high-order moments of the HI for the process 
e+ e- """* qqG at low s. The form of (1/0) do/dHl for hadrons resulting from this pro­
cess will be entirely unaffected by these problems (see sect. 5). 

The first moment (mean value) of H2 for the process ~"""* GGG is found to be 
given by 

103n2 - 1008 
<H2>= (2 ) :=::00.616. 

16 n - 9 
(4.12) 

Higher moments of H2 for this process are given in table 3. The decrease of <Hf> 

Table 2 
Moments of H2 for the process e + e - .... qq (G) (the sum of e + e - .... qq and e + e - -+ qqG calcu­
lated through O(g2» 

P 
<H2 ) = 1 + cO<s(s) 

p c .Js = 5 GeV 

1 -1.4 0.54 
2 -2.3 0.25 
3 - 3.1 - 0.01 
4 - 3.7 -0.21 
5 - 4.3 - 0.40 

.Js = 10 GeV 

0.65 
0.42 
0.22 
0.07 

-0.08 

.Js = 20 GeV 

0.72 
0.53 
0.37 
0.24 
0.13 

,Js -+ 00 

1 
1 

The negative values of <H2 ), in some cases, are unphysical, and signal the inaccuracy of the 
O(g2) terms in the perturbation series close to an infrared divergence. As the c.m. energy (.Js) 
increases, the e + e - -+ qq result H2 = 1 is slowly attained. 
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with P in this case is a consequence of the approximate flatness of (1/0) do/dH2 
for ~ -+ GGG. «Hf> for ~ -+ GGG can never be negative, since in this case (1/0) 
do/dH2 ~ 0 everywhere.) 

In general, 0 ~H2 ~ 1. For a three-jet event, however, the value of H2 is more 
tightly constrained. The form (4.9) for H2 is easily seen to be minimized for Xl = 
x2 =x3 = ~ (the event is most spherical in this configuration), at which point 
H2 = *. It is maximized in the collinear (,two-jet') configuration, for which H 2 = 1. 
For a three-particle final state, therefore 

(4.13) 

In contrast, a two-jet event gives H2 = 1, while a spherical ('phase-space') event has 
H2 =0. 

For a two-jet event,H3 = O. For a three-jet event 

(4.14) 

The integral f H3do contains no infrared divergences since the weight of the kine­
matic configurations close to the 2-jet one which lead to divergences is zero. For 
the process e + e - -+ qqG, we find 

2a 
(H3 ) = ~(1980 - 2001T2) _s ~ 2.03 X 2as/31T , 

31T 

while for ~ -+ GGG 

15(3391T2 - 3344) 
(H3 ) = =:::0.215 . 

144(1T2 - 9) 

(4.15) 

(4.16) 

Notice that H3 = 0 both for a spherical and for a 2-jet event. Only for events with 
non-trivial structure is it non-zero. Tables 4 and 5 give the values of some higher 
moments of H3 for e+e- -+ qqG and for ~ -+ GGG. 

Table 3 
Moments of H2 for the process e + e - .... ~ .... GGG, where ~ is a heavy QQresonance 

P {HP ) 
2 

1 0.62 
2 0.43 
3 0.32 
4 0.25 
5 0.21 

.' 
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Table 4 
Moments of H3 for the process e + e - -+ qq (G) (the sum of e + e - -+ qq and e + e - -+ qqG calcula­
ted through O(g2)) 

p 

1 
2 
3 
4 
5 

(~) = cas(s) 

C .Js = 5 GeV 

0.43 0.14 
0.11 0.04 
0.043 0.014 
0.020 0.006 
0.010 0.003 

For any three-jet process 

0~H3~i· 

.Js= 10GeV 

0.11 
0.03 
0.011 
0.005 
0.002 

.Js = 20 GeV 

0.09 
0.023 
0.009 
0.004 
0.002 

.Js -+ 00 

o 
o 
o 
o 
o 

(4.17) 

The maximum value is attained when x I = X2 = x3 = ~ (the event is most 'spiky' in 
this configuration). 

For a 2-jet event, H4 = 1. There is no simple formula for H4 in a three-jet event * , 
although it can be shown that in this case 

1 ~H4 ~ ~::e 0.1406 (4.18) 

where the minimum value is realized for x I = X 2 = X 3 = j. One finds 

* In fact, one finds 

This general pattern persists, and, for example, 

+ (1 - xI)(1 - x2)[(1 - XI)(10 1xi - 288xI + 288) + (xl '" x2) 

+ x IX2(43(xi + x~) + 86x IX2 - 331(xl + x2) + 720) - 288] } . 

(4.19) 
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Table 5 
Moments of H3 for the process e + e - ~ t ~ GGG, where t is a heavy QQresonance 

p (H3> 

1 0.215 
2 0.081 
3 0.036 
4 0.Ql8 
5 0.009 

where by e + e - ~ qq(G) we mean the sum of the processes e + e - ~ qq and e + e - ~ 
qqG. 

4.4. Differential cross sections in the HI 

The differential cross sections (1/otod do/dHl for the processes e+e- ~ qq(G) 
and ~ ~ GGG are shown in fig. 23 for I = 2, 3 and 4. Note that (apart from the ys 
dependence of <Xs(s», all these results are exactly scale invariant (do not depend on 
the value of ys). (The cross section for e+ e- ~ qqG is proportional to <Xs(s). ys = 
20 GeV was chosen to evaluate as(s) for fig. 23. Results for other values of ys may 
be obtained by a trivial rescaling.) The differential cross sections for e + e - ~ qqG 
shown in fig. 23 exhibit infrared divergences, but as discussed above, these divergen­
ces cancel when the moments of the HI are evaluated. Notice the sharp cut-offs in 
the differential cross sections at the boundaries of the physical region for three-jet 
processes (H2 = 0.25, H3 = 0.625, H4 =::: 0.1046). 

As will be discussed in sect. 5, the fragmentation of the quarks and gluons into 
hadrons serves to make considerable modifications to the (1/0) do/dHl. At very high 
energies, however, such modifications become less important, and at asymptotic 
energies, the free quark and gluon results of fig. 23 are regained. 

We have calculated only to order g2 . In higher orders, processes in which more 
than three jets are produced will occur, and the two- and three-jet production cross 
sections will be modified. As discussed above, these higher-order effects are clearly 
important for those moments of the HI which probe close to the region of infrared 
divergence; in some cases, they are even necessary to obtain positive results. Events 
involving more than three jets will also undoubtedly populate ranges of the HI out­
side those allowed for three-jet events by kinematics. Except in these circumstances, 
we expect O(g4) and higher corrections to be small. 

4.5. Production of heavy quark and lepton pairs 

The production and weak decay of pairs of heavy mesons (D, B, ... ) carrying new 
flavors will give rise to events whose shapes are distinct from those of the two- and 
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0.1 

HL DISTRI BUT IONS FOR 
FREE QUARKS AND GLUONS 

-- e+e- .... qqG 

--- e+ e- .... ~- GGG 

/- ........ I - __ 
I -_ 
I 
I 
I 
I 
I 
I 

------ ................ , 

0.0'0.0 0.2 0.4 0.6 0.8 1.0 

H4 

0.1 

r--------
I 
I 
I 
I 
I 

o. 0 10~. 0::--'---:::0'"". 2:-'-'---:::0'-:.4,.--'---:::0'-::. 6-'---:::0.-;;;8-'---;-'1. 0 

H2 

100 

Fig. 23 . The distributions in H 2, 1I3 and H4 for the processes e + e - -+ qqG and e + e - -+ ~ -+ GGG. 
e + e - -+ qq gives H2 = 1, H3 = 0 and H4 = 1. The distributions for e + e - -+ ~ -+ GGG are norma­
lized to give unit total cross section. Of course, e + e - -+ qqG yields an infinite total cross section, 
due to its divergence at H2 -+ 1 (H3 -+ 0, H4 -+ I). When added to the cross section for e+e- -+ qq 
calculated through O(g2), it gives a finite total cross section of (I + OI.s(s)/rr) ao for the complete 
process e + e - -+ qq(G). The curves in this figure have been calculated using";s = 20 GeV. Results 
for other values of ";s may be obtained by a trivial rescaling. 
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3-JET DECAY OF HEAVY MESON M 

u 

~' 
Fig. 24. Diagram for the weak decay of a heavy meson (M) through the decay of the heavy 
quark (Q) into three light quarks. 

three-jet configurations discussed above. Three basic mechanisms for the weak decay 
of a heavy meson may be considered. The first, illustrated in fig. 24, involves the 
standard weak decay of the heavy quark Q into q'ud. If a V-A (Qq') coupling is 
assumed, then the differential cross section for the decay in the fractional energies 

is 

1 do 2 
- -dx = 2x 1 (3 - 2x d , 
o 1 

(4 .20) 

just as in muon decay. The second mechanism, shown in fig. 25, involves the pro­
cess Q -+ qG *. Note that in these first two mechanisms for heavy meson dec~y, 
we have considered only the weak decay of the heavy quark Q. The 'spectator' quark 
if will carry only a small fraction of the energy of the decaying meson, and so will 
not usually generate a jet. A third mechanism for heavy meson decay may also envi­
saged. It is illustrated in fig. 26, and involves the exchange of a W between the heavy 
quark Q and the 'spectator' q. The importance of this third mechanism in strange 
particle decays is presently unknown; it is probably slightly more effective than the 
mechanism of fig. 24. 

* The importance of such a mechanism is governed by the difference of the masses of the pos­
sible quarks in the loop. It may well be dominant in strange particle decays, but is probably 
unimportant in charm particle decays, since it is inevitably suppressed by sin 0 c relative to the 
processes of figs. 24 and 26, and leads to non-strange final states in D meson decay. It could, 
therefore, account for the 'non-leptonic enhancement' observed in strange, but not charm, 
particle decays. In addition to the process of fig. 25, Qq mesons might decay to GG by exchang­
ing a W just before the annihilation of the Q and q. This would be suppressed relative to Q -+qG 
by O<s' and is therefore probably safely ignored. 
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2-JET DECAY OF HEAVY MESON M 

~ 
q 

Fig. 25. Diagram for the weak decay of a heavy meson (M) through the decay of the heavy 
quark (Q) into a gluon and a light quark. 

447 

It is also possible that the mixing angles between heavy quarks are so arranged 
that the decay of a heavy quark involves many stages, each consisting of a decay to 
a quark of slightly lower mass. The cascades generated in this way would lead to 
values of the HI very close to zero. The observation of jet structures resulting from 
the processes of figs. 24-26 would provide definitive evidence as to the mechanism 
of weak decays of possible very massive mesons carrying new flavors. The rates of 
these decay modes are modified by O(O's) radiative corrections, but the energies of 
the extra final-state particles tend to be very small, so that they should not generate 
extra jets *. The radiative corrections to the first decay mode (fig. 24 may be com­
puted from corrections to p. decay and from eq. (4.4) (color averaging decouples 
the radiative corrections to the produced quark pair). One finds that for a V-A coup­
ling, r ~ r(1 - (O's/31T)(21T2 - 31 )), giving a 15% correction for mQ = 5 GeV. For 

the second mechanism (fig. 25), the correction due to the O(O's) process 

Q~q'G 
~qq 

(the lowest-order vacuum polarization insertion to the gluon propagator must also 

2-JET DECAY OF HEAVY MESON M 

Fig. 26. Diagram for the weak decay of a heavy meson (M) in which the heavy quark (Q) under­
goes a weak interaction with the spectator quark to produce a pair of light quarks. 

* The renormalization group equation aIlows a summation of the leading logarithmic QeD cor­
rections to weak decay rates to all orders in O<s' However, the structure of the final states is 
governed by emissions at large angles, which are best estimated by explicit O(g2) calculations. 
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PR ODUC T ION AND DECAY 

OF PA IR OF HE AVY 
MESONS M 

y 

Fig. 27. Mechanism for the production and weak decay of heavy meson (M) pairs (containing 
heavy quarks Q) in e + e - annihilation. 

be included, and renormalized off the gluon mass shell) simply contributes to replac­
ing ~ by as(m~). Note that the qq pair in this process usually have a small invariant 
mass (hence small opening angle) and so act as one jet. The rate for the third decay 
mode (fig. 26) becomes roughly r...., r(I + a s/9rr), about a 1 % correction for mQ = 
5 GeV. 

The basic mechanism for the inclusive production and decay of new heavy 
mesons (M) in e + e - annihilation is shown schematically in fig. 27. The hadronic 
shower associated with the primary vertex in fig. 27 will occur on time-scales of 
_10-24 s. The end-products of the showers will be M mesons with small momenta 
at least near the MM threshold, which will typically live _10- 16 s before undergoing 
weak decays. The two sources of hadrons in these events act at very different times, 
and so will be effectively decoupled. At very high energies, the decay products of 
the M mesons will carry a negligible fraction of the total energy of the event ; most 
will be radiated in the hadronic shower. At such energies , therefore , processes like 
fig. 28 will appear as two-jet events. Just above the threshold for MM production , 

HEAVY LEPTON DECAY 

L 

w 

Fig. 28. Diagram for the weak decay of a (sequential) heavy lepton (L). 
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the events should, however, be very different from two-jet ones. We assume that no 
hadronic shower is generated, and that all the particles in the event come from the 
weak decay of the M meson. Since these have spin 0, there should be no conelation 
between the decays of the M and M produced in a particular event. Making the appro­
ximation that the decays of M and M are to free quarks (or gluons) and assuming 
independent decays at rest through the mechanism of fig. 24, we find that 

(H2>=e~9-61T2):::::<0.28, (H3>=0.12 , (H4 >=0.21. (4.21) 

The distributions (1/0) do / dHl are shown in fig . 29. If the decay mechanisms of fig . 
25 or fig . 26 are assumed, we find that 

=0, 

(l even) , 

(l odd) , 
(4.22) 

where ~ is the angle between the pairs of final particles from the two mesons. The 
stationary points of the Legendre polynomials in eq. (4.22) are responsible for the 
spectacular peaks apparent in the HI distributions for these events. The expression 
(4.22) for HI yields 

(HI> = !, (l even and I ;;;' 2) , 

(4.23) 

upon integration over cos ~. Note that the independence of the decays of the two 
mesons causes the HI for the complete process to be proportional to an average of 
the (HI> for the two decays. In the notation of sect. 2, the (HI> for the complete 
process become (for I > ° and normalizing the densities Pi(rl.) so that their sum 
gives Ho = 1) 

(HI> = j 6 I j [Pl (rl.) y;n(rl.) + P2(rl.) y;n(R~rl.)] drl.12 dR~ 
m 

+2 Re 6, [jPl (rl.)y;n*(rl.) drl. jP2(rl.') y;n'(rl.')drl.'d~m'(R~)dRd 
mm 

= !(H/> + (Hi». (4.24) 

The (HI> for systems which are randomly rotated with respect to each other there­
fore obey a linear superposition principle . 

Some of the weak decays of heavy mesons should produce leptons. Electrons 
and muons will appear as 'jets' containing only one particle, while heavy leptons 
produced in the decays will decay mostly to hadron jets. 

Heavy lepton (L) pairs may also be produced directly in e+e- annihilation. If 
they carry new conserved quantum numbers, then their decays should proceed domi­
nantly through the diagram of fig. 28. (We shall not discuss other possible quantum 
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HL / HO DISTRIBUTIONS 
FOR FREE QUARKS AND GLUONS 

-- Heavy quark pair production 
wilh 3-jel decays 

--- Heavy quark pair production 
wilh 2-jel decays 

... ....... Heavy lepton pair producti on 

0.01 
0.0 0.2 0.4 0.6 0.8 1.0 

H2/ HO 

10 1000 

I I H4 1\ ~ 

.... ·1\ II 
: ", II ". / I 100 '- -' ":'"-- 1 

1 
dO" H3 I 

I 0" d(H3/HO) ( __ Co. is al zero) 
dO" 1 

d(H4/HO) 1 10 
1~-II' -.. 

" I" IJ 

0.1 .. 

0.01 
0.0 0.2 0.4 0.6 

0.1 
0.8 1.0 0.0 0.8 

H4/HO 

Fig. 29. The distributions in H2• H3 and H4 for the production and decay of heavy quarks and 
leptons, through the mechanisms of figs. 24-26. (The decay schemes of figs. 25 and 26 both 
give rise to final states containing two jets. In the approximation of free final quarks and gIuons, 
these two, therefore, give the same results.) 

1.0 

number assignments and will assume a V-A L-vL coupling.) Experimentally, the total 
visible energy in such events will be significantly less than the total c.m. energy 
because of the presence of the neutrino. (In an apparatus with complete acceptance, 
the missing energy will probably, in fact, be the best method for identifying these 
events.) In a free-quark model for the final state, the average fraction of the total 

.' 



Table 6 
Average values of the HI for the processes discussed in sect. 4 

+- + - -+qq(G) t-+GGG e e -+qq e e 

(HI> c (HI> 

0 1 0 1 
1 0 0 0 
2 1 -1.4 0.62 
3 0 0.43 0.22 
4 1 -2.1 0.49 
5 0 0.83 0.29 
6 1 -2.7 0.44 
7 0 1.2 0.33 
8 1 -3.2 0.41 
9 0 1.5 0.34 

10 1 -3.6 0.40 

+ -e e 

(HI> 

1 
0 
0.28 
0.13 
0.21 
0.16 
0.20 
0.18 
0.19 
0.18 
0.19 

.' 

+ - qG-u 
__________________________ ~~--------------------0 

e + e- -+ LL -+ qq(v) qq(v) ~ -+ MM-+ qqqqqq e e - -+ MM -+ { --q 
qqqq 

(HI> 

1 
0 
0.50 
0 
0.50 
0 
0.50 
0 
0.50 
0 
0.50 

C . x 
(HIIHo> s" 
1 ~ 
0.11 ~ 
0.35 ::! 

---0.23 t>:l 
0.30 ~ 
0.26 ;:; 

;:,-
Q28 ~ 
0.26 ~ 
Q28 ~ 

0.27 ~ 
0.27 "1 

'" ~ 
~ s: 

--------------------------------------------------------------------~--------~------------------------------~ 
For e+e- -+ qq(G) (the sum of e+e- -+ qq and e+e- -+ qqG calculated through O(g2), the coefficient c of ~s(s) is given. The (}II> are related to this S' 
by (HI> = 1 + cO:s(s) (I even) and (HI> = cO:s(s) (I odd). ~ 

~ 
V> 
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energy visible is (Ho> = 0.5. We then find 

(HdHo> c:=. 0.11 , 

(H3/HO> c:=. 0.23 , 

(H2 /Ho> c:=. 0.35 , 

(H4/HO> c:=. 0.30 . 
(4.25) 

Note that even at very high energies, heavy lepton production events should retain 
their four-jet structure although for large VS the pairs of jets will be boosted to 
small opening angles in the e + e- c.m.s., thereby changing the (HI> for the events. 
The differential cross-sections (1/0) do/d(Hr/Ho) for idealized (free quark) heavy 
lepton production events are shown in fig. 29 

4.6. The HI for large I 

The (HI> for I from 0 to 10 are given in table 6 for each of the processes discussed 
above (e+e - -+ qq, e+e- -+ qq(G), e+e- -+ ~ -+ GGG, e+e- -+ MM -+ qqqqqq, 
e+e- -+ MM -+ qGqG (or qqqq) and e+ e- -+ LL -+ (vV) qqqq). For e+e- -+ qq(G), 
the coefficient c of O:s in (HI> = 1 + cO:s (l even), (HI> = cO:s (I odd) is given. (As dis­
cussed above, these means are calculated from the complete O(g2) cross section for 
e + e - annihilation, which includes one-loop diagram contributions to e + e - -+ qq 
as well as the process e+e - -+ qqG.) From the formula (2.21), it is possible to com­
pute the limits of the (HI> as 1-+ 00. As discussed in sub sect. 3.4, they are only finite 
at the lowest order in g2 for each process. In that case, one finds · 

(H~(e+e - -+qq>=! * , 

+ - 3 f 2 1 do (H~(e e -+GGG>=4 Xl --- dx l dx 2 
odx l dx 2 

131T2 - 127 
= 4(1T2 -9) c:=.0.3751 , 

(H~(e+e- -+ MM -+ qqqqqq) = ~~ c:=. 0.l833 , 

(H~(e+ e- -+ LL -+ (vv) qqqq)/Ho> = l~ c:=. 0.2667 , 

(H~(e+e - -+ MM -+ qGqG) > = * * . 

(4.26) 

It is clear from table 6 that these limits are , in fact, approached very quickly as I 
increases (to within 5% at I = 5). For e+e - -+ qq(G), the HI approach a limit at large 
I, but this limit is not infrared finite and diverges as the artificial gluon mass is 
taken to zero . This behavior is evident in table 6. 

The distributions (1 /0) do/dHl are shown in fig. 30 for I up to 9. Spikes in the 

* See eq. (2.21) for a more precise result in this case. 

.' 
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distributions occur when the formula for HI is stationary with respect to variations 
of the parameters which specify the configuration of the final state. For produc­
tion and decay of pairs of heavy quarks into a total of four final particles , the for­
mula (4.22) shows that HI is stationary with respect to the angle ~ between the 
directions of the decays when the value of HI corresponds to a stationary point in 
PI(~)' The minima are determined from the minima of the Legendre polynomials, 
by Min [H2z1 =! (1 + P21(0)). In our model, six-particle final states resulting from 
the production and decay of pairs of heavy quarks or leptons are specified by the 
values of four parameters. Spikes in the HI distribution for six-particle final states 
will occur only if the value of HI is stationary with respect to variations in all four 
parameters. This does not occur for I ~ 10. 

The forms of the HI for three-particle final states are stationary with respect 
to the values of x I and x 2 which specify the final-state configuration at values of 
x I and x 2 within the physical region. For I < 5, the only stationary point is at 
Xl = X2 = x3 =~, and yields the minimum (maximum) value of HI for even (odd) I. 
For I ~ 5, other stationary points develop within the physical region, and spikes 
appear in the HI distributions at the values of HI corresponding to these stationary 
points. The maximum (minimum) values of HI for odd (even) I always occur when 
x I = X 2 (or x 2 = X 3, or x 3 = X I)' Many stationary points develop along these lines 
for high I; it is always the one nearest to (but not on) the edge of the physical 
which yields the extremal value of HI' For example, Hs is stationary when x I = 
X2 = i, 0.560,~, 0.758,1, at whichHs = 0, 0.606, 0.273, 0.337, 0, respectively. 
The first of these stationary points is at the edge of the physical region, where Hs 
goes smoothly to zero. The stationary point at x I = X2 ~ 0.560 is one of three 
absolute maxima placed symmetrically on the lines Xl = x2, X2 = X3 and x3 = Xl' 

There is a local minimum between these three peaks at x I = x2 = x3 = j . Finally, at 
Xl = X2 ~ 0.758 there is a saddle point between the peaks at x2 = x3 ~ 0.560 and 
X3 = x I ~ 0.560. 

5. Results for realistic jets 

5.1. The model for jet development 

At present, QeD can give little guidance as to the way in which quarks and gluons 
'fragment' into hadrons. We use the explicit model for the development of hadronic 
jets due to Field and Feynman [18]. The basic assumption of this model is that 
hadrons are emitted from a 'fragmenting' quark or gluon independently and with 
limited transverse momenta. Strong and electromagnetically decaying hadrons such 
as the p, w, 1), 1)', ... are taken to be among those produced, and their decays are 
treated exactly. The fragmentation of a particular type of quark or gluon is specified 
by giving the probability function f(1 - Z I), where Z I is the fraction of the jet's total 
momentum that is carried off by the first hadron emitted. If one chooses 

f(1 - z) = (p + 1)(1 - z f , (5.1) 

-' 
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then the distribution of the fractional momenta (z) of all hadrons in the jet is given 
approximately by 

D(z) = (p + 1)(1 -z)P/z . (5 .2) 

A precise treatment requires the inclusion of transverse momenta and the possibility 
of producing many species of hadrons [18]. Field and Feynman adjusted the forms 
of f(z) so as to agree with experimental estimates of D(z) for quark fragmentation . 
Their final choice was 

fquarks (1 - z) = 0.12 + 2.64(1 - z)2 . (5.3) 

We also need the corresponding function for gluons. In the absence of good experi­
mental constraints, we use the simple form of eq. (5.1). We usually take p = 4, but 
we also present some results using p = 2 and p = 10. 

Our calculations of the expected distributions in the HI for genuine hadronic 
events require a model for the complete structure of a hadron jet, rather than just 
one-particle momentum distributions D(z). In using the complete jets provided by 
the Field·Feynman model [18], we are relying more heavily on its basic assumptions 
(especially independent emission) than do predictions for one-particle dist~ibutions. 
Limited experimental tests [19] on the detailed structure of jets predicted by the 
model have, however, proved successful. When further experimental data become 
available, the model for jet development must be refined accordingly. 

The parameters in the Field-Feynman model were determined by fitting data 
from various reactions at comparatively low Q2 assuming that all events contained 
only the minimum number of jets (two for e+e- annihilation). In reality, some of 
the events will have contained extra jets. On the other hand, we use the model to 
simulate the fragmentation of a single jet, and sometimes include explicitly the frag­
mentation of the extra jets. It therefore appears that the contribution of extra jets 
has been counted twice. However, our results show that for the low Q2 at which the 
jet-model parameters were determined, the distributions ofhadrons produced in 
two jets and in three jets of the same total energy are almost identical, so it seems 
that roughly the correct parameters to describe single-jet fragmentation at high 
energies were found. 

Note that the Field-Feynman jet model gives rise to hadron transverse and longi­
tudinal momentum (z) distributions which asymptotically become independent 
of the total jet energy, in contradiction to the predictions of QCD. In addition, as 
discussed in sect. 3, it does not include the 'mixing' of jets generated from quarks and 
from gluons implied by QCD. 

The present formulation of the Field-Feynman jet model does not conserve energy 
and momen tum exactly, as discussed in detail in ref. [18]. The violations are worst 
for low jet energies, and the model becomes un.reliable for jets with energies below 
about 2 Ge V. This inadequacy of the model for small jet energies prevents any use­
ful comparison of its predictions with existing data on hadron production in e + e­
annihilation. Moreover, there is some inconsistency between the data from different 
experiments [1]. 
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5.2. Momentum distributions and multiplicities for two- and three-jet processes 

In this and subsects. 5.3,5.4, we discuss hadronic final states arising from the 
three basic processes 

457 

e+e-~qq, e+e- ~qq(G), e+e- ~~~GGG. (5.4) 

Of course, the process e+e - ~ qqG cannot be observed in isolation, but only in 
combination with e+e - ~ qq. We denote the combined processes by e+ e- ~ 
qq(G). As discussed in sect. 3, the method of combination is not entirely unambi­
guous. Events arising from the process e + e - ~ qqG are divided into two classes accord­
ing to whether the value of H2 calculated for the quarks and gluons is above or below 
a cut-off H~. The events below the cut-off are considered as true three-jet events, 
and the fragmentations of the quark, antiquark and gluon into hadrons are treated 
separately. Events above the cut-off are taken to contain two, rather than three, 
jets and to be indistinguishable from e + e - ~ qq. The total cross section is only finite 
when these events are combined with the genuine e+e- ~ qq term. We simply gener· 
ate two-jet (quark and antiquark) final states for the combined e+e- ~ qqG (H2 > 
H~) and qq (H2 = 1) terms. An example may make this prescription clearer. For VS 
= 20 Ge V, the cross section for e + e - ~ qqG for H2 < 0.8 is 0.41 times the point 
cross section. In the same units, the total e+e- cross section to order g2 is 
1 + as(s)/n ~ 1.06. At this energy, therefore, the ratio of three- to two-jet final states 
is 0.41 : 0.65. We shall usually take H~ = 0.8, although, as we shall discuss below, 
this choice is unreasonable in certain cases. 

Fig. 31 shows the single-hadron fractional momentum (z) distribu tions (longitu­
dinal plus transverse momentum) for hadronic final states resulting from the three 
basic processes e+e- ~ qq, e+e- ~ qq(G) and e+e- ~ ~ ~ GGG (~is a heavy vector 
meson). Note that the turnover in the distributions at small z moves closer to zero as 
VS increases. The presence of such a turnover is a consequence of the finite trans­
verse momenta (kT ) of the hadrons in the jets. The Field-Feynman model is such that 
(kT ) and (z) are roughly constant with energy, so that as VS increases, the transverse 
momenta of the hadrons become insignificant compared to their longitudinal momen· 
ta, and the turnover disappears. At very high energies, the hadron momentum distri­
butions tend to a limit given for gluon jets by eq. (5.2) and for quark jets by ref. 
[18]. Notice that at all energies, the z distributions for hadrons from the process 
e+ e- ~ ~ ~ GGG are significantly steeper than those from the processes e+e- ~ qq 
and e+e- ~ qq(G), while results for the latter two processes never differ by more 
than about 20%. The model we use predicts that even at VS = 3 GeV, the process 
~ ~ GGG should give a steeper hadron z distribution than e+ e- ~ qq. One would, 
therefore, expect a difference between the z distributions in l/I decays and in the sur­
rounding continuum. This prediction seems difficult to avoid as it also occurs in sim­
pler models not involving the generation of complete hadronic final states, but formu­
lated solely in terms of fragmentation functions into single hadrons. It is, therefore, 
surprising that the experimental single-hadron distributions seem identical on and 
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off the 1/1 resonance [1]. Nevertheless, the correct inclusion of scaling violations in 
the fragmentation functions (which is complicated by the need to consider k1 ) 

could remove the discrepancy. 
Fig. 32 shows the mean hadron multiplicity due to the processes e+e- -? qq, 

e+e- -? qq(G) and e+e- -? ~ -? GGG as a function of the c.m. energy Ys. At suffi­
ciently high energies (ys ;:::: 20 GeV), the multiplicities rise like log s, with coefficients 
given by the heights of the rapidity plateaus for the various processes (or equivalent­
ly, the limits of (z/a) da/dz as z -? 0). Our choice for the gluon fragmentation func­
tion (eq. (5.2» leads to a higher rapidity plateau (hence, higher hadron multiplicity) 
for gluon jets than for quark jets at high energies. At low energies, however, the 
rapidity plateau is not fully developed, and it is a matter of detailed calculation to 
determine whether quark or gluon jets have higher hadron multiplicities. We find, 
in fact, that below ys ~ 6 GeV, the process e+e- -? GGG gives a lower mean hadron 
mUltiplicity than e + e - -? qq. The details are sensitive to the gluon fragmen tation 
function. For example, in the T region (ys ~ 10 GeV), we find 

(n)e+e - -+qq ~ 11.5 , 

(5.5) 
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F~0-330 T~e $s!:ibut~ns (l /OtoV ~o/dH2 for hadronic events resultin~ from the processes. 
e e ---> qq, e e ---> qq(G) and e e ---> t ---> GGG, at various com. energIes, .Js. All hadrons In 

the simulated events were used, no momentum cut (Pc) being imposed. On some of the graphs 
for high values of .Js, we also show the distributions obtained for final states of free quarks and 
gluons (see fig. 23). The parameter H~ defined in subsect. Sol was taken to be 0.8 at all energies 
except.Js = 200 GeV, for which H~ = 0.95 was used. 
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Table 7 
Average values of the HI for realistic hadronic events resulting from the processes e + e - .... qq, 
e + e - .... qq (G) (combination of e + e - .... qq and e + e - .... qqG calculated through O(g2» and 
e + e - .... r .... GGG, for various c.m. energies v's 

v's Pc (H2> 
- "A 

(GeV) (GeV) qq qq(G) GGG 

3 0 0.33 0.39 0.49 
6 0 0.33 0.25 

10 0 0.44 0.29 0.18 
10 0 zD(z) - (1 - z)2 0.44 0.28 0.27 
10 0 zD(z) - (1 _ z)10 0.44 0.31 0.13 
10 0.5 0.58 0.44 0.34 
10 0.5 charged only 0.65 0.53 0.47 
20 0 0.64 0.31 0.26 
20 0.5 0.74 0.48 0.37 
20 0.5 charged only 0.73 0.51 0.40 
20 0.5 H~ = 0.9 0.74 0.57 0.37 
20 0.5 Eri. = 0.6 0.74 0.36 0.37 
20 0.5 z~(z) - (1 - z)2 0.74 0.47 0.46 
20 0.5 zD(z) - (1 _ z)10 0.74 0.49 0.25 
20 1 0.88 0.68 0.61 
40 0 0.77 0.47 0.38 
40 0.5 0.85 0.54 0.46 
40 0.5 H~ = 0.9 0.85 0.64 0.46 
40 1 0.93 0.60 0.59 

200 0 0.95 0.58 0.55 
1.0 1.0 0.62 

v's Pc (H3> 
(GeV) (GeV) " 

qq qq(G) GGG 

3 0 0.32 0.39 0.50 

6 0 0.15 0.18 
10 0 0.08 0.12 0.11 

10 0 zD(z) - (1 - z)2 0.08 0.12 0.12 

10 0 zD(z) - (1 _ z)10 0.08 0.14 0.13 

10 0.5 0.03 0.14 0.13 

10 0.5 charged only 0.32 0.37 0.40 

20 0 0.03 0.10 0.08 

20 0.5 0.03 0.14 0.13 

20 0.5 charged only 0.18 0.23 0.21 

20 0.5 H C = 0.9 0.03 0.10 0.13 

20 0.5 H~ = 0.6 0.03 0.19 0.13 

20 0.5 zD(z) - (1 _ z)2 0:03 0.14 0.15 

20 0.5 zD(z) - (1 _ z)10 0.03 0.14 0.12 

20 1 0.06 0.23 0.27 

40 0 0.008 0.12 0.10 
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Table 7 (continued) 

.Js Pc (H4) 

... 
(GeV) (GeV) qq qq(G) GGG 

40 0.5 0.007 0.14 0.13 
40 0.5 H~ = 0.9 0.007 0.09 0.13 
40 1 0.Q1 0.17 0.19 

200 0 0.003 0.16 0.17 
0 0 0.21 

3 0 0.33 0.40 0.49 
6 0 0.23 0.20 

10 0 0.27 0.17 0.12 
10 0 zD(z) - (1 - z)2 0.27 0.17 0.17 
10 0 zD(z) - (1 - z)lO 0.27 0.19 0.13 
10 0.5 0.37 0.27 0.24 
10 0.5 charged only 0.48 0.42 0.42 
20 0 0.44 0.22 0.13 
20 0.5 0.53 0.28 0.19 
20 0.5 charged only 0.54 0.34 0.26 
20 0.5 H C = 0.9 0.53 0.36 0.19 
20 0.5 H~ = 0.6 0.53 0.20 0.19 
20 0.5 zD(z) - (1 - z)2 0.53 0.29 0.27 
20 0.5 zD(z) - (1 _ z)10 0.53 0.29 0.14 
20 1 0.70 0.46 0.39 
40 0 0.61 0.27 0.21 
40 0.5 0.70 0.35 0.26 
40 0.5 ~=0.9 0.70 0.35 0.26 
40 1 0.81 0.46 0.38 

200 0 0.91 0.44 0.39 
1.0 1.0 0.50 

In some cases, a momentum cut Pc has been applied so that only hadrons with momenta above 
the cut are used in the calculation of the HI for each event. 'Charged only' means that for that 
case, the (H/) were computed using only the charged hadrons in the final state. H~ is a parameter 
which divides e+e- -+ qq(G) processes into two and three-jet events. D(z) is the gluon fragmen­
tation function discussed in sub sect. 5.1. The defaults are discussed in sect. 5. 

if we use our standard choice of (1 - z)4 for the gluon fragmentation function. If 
we take instead (1 - z)2 or (1 - Z )10, then the mean multipliCity for ~ -+ GGG 
becomes 12.8 or 11.2, respectively. 

5.3. Shapes of two- and three-jet events 

We now discuss the H, distributions for realistic hadronic events resulting from 
the processes e + e - -+ qq, e + e - -+ qq(G) and e + e - -+ ~ -+ GGG. It should be empha­
sized that, if QeD is correct, then the pure two-jet process e + e - -+ qq should never 
be observed; only the combination of two- and three-jet processes which we denote 
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by e+e- -+ qq(G) should be present. (Of course, higher-order processes involving 
the production of more than three jets should also occur, but we do not expect 
their inclusion to modify our results appreciably.) 

Note that the HI could also be used to distinguish the approximate two-jet struc­
ture expected from QeD from purely isotropic production of particles [17]. For an 
exactly isotropic event, HI = 0 for all I ~ 1. 

Figs. 33-35 show the distributions (I/atot) da/dH2 , (I/atot) da/dH3 and 
(l/atot) da/dH4 for simulated hadronic events resulting from e+e- -+ qq, e+e--+ 
qq(G) and e+ e- -+ ~ -+ GGG, at various center of mass energiesYs. Table 7 gives 
(H2), (H3 ) and (H4) for these and other cases. Perhaps the most striking feature of 
these figures and the table is the large difference between the results for realistic 
hadronic fmal states, and those obtained using the free quark and gluon approxima­
tion (fig. 23 and table 6). We believe that large modification of free quark and gluon 
results for realistic final states is not a phenomenon peculiar to the HI; rather, it will 
occur for all the other shape parameters previously investigated [5,6]. As we shall 
discuss in subsect. 5.4, use of only the higher momentum hadrons in each event 
leads to HI distributions which are closer to the free quark and gluon approximations. 

As discussed above, the model for jet fragmentation which we use is unreliable 
for total jet energies below about 2 GeV. Our results for three-jet production at ys 
= 6 GeV should, therefore, not be taken too seriously while at ys = 3 GeV, even the 
results for two-jet production should be considered somewhat suspect. However, we 
expect the similarity between the HI distributions for the various processes at these 
energies to survive the use of a more adequate model. 

At ys = 10 GeV, the H2 distribution for hadronic events resulting from the pro­
cess e + e- -+ ~ -+ GGG is very different from that due to e + e- -+ qq or e + e- -+ 
qq(G). We find that at this energy (see table 7) 

(H2 )e+e--?qq ::::<0.44, 

(5.6) 

(H2 )e+e--?t-?GGG ::::< 0.18. 

A difference between the H2 distributions and (H2) on and off resonance in the T 
region should, therefore, be easily measurable, and would provide an important test 
of the mechanism for the decays of heavy vector mesons. We usually take D(z) ~ 
(1 - z)4 /z for the gluon fragmentation function. Fig. 36 shows the dependence of 
the H2 distribution at ys = 10 GeV from e+ e- -+ qq(G) and e +e- -+ ~ -+ GGG on 
the form of the gluon fragmentation function D(z). We consider the choices D(z) 
~ (I - z)2 /z, D(z) ~ {l - z)4 /z (standard choice) and D(z) ~ (1 - z )10 /z. Very 
little change is effected in the H2 distribution for e + e- -+ qq(G), but the H2 distri­
bution for e+e- -+ ~ -+ GGG changes appreciably when different forms for the gluon 
fragmentation function are used. Since, however, the single-hadron momentum dis­
tributions from T decay should allow the gluori fragmentation function to be deter-
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Fig. 36. The distributions (l/atot) da/dH2 for hadronic events resulting from the processes 
e+e- .... qq(G) and e+e- .... !" .... GGG for three possible forms of the gluon fragmentation func­
tion D(z). 

mined, the form of the H2 distribution for the decay remains an important test of 
its basic mechanism. Note that, as discussed in sect. 4, even on the T resonance, 
there should be qq (in reality qq(G)) as well as GGG final states. The contribution 
of the former must be subtracted before a study of the process e + e - ~ ~ ~ GGG 
may be made. We do not expect the change to be very large. 

As shown by fig. 35 and table 7, the differences between the H4 distributions and 
their means also provide a good method for identifying the possible two- and three­
jet processes at v's = 10 GeV. H2 and H4 are particularly effective at discriminating 
between e + e - ~ ~ ~ GGG and e + e - ~ qq(G). On the other hand, the H 3 distribu­
tions at v's = lOGe V for the processes e + e - ~ qq(G) and e + e - ~ ~ ~ GGG are rat­
her similar, but are very different from those for e + e - ~ qq. 

For v's = 20 GeV, the H2 , H3 and H4 distributions from e+ e- ~ qq, e+ e- ~ 
qq(G) and e+e- ~ ~ ~ GGG events are all very different. Once again, the H3 distri­
bution is the best measure of any contributions from pure e + e - ~ qq processes, 
while the H4 and especially H2 distributions exhibit the largest differences between 
the processes e + e - ~ ~ ~ GGG and e + e - ~ qq(G) expected on and off heavy vector 
meson resonances. 
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At v's = 40 GeV, the H2 distributions for e+e- -+ ~ -+ GGG and e+e:- -+ qq(G) 
show marked similarity to the distributions obtained for these processes in the appro­
ximation of free final quarks and gluons. Note the appearance of a kink in (l/atot) 
da/dH2 for e+e- -+ qq(G) events around H2 = 0.6. Below the kink, most events of 
this type will have three-jet final states, while above, most will give only two jets. 
The distribution inH2 for pure e+e- -+ qq events is, of course, very similar to that 
for e+e- -+ qq(G) when H2 ~ 0.6. The H3 and H4 distributions at v's = 40 GeV 
bear less resemblance to the free quark and gluon results than the H2 distribution, 
but they still offer ample discrimination between events of different types. 

It is interesting that v's ~ 30 GeV is required for even the H2 distribution for rea­
listic hadron final states to be similar to the free quark and gluon approximation. 
This phenomenon should be universal to all parametrizations of the 'shapes' of 
final hadron ~tates. Previous estimates of its importance for spherocity and thrust 
based on very simple models for quark and gluon fragmentation [6] were probably 
too optimistic. Nevertheless, it seems likely that our results for realistic hadronic 
events do not depend significantly on the details of the model for quark and gluon 
fragmentation used, and so remain firm predictions of QeD. 

Finally, at v's = 200 Ge V, all the distributions are very close to the free quark 
and gluon predictions. The cross sections for the simulated hadronic events drop 
away very quickly at the boundaries of the kinematic region for the quark-gluon 
subprocesses (H2 = 0.25, H3 = 0.625, H4 ~ 0.141). Four-jet events may give impor­
tant contributions to the cross sectioris outside the physical regions for three-par­
ticle subprocesses. 

In the H2 distribution for e+ e- -+ qq(G) events at v's = 200 GeV, a dip around 
H2 ~ 0.9 is clearly visible. This dip signals the boundary between two- and three­
jet processes, and is an artifact of our model. It has no physical significance. 

As discussed above, it is necessary to separate e+e- -+ qq(G) processes into two­
and three-jet events in order to treat their fragmentation into hadrons. This sepa­
ration is achieved by dividing the events according to the value of H2 correspon­
ding to the fragmenting quarks and gluons. For H2 > H~, e+e- -+ qq(G) events 
are treated as being of the form e + e - -+ qq, while for H2 < H~ the event is assumed 
to contain three jets, and the fragmentations of the q, q and G into hadrons are 
treated separately. The magnitude of the two-jet contribution is determined by 
demanding that the sum of the two- and three-jet pieces reproduce the correct total 
cross section for e + e - -+ qq(G) to O(g2). For most of the distributions shown in 
figs. 33-35 we used H~ = 0.8, but at v's = 200 GeV, we took instead H~ = 0.95. 
The value of H~ should be chosen so that e + e - -+ qqG processes with H 2 > H~ are 
indistinguishable from e + e - -+ qq ones as far as their fragmentation to hadrons is 
concerned. H~ may be thought of as a parameter which determines the 'resolu­
tion' of the final hadron state to different configurations of the quarks and gluons 
produced in the primary interaction. The closer H~ is to one, the lower the energy 
(and angle) of the gluon in the process e+e- -+ qqG must be for the hadronic final 
state not to reflect its presence, and to consist only of two jets. The choice of the 
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'resolution parameter' H~ for the hadronic final state depends on the model for quark 
and gluon fragmentation used. Even in the context of a particular model, its value 
must, at present, essentially be guessed. We have simply tried to choose it so that 
our results are not obviously unphysical. The signal for too small a choice of H~ is the 
appearance of separated peaks in (l/atot) da/dH2 corresponding to two- and three-jet 
events. In this case, the 'resolution' of the simulated hadron final state is really finer 
than the division into two- and three-jet processes chosen; the hadron final state can 
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Fig. 37. The distributions (l/Otot) doldH2 for hadronic events resulting from the process 
e + e - .... qq (G) for various choices of the parameter H~ which divides two- from three-jet final states. 
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'see' the arbitrary division between configurations of the quarks and gll:lons which 
are supposed to give two- and three-jet final states. If a very large value of H; is cho­
sen then negative amounts of e + e - ~ qq have to be added in order to obtain the cor­
rect total cross section for e+e- ~ qq(G) events, which seems undesirable. 

In the Field-Feynman model for quark and gluon fragmentation, we find that, 
for most values of ys, the choice H~ = 0.8 avoids the pathologies mentioned above. 
At ys = 200 GeV, however, there is no value of H~ which avoids both of them. This 
is undoubtedly a signal of the incompatibility of the Field-Feynman model with 
QCD. Inclusion of the rise of (kT ) for the hadrons from quark and gluon fragmen­
tation with increasing ys implied by QCD would probably serve to alleviate the dif­
ficulty. We used H~ = 0.95 at ys = 200 GeV. Fig. 37 shows the dependence of 
(1/0tot) do/dH2 for e+e- ~ qq(G) events on the choice of H~.1t seems clear from 
these results that H~ = 0.8 is adequate for predictions at c.m. energies ys which will 
be attained by accelerators in the immediate future (ys :$ 40 GeV), and that at these 
energies the dependence of the results on the value of the unknown parameter H~ 
is very slight. 

5.4. Results for incomplete final states 

The HI distributions for realistic hadronic events presented in sect. 4 exhibited 
rather large deviations from the free quark and gluon approximation, The discrepan­
cy is, in part, due to the presence of many soft hadrons in the final state, and may 
be decreased by using only those particles whose momenta are above some lower 
cut-off Pc in the calculation of the HI *. For sufficiently large Pc, such a cut leaves 
essentially only those hadrons moving along the jet direction, and removes the rough­
ly isotropic background of low-momentum hadrons. The latter particles typically have 
momenta comparable with the transverse momentum of the jet fragmentation. If 
Pc is taken too large, however, then all the hadrons in a particular jet may be ignored, 
and the resulting HI will once again not reflect the free quark and gluon results. We 
shall consider Pc = 0.5 and 1 GeV. Of course, our previous results used all the had­
rons in each event, corresponding to Pc = o. 

Since we always work in the virtual photon rest frame, the three-momenta of all 
particles in an event should sum to zero, so that, for each event, HI = O. In addition, 
if all hadrons in an event are massless, then energy conservation requires that Ho ::: 1. 
The non-zero masses of the final hadrons serve to decrease the value of Ho from one. 
The effect is small, and in the results of sect. 4 we always removed it by dividing 
HI by Ho for each event. We followed the same procedure when considering incom­
plete final states. Here the deviation of Ho from 1 was, of course, much larger. The 

* Note that the arguments for infrared stability of processes involving only quarks and gluons 
discussed in sect. 3 do not apply when only charged particles or particles with momenta above 
some lower cut-off Pc are considered. Cuts on hadronic final states cannot, however, be rela­
ted directly to those on their quark-gluon parent states. 

.. 
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Fig. 38. The distributions (l/atot) da/d(HdHo} for simulated hadronic final states computed 
using only hadrons with momenta greater than Pc' The non-zero values of H 1/Ho even when 
all hadrons in each event are included are a reflection of the fact that the model for jet frag­
mentation used does not conserve momentum exactly. In one of the curves, only the charged 
particles in each event have been used for the calculation of H l' 

total momentum measured in an 'incomplete' event will also be non-zero, so that 
HdHo oF O. Fig. 38 shows the distributions (l/Otot) do/d(HdHo) for e+e- ~ qq(G) 
and e+ e- ~ t ~ GGG events at"";s = 20 GeV, with various choices for Pc. Pc = 0 cor­
responds to measuring all particles in each event. That HdHo is not always zero even 
in this case is a reflection of the fact that the model we use to generate final states 
does not conserve momentum exactly. The narrowness of distribution in HdHo for 
this case shows that the discrepancy is, in fact, very small. 

Fig. 39 shows the H2/Ho distributions for hadronic events resulting from the 
processes e+e- ~ qq, e+e- ~ qq(G) and e+e- ~ t ~ GGG computed using only 
hadrons with momenta greater than Pc in each event. Note that larger values of Pc 
improve the agreement between the results for realistic hadronic final states and 
those obtained using the approximation of free quarks and gluons. However, if Pc is 
increased significantly above 1 GeV at"";s = 20 GeV, the agreement begins to deterio­
rate again; the apparent values of HI in some events are too small because all the 
particles in a jet have momenta below the cut-off Pc' In no case does the use of a 
momentum cut significantly improve the discrimination between different between 
different types of hadronic events provided by the HI; it merely serves to make some 
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Fig. 39. The distributions (1/atot) da/d(H2/HO) for simulated hadronic events calculated using 
only hadrons with momenta greater than Pc. 
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Fig, 40. The distributions (l/atot) da/d(H2/Ho), (l/atot) da/d(H3/HO) and (I/atot) da/d(H4/HO) 
for simulated hadronic events calculated using only charged hadrons. 
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of the distributions more similar to those obtained in the free quark and gluon 
approximation. These trends are reflected in the values of (H2/Ho >, (H3/HO > and 
(H4/HO> given in table 7. 

In actual experiments, not all the hadrons in each event will usually be detected. 
Some will be lost through imperfect angular acceptance, while others will simply 
not trigger the detectors. Note that the rotational invariance of the HI renders them 
independent of the orientation of events, so that their values should be insensitive 
to gaps in angular acceptance. As an illustration of the consequences of these effects, 
we show in fig. 40 the distributions in H2/Ho, H3/HO and H4/HO for hadronic 
events at VS = 10 and 20 GeV calculated using only the charged hadrons in the 
final state. The discrimination between different processes provided by the HI is 
not unduly affected by this cut. The enhancement of events at larger HI if only 
charged particles are considered is a consequence of the large apparent violations 
of momentum conservation in this case. This phenomenon is reflected in the very 
broad Hl/Ho distribution for these events shown in fig. 37. This artificial behaviour 
can be removed by considering only events with (charged) multiplicity greater than 
3. [17,29]. Many of the new generation of detectors can measure neutral particles, 
and so will not encounter these problems. Of course, we cannot estimate the HI dis­
tributions which should be observed by actual experiments; that would require a 
knowledge of the details of the apparatus used . 
. It is possible that cuts other than on hadron momenta may serve to 'clean up' 
the HI distributions. For example, one might consider only events with a certain 
range of total multiplicities. 

5.5. Heavy quark and lepton production 

In this subsection, we present results for realistic events involving the produc­
tion and decay of pairs of heavy quarks and leptons. We use the models for these 
processes discussed in subsect. 4.5, which are adequate only close to threshold. 

Fig. 41 shows the fractional momentum (z) distributions for single hadrons from 
events involving heavy quark or lepton production (at VS = 20 GeV). The distribu­
tions are all very similar, but are much softer than those for events of the e+e--+ 
qq(G) type. 

Figs. 42- 44 show the distributions (l/Otot) do/d(HI/Ho) for realistic hadronic 
final states resulting from the production and decay of heavy quarks and leptons, 
and table 8 gives the (HdHo> for these processes at various c.m. energies. The fact 
that our models for heavy quark and lepton decay give rise to many jets of hadrons 
means that higher c.m. energies than for two- or three-jet production are necessary 
to obtain well-collimated jets, or for the HI distributions for realistic hadronic events 
to approach the free quark and gluon approximation. The decays of heavy quark 
and lepton pairs into four hadronic jets give similar H2/Ho and H4/HO distributions, 
but the heavy lepton gives a significantly harder H3/HO distribution. The different 
mechanisms for heavy quark decay give slightly different Hr/Ho distributions, even 
at VS = 10 GeV, and it seems, therefore, that an analysis based on the HI should be 
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Fig. 41. Single hadron fractional momentum (z) distributions for simulated hadronic events 
involving the production and decay of heavy quarks and leptons, according to the models dis­
cussed in sub sect. 4.5. 

able to give some indication as to the mechanism for the weak decay of mesons with 
masses around 5 GeV. Mesons containing b quarks should have masses in this region, 
and it seems probable that they will decay through weak interactions. 

At ys = 20 GeV, the two-jet mechanisms for heavy quark decay give rise to 
definitely harder H2 and H4 distributions than the three-jet mechanism. In addi­
tion, because (in our model) quark jets are better collimated than gluon jets the 
qq decay mode gives a harder H2 distribution than the qG mode. 

Finally, at ys = 200 GeV, the distributions for realistic hadronic events 
become very similar to those obtained in the free quark and gluon approximation 
(fig. 30), although they remain somewhat softer at large HI' This is due to the large 
number of jets produced in each event; even at ys = 200 GeV each jet does not 
have sufficient energy to appear like a free quark or gluon. 

5.6. The HI for large I 

The forms of the HI distributions for high I in the free quark and gluon approxi­
mation for the processes e+e- -? qq(G) and e+e- -? ~ -? GGG were presented in 
fig. 23. The (HI) in these cases were given in table 6. In fig. 45, we plot the <HI) for 
realistic hadronic events resulting from the processes e+e- -? qq, e+e- -? qq(G) and 
e+e- -? ~ -? GGG for the range of c.m. energies which will be attained by the next 
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Fig. 42. The distributions (l/otot) do/d(H2/Ho} for simulated hadronic events involving the pro­
duction and decay of heavy quarks and leptons. 

generation of e + e- accelerators. It is clear that the power of the (HI) to discriminate 
between the various processes diminishes as 1 increases. For large I, the HI reflect 
only the small-scale angular structure of each event , which is determined more by 
the structure of the hadron jets than by the nature of the subprocess. Note also that 
the approach of the (HI) for realistic hadronic events to the (HI) obtained in the free 
quark and gluon approximation is less rapid for high I. Little new information may 
be gleaned from a measurement of the HI for high I , and we believe that an experi-
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Fig. 43. The distributions O/atot) da/d(H3/HO) for simulated hadronic events involving the pro­
duction and decay of heavy quarks and leptons, 

mental measurement of the distributions in H2 and H3 should be sufficient. The 
(HI> clearly have less power to discriminate between different types of events than 
do the complete distributions in the HI' 

From the (HI> for realistic events, one may in principle construct an average 
'correlation function' F(x) (see sect. 2), using the series formula (2.10). Fig. 46 
shows the F(x) computed from the (HI> for realistic events of various types at 

1.0 
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Fig. 44. The distributions (l/Otot) do/d(H4/Ho} for simulated hadronic events involving the pro­
duction and decay of heavy quarks and leptons. 

"';s = 10 GeV. For most of the curves, the series (2.10) was truncated at I = 10, but 
for e+e- ~ qq events, we also show the form for F(x) obtained by truncating the 
series at I = 5. The two results differ significantly, illustrating the very slow con­
vergence of the series for F(x). Note that F(x) cannot be computed directly from 
real events, as the formula (2.7) involves products of delta functions. Rather, one 
must find the function F2 (defined in eq. (2 .22» for some small, but finite, 
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Fig. 45. The mean values of the HI for realistic two- and three-jet events as a function of the c.m. 
energy.../s over the range accessible to the next generation of e+e- accelerators. 
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Fig. 46. The form for the 'correlation function' F(x) calculated from the (HI> for realistic two­
and three-jet events at"';s = 10 GeV using the series (2.10). The series was truncated at [= [max' 

Table 8 
Averages values of HJHo for realistic hadronic events resulting from heavy quark and lepton 
production and decay by the various mechanisms discussed in subsect. 4.5 

"';s (H2/Ho> 
(GeV) 

qqqqqq qGqG qqqq qq(v) qq(v) 

10 0.12 0.13 0.16 0.16 
20 0.12 0.18 0.23 0.16 

200 0.26 0.43 0.45 0.32 
0.28 0.50 0.50 0.35 

"';s (H3/HO> 
(GeV) A 

\ 

qqqqqq qGqG qqqq qq(v) qq(v) 

10 0.11 0.10 0.09 0.14 
20 0.06 0.05 0.04 0.10 

200 0.10 0.001 0.001 0.19 
0.1'3 0 0 0.23 

"';s (H4/HO> 
(GeV) "--

qqqqqq qGqG qqqq qq(v) qq(v) 

10 0.11 0.11 0.11 0.15 
20 0.08 0.11 0.14 0.12 

200 0.17 0.39 0.42 0.25 
0.21 0.50 0.50 0.30 
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detector size IOj I. This indicates that although in principle the H, and F(x) contain 
the same information (see subsect. 2.1), in practice they are not equivalent. 

6. Harmonics about the beam axis 

Most of this paper has been concerned with the analysis of the 'shapes' of final 
states in e + e - annihilation using observables which do not require a definite axis for 
their evaluation. The incoming beams provide, however, a natural axis for the analysis 
of the 'shape' of the final state. Nevertheless, we shall see that there is often insuffi­
cient correlation between the beam axis and the configuration of the final state to 
make such an analysis useful. 

Define 

IPil 
B, == ~ ~ P,(cos exi) , 

i yS 
(6.1) 

where exi is the angle that the final state particle i makes with the direction of the 
incoming electron. Energy-momentum conservation requires 

Bo =yHo = 1, 

Bl = 0, 
(6.2) 

if all the particles are massless. If the incoming beams are unpolarized, then all parity­
conserving processes give 

(B,)=O, (l odd) , 

and kinematics require that 

P21(O) <, B21 <, 1 . 

The process e + e - ~ qq illustrated in fig . 1 has 

1 do 3 2 
- = - (1 + cos ex;) 0 (x i - I) , 
o d(cos ex;) dx i 8 

yielding 

(B2 )= /0 ' 
(B,> = 0, (l > 2) . 

(6.3) 

(6.4) 

(i = 1, 2) , (6.5) 

(6.6) 

Data on angular distributions of two-jet final states in e + e- annihilation are often 
given in terms of the parameter A, defined by 

1 do I 
o d( cos exi) dx i jets 

3 . 
( ) (1 + A cos2 ex;) O(xi - 1), 

2 A + 3 
(i = 1,2). (6.7) 
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In this case, 

(6.8) 
(B1> = 0, (l> 2) , 

so that A may be expressed in terms of the (B1> as 

A = 15(B2 > 
2 - 5(B2 > 

(6.9) 

Note that for pairs of particles produced at rest, A = 0, so that (B2 > = O. This effect 
may serve as a method for detecting the presence of heavy quark or lepton produc­
tion near threshold (see below). 

The differential cross section for e+e- -+ qq in B2 is given by 

1 da V3(B2 + 2) 

a dE2 WI + 2B2 

Kinematics require that for any process 

(6.10) 

-t';;; B2 ';;;1. (6.11) 

The divergence in (1/a) da/dE2 for e+e- -+ qq at the edge of the physical region 
(B2 = -!) is introduced by the Jacobian of the transformation from cos ex to B2. 
The differential cross section (6.10) is plotted in fig. 47. We also show there the 
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"­ ....... 
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Fig. 47. The distributions in the beam moment B2 for events arising from the process e + e - .... qq. 



G.c. Fox, S. Wolfram / Event shapes in e+e- annihilation 481 

HEA VY LEPTON PRODUCTION 
3r-------.--------r----~_, 

B2 DISTRIBUTIONS 
WITH RESPECT TO 
BEAM AX I S FOR 
HEAVY QUARK a LEPTON 
PRODUCT ION EVENTS 

HEAVY QUARK 
PRODUCTION WITH TWO-JET DECAYS 
3~------.--------.-------. 

2 

-0.5 o 

- Free quarks and gluons 

........ .;s<10 Gev} 
Modrons 

--- .;s·20 GeV 

0.5 1.0 

1.. dCT 

CT dB2 

- Free quarks 

........ .;s<10 Gev} 
___ .;s.20 GeV Hadrons 

1.0 

HEAVY QUARK 
PRODUCTION WITH THREE-JET DECAYS 
3r-------,--------,-------, 

2 

-0.5 o 

- Free ~uarks 
........ .;s<10 Gev} 

Hadrans 
--- ,/5·20 GeV 

0.5 1.0 

Fig. 48. The distributions in the beam moment B2 for events involving the production and decay 
of heavy quarks and leptons. 

forms for (1/0) do/dE2 resulting from the process e+e- -+ qq -+ hadrons, using the 
model for quark fragmentation described in sect. 5. A significant sharpening of the 
distribution may be observed for ys = 40 GeV as compared to ys = 10 GeV. The 
mean values of B2 deduced from these distributions and for various other cases are 
given in table 9. None differ by more than about 0.04 from the free quark approxi­
mation value of O.l. 

Fig. 48 shows the distributions (1/0) do/dE2 due to the production and decay 
of heavy quarks and leptons, through the mechanisms discussed in sub sect. 4.5. 
Clearly near the thresholds for these processes (B2 ) ~ O. The production and decay 
of pairs of heavy spin-O mesons always give (B2 ) = 0, but production and weak decays 
of high-energy heavy leptons or quarks could yield non-zero values of (B2 ). This 
result is essentially unchanged by allowing the quarks and gluons generated in the 
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Table 9 
Average values of B2/Bo for realistic hadronic events resulting from the process e + ~ - .... qq: 
only hadrons with momenta larger than Pc are used in each computation of (B 2/B o ) 

..js(GeV) 

3 
6 

10 
10 
10 
20 
20 
40 
40 

200 

Pc = 0 
Pc = 0 
Pc = 0 
Pc = 0.5 
Pc = 0.5 (charged only) 
Pc = 0 
Pc = 0.5 (charged only) 
Pc = 0 
Pc = 0.5 
Pc = 0 

0.02 
0.05 
0.06 
0.07 
0.09 
0.07 
0.08 
0.07 
0.11 
0.09 
0.10 

weak decays to fragment into hadrons. The distributions (1/0) do/dB2 for this case 
are shown in fig . 48 for various values of ys, using the models described in subsect. 
4.5. The approximately Gaussian shapes of many of the distributions are a simple 
consequence of the central1imit theorem. Away from the kinematic boundary 
B2 = -~, the probability that a given particle has a particular value of B2 is roughly 
uniform in B2, and the values of B2 for each of the particles are essentially uncorre­
lated. The B2 for the complete event is a sum of the B2 values for each of the par­
ticles, so that, at least away from B2 = -~, it will be approximately normally 
distributed. The distribution is closer to Gaussian if 3-jet heavy quark decays are 
assumed rather than 2-jet ones. The difference between the value of (B2 ) for two-jet 
(e+e- ~ qq ~ hadrons) events «B2) ~ 0.1) and for heavy quark or lepton produc­
tion «B2) = ~ 0) may allow the two processes to be distinguished by a measurement 
of (B2). (A similar method is proposed in ref. [20].) In addition, the distributions 
(1/0) do/dB2 for the processes are somewhat different (see figs . 47 and 48). 
For the process e+ e- ~ qq(G), one finds that * 

( ) _ 1 2O:sj3(1 - X3)(Xi +x~ - 2(xi +X2)) 
B2 --+-

10 3n 10Xix2X3 

_ 1 3 O:s (s ) 
-10 ---w;' (6.12) 

* In this calculation we used the differential cross section for e + e - .... qqG [3] (1 = q, 2 = q): 

do = a~ rXI(l + sin2 0 cos2 ci>i) + x~(l + sin2 0 cos2 ci>2~ • 

dx 1 dx2 d(cos 0) dci> 87T L (1 - xi)(1 - x2) J 
Integration over angles gives a term identical to the total cross section for e + e - .... qqG (multi­
plied by rtJ) plus the term given as the integrand in eq. (6.12). 
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so that the angular distribution parameter defined in eq. (6.7) is given by 

A~ 1 _ 4as(s) . 
1T 

For VS = 10 GeV, this gives 

A~0.68 . 

483 

(6.13) 

(6 .14) 

On comparing (B2) from eq. (6.14) with the results for e+e- -+ qq in table 9, it 
becomes clear that it would be very difficult to distinguish between e + e - -+ qq 
and e + e- -+ qq(G) events by a measurement of (B2 ). Whereas two- and three-jet 
processes populate different regions in the H, (see, for example, fig. 30), both popu­
late the complete range of B,. Hence, even a measurement of the distributions in 
the B, will probably not be very effective at identifying two- and three-jet processes. 
In fact, the B2 distributions for e + e- -+ qqG and e + e - -+ qq are very similar. For the 
former there is a slight depletion of events near the boundaries. The detailed results 
depend sensitively however on the treatment of three-jet fragmentation. Note that, 
because the photon has spin 1, (B1) = 0 for 1 > 2 even for three-jet processes. 

The process e + e - -+ ~ -+ GGG is also amenable to analysis in terms of the BI . If 
one assumes that the ~ is a pure s-wave state and contains no d-wave admixture, 
then the helicity amplitudes for the Q and Q within the ~ are determined simply 
by those of the virtual photon. It is, therefore, possible to compute the angular 
distribution of the gluons produced in the process of fig. 3 with respect to the beam 
axis. Using the results of ref. [30], we find that in this case 

72 - 71T2 
(B2) = 80(1T2 _ 9) ~ 0.042 , (6 .15) 

corresponding to 

72 - 71T2 
A = 2 ~ 0.35. 

131T - 120 
(6.16) 

The distribution in B2 for e + e- -+ ~ -+ GOG is rather smooth, having no peak around 
B2 = -!, and goes to zero as B2 -+ 1. 

From the arguments made for the HI in sect. 3, it is clear that the moments of 
the B, should also be infrared finite to all orders in QeD perturbation theory. Since 
the angular distribution of energy produced in e + e - annihilation events is entirely 
determined by (Bo) and (B2 ), it too must be infrared finite to all orders in g2. The 
average energy angular distribution for e + e - -+ qq(G) to O(g2) is calculated in ref. 
[27]. Because this may be expressed as a finite sum of B" it should be infrared 
stable, unlike F(x), which is given only by an infinite sum of HI' Note, however, 
that by considering only such an average angular distribution, one loses the infor­
mation provided by the distribution of events in the B,. 
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7. Application to deep inelastic scattering 

In this section, we discuss the use of the HI in the analysis of three-jet effects in 
deep inelastic lepton-nucleon (}..tN, eN and liN) interactions. We work mainly in the 
rest frame of the incoming virtual photon (or W) and the target nucleon. The 'Y* 
(or W*) is taken to have an energy II in the rest frame of the target nucleon, and an 
invariant mass _Q2. Bjorken's x variable is defined as x = Q2/2mNII. 

The lowest-order process in deep inelastic lepton-nucleon scattering is the absorp­
tion of the virtual photon by a quark in the proton. The final state will contain two 
jets of hadrons; one arising from the quark and one from the fragmentation of the 
target nucleon. If the remnants of the target nucleon are treated as a single point 
particle then two-jet final states from deep inelastic scattering give the same values 
of the HI as two-jet final states in e + e - annihilation. (The HI are normalized so that 
Ho = 1.) A cut may be made on the hadrons in the final state which ensures that few 
of those considered were fragments of the target, rather than of the produced quark. 
The requirement that all hadrons considered have momenta directed into the hemis­
phere ahead of the virtual photon (or W) direction (that is, all have z > 0) seems 
sufficient to veto most target fragments. In this case, only the fragments of the 
outgoing quark should contribute to the values of the HI for the final state. Ignoring 
the fragmentation of the quark into hadrons, one finds that in this case all the HI 
are simply equal to i. Three-jet final states (which arise from the processes 'Y* q -+ 

qG and 'Y. G -+ q<D will give a distribution of values of HI' Unfortunately, the z > 0 
cut on final particles may not lead to infrared stable results, so that it may not be 
possible to make reliable predictions for the HI distributions in this case. 

A closer analogy to e + e - annihilation is obtained if all the particles in the final 
state are considered. Let us assume that the fragments of the target may be treated 
as a single massless particle (perhaps akin to a 'diquark'). Then in the free massless 
quark approximation, the HI for two-jet final states will be the same as for qq final 
states in e + e - annihilation; HI = 1 for even 1 and HI = 0 for odd I. This result holds 
only in the 'Y*(W*) N rest frame. Note that because the HI are rotationally invariant, 
their values are unaffected by the transverse momentum of the incoming quark or 
gluon with respect to its parent nucleon. Three-jet final states will again give a distri­
bution of values of HI' The distributions are qualitatively similar to those found in 
sects. 4 and 5 for e + e - annihilation. The details of the distributions depend on the 
momenta of the incoming and outgoing leptons (i.e., on Q2, x and which of W 1, 

W2 or W3 is probed). The distributions also depend on the momentum distributions 
of quarks and gluons in the nucleon. As x tends to one, the HI distributions tend to a 
non-trivial limit with means that are typically, 

(7.1) 

very nearly equal to the e+ e- -+ qq(G) values quoted in table 6. Such a non-zero 
limit should be contrasted with other QeD effects in deep inelastic scattering (for 
example, the O(g2) contribution to R = aLlaT) which vanish like (1 - x) as x -+ 1. 
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For small values of x, the HI distributions become more peaked towards the two-jet 
values, and, for example, at x = 0.1 , 

(7.2) 

The dominant contribution to these results comes from the process r O q ~ q(G); 
r O G ~ qq is insignificant. Only transverse photons give significant contributions 
to the (HI)' 

In deep inelastic scattering, the question of infrared stability is more complicated 
than in e + e - annihilation because the initial quark state is no longer a color singlet. 
As expected from the KLN theorem, infrared finite results are obtained only if all 
processes at 0(g2) are added, including those containing extra particles in the initial 
state (e.g., r 0 Gq ~ q). At 0(g2), only r 0 q ~ qG and r 0 G ~ qq can give 3-jet final 
states. For odd I , the HI receive contributions only from 3-jet final states, and so 
their values are unaffected by the existence of many possible two-jet processes, 
while for even I the HI contain an extra term which gives the total cross section 
upon integration over all possible final states. When this result is divided by the total 
cross section in order to obtain (HI), the extra term becomes simply 1 + 0(g4). Thus, 
to order g2 a knowledge of the total cross section is not necessary to obtain the (HI)' 

In the results quoted above , we have assumed idealized jets, and have not included 
fragmentation into hadrons. This can be treated by the methods described in sect. 5. 
Note that the effects of hadron fragmentation will be characterized by the rON c.m. 
energy y's = Qv'(1/x) - 1. As mentioned above, the HI distributions for three-jet 
events become more distinct from the two-jet limit as x increases, but on the other 
hand, the smearing effects of fragmentation to hadrons will become smaller as x 
decreases (y's increases). The optimum value of x at which to observe three-jet pro­
cesses should, therefore , be determined by a compromise between these two effects. 

In sect. 8, we shall present an alternative method for analyzing event shapes in 
deep inelastic scattering, which involves projecting the momenta in an event onto a 
particular plane. Although this technique has certain advantages, it does not retain 
the rotational invariance of the HI and the resulting insensitivity to transverse momen­
tum of the incoming quark and gluon. We shall discuss both techniques in more 
detail in a later publication. 

Energy correlation functions (see subsect. 2 .6) may also be useful in studies of 
deep inelastic scattering events. 

8. Shape parameters for projections of events onto planes 

There is no natural plane defined in an e + e - annihilation event. In other proces­
ses the directions of initial or final particles often define a plane, and it may be use­
ful to analyze the 'shapes' of events projected onto this plane. For this purpose, 
define a set of observables 

CI = 16 IPilproj ei1t>i 12 = 61PilprojlPjlproj cos [/(¢>· _ ¢>-)] (8.1) 
. . / . . S 1 / , 
1 Vs 1,/ 
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where the sum runs over all particles or pairs of particles in each event, and the 
angles ¢i are measured with respect to an axis chosen in the plane, II. (IPilproj are 
the magnitudes of the particles' momenta projected into the plane II.) The values 
of the CI will be independent of the axis used, so long as it lies in II. 

The occurrence of the y;n(n) in the definition (1.1) of the 'shape' parameters 
HI is a consequence of the fact that these functions form bases for the irreducible 
representations of the three-dimensional rotation group. It is the functions,e'lt> which 
form bases for the representations (which are all trivial) of the two-dimensional rota­
tion group, U(1), and so appear in the definition (8.1) of 'shape' parameters for two­
dimensional projections of events. 

To discuss the properties of the CI , let us consider a continuous distribution p(¢) 
around a circle. In this case the CI are given by 

21T 

CI = I J p(¢) eikfJ d¢12 . (8.2) 
o 

The CI obtained using an axis rotated by an angle X from the original axis are then 
given by 

21T 

(CI )' = IJ p(¢ + X) eil1>d¢12 = CI , (8.3) 
o 

thus proving the invariance of the CI under rotations in the plane n. If another plane 
is chosen, then their values will clearly change. 

If p(¢) is taken to be the amplitude of an electric current as a function of time, 
with period 2rr, then CI is simply the power in the lth harmonic of the signal. 

The correlation function for the CI may be defined in analogy to the function 
F(x) (eq. (2.7)): 

21T 

R(X) = J p(¢ + X) p*(¢) d¢ . 
o 

Defining the Fourier coefficients for the function p(¢) as 

al = ~ Jp(¢) eikfJd¢, 

the correlation function becomes 

R(X) = J...:6J e-ilx ei(I'-l)rJ>ala~d¢=J....:6 e- ilxCI . 
2rr I,t I 2rr I 

This is the analogue for R(X) of the series (2.10) for F(x). 

(8.4) 

(8.5) 

(8.6) 

If all particles in the final state of an event are included in the sum (8.1), then 

C1 = 0, (8.7) 

by momentum conservation. The value of Co depends on the plane chosen. It will, 
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therefore, usually be convenient to consider the observables CdCo. 
As an example of the use of the C/ , consider the process e+ e- -+ qq. Co will be 

maximal if the q and q momenta lie in the plane (n). All the C/ will be zero if the 
q and q momenta are perpendicular to n. Except in this case it is clear that 

q/Co = 0 , 

=1, 

(/ odd), 

(l even) . (8.8) 

In general, if p(r/» consists of a set of N delta functions of equal weight at equally­
spaced points around a circle, then 

= 1 , 

(l"4=AN), 

(l=AN) , 

where A is any integer. If per/»~ is uniform in r/>, then C/ = 0 for all I "4= O. 

(8.9) 

In deep inelastic lepton-nucleon scattering, the directions of the incoming and 
outgoing lepton in the target nucleon rest frame define a plane (n). The hadronic 
final state may be analyzed by projecting all the hadron momenta on to this plane, 
and then evaluating the C/. VS is taken to be the c.m. energy in the 'Y·N collision. 
For a two-jet production process, as illustrated in fig. 49 , the Ci/Co will be approxi­
mately 1 for even I and zero for odd I (assuming the fragments of the target to behave 
roughly like a point particle). So long as the analysis is made in the nucleon rest frame, 
'Fermi motion' of the struck quark within the target nucleon will have little effect 
on the values of the q for the event. A typical three-jet event is shown in fig. 50. 
Such a process will give 1 > Ci/Co "4= 0 for all I > 1. The precise value will depend on 
assumptions about the structure of the target fragments, and on the momentum dis­
tribution of the primary quark or gluon within the nucleon. It will be infrared stable 
(see sect. 3). 

A much better analysis of deep inelastic lepton-nucleon scattering event may be 
made using the C/ in the plane (n) orthogonal to the virtual photon (or W) direc-

A 2-JET EVENT IN DEEP-INELASTI C SCATTERING 

.l 
lorgel 
f rogments_ 

.t ' 

® 

q 

Fig. 49. A typical two-jet event in deep inelastic scattering pictured in the target nucleon rest 
frame. The momenta of the final hadrons are projected into the plane n shown for the calcu­
lation of the q. 
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A 3-JET EVEN T IN DEEP-INELASTIC SCATTERING 

.t' 

lorgel 
frogmenls __ @ 

Fig. 50. A typical three-jet event in deep inelastic scattering pictured in the target nucleon rest 
frame. The projections of the momenta of the final particles into the plane n used for the calcu­
lations of the C/ are shown as dashed lines. 

tion. This arrangement for a two-jet event is shown in fig. 51. Treating the target 
fragments as a point particle, and using the free quark approximation, one finds that 
C/ = 0 for alII in this case. 'Fermi motion' of the initial quark within the target 
nucleon, the fragmentation of the outgoing quark into hadrons, and allowing for 
realistic target fragments will all serve to modify this result. Note, however, that a 
shower of hadrons which has cylindrical symmetry when projected on to IT will make 
no contribution to the C/. The arrangement for a three-jet event is shown in fig. 52. 
The target fragments will be directed approximately perpendicular to II, and so will 
not contribute to the C/ for the event. The projections of the momenta of the out­
going quark and gluon (in some events, outgoing q and q) on to II will be equal and 
opposite, by momentum conservation. For three jet events, therefore, C1 !:::< 0 for 
odd I and Cz/Co !:::< 1 for even I. In idealized three-jet events, 1 ~ 0 for even I, and 
Cz = 0 for odd l. The shapes of the distributions in C21 are similar to those in 1 - H2 

shown in fig. 23. (C21> is typically 0.06 Q s at x = 0.1, rising smoothly to about 0.15 

A 2-JET EVENT IN DEEP-INELASTIC SCATTERING 

.t .t' 

Fig. 51. A typical two-jet event in deep-inelastic scattering. In this case, the plane n is taken ortho­
gonal to the virtual photon (or W) direction, and the projections of the momenta of the final 
hadrons on to n (shown dashed) are distributed roughly symmetrically about the 'Y * (W*) direc­
tion, so that they give a small value of C/. 



C.C. Fox, S. Wolfram / Event shapes in e + e- annihilation 489 

A 3 - J ET EVENT IN DEE P-IN ELA STI C SCATTER ING 

.e .e' 

Fig. 52. A typical three-jet event in deep-inelastic scattering, with the plane n taken orthogonal 
to the virtual photon (or W) direction. 

as for x = 0.8 . Once again, 'Y*G -+ qq and longitudinal photons make an insignificant 
contribution. 

The C/ may be computed by measuring the angles ¢i of the hadron momenta pro­
jected on to the plane n with respect to any axis in n. However, in deep inelastic 
scattering, a natural axis in n is defined by the projection of the incoming and out­
going lepton (Q and Q') directions on to n. In this case , one may define a set of vari­
ables analogous to the B/ (see sect. 6): 

D - "IPilproj (I) / - L..J --- cos (X • 
. / I , 

i yS 
(8.10) 

where (Xi is the angle which particle i makes with the fixed axis in the plane n. For 
a two-jet event D/ ~ O. Three-jet events will have a distribution of values of D/; the 
precise form depends on the detailed assumptions made about the inclusion of effects 
associated with hadrons. Note that because the photon (or W) has spin 1, D/ = 0 for 
I> 2. <D t ) is simply the <Pi) summed over all hadrons in the event relative to the 
projection of the lepton direction. 

Previous authors have considered the possibility of detecting three-jet produc-
tion in deep inelastic QN scattering by measuring the angular distribution of a single 
particle in the final state [21]. The discussion given in sect. 3 indicates that this pro­
cedure should not lead to infrared stable results, since processes involving the emis­
sion of particles of indefinitely low energy are distinguished from those in which no 
particles are emitted. To order g2, it turns out that the single-particle angular distribu­
tions are infrared finite, but this property will not survive in higher orders. This sug­
gests that only angular distributions weighted with momenta and summed over all 
final particles as in the definition of the D/ should be considered. These will be infra­
red stable. 

We hope to discuss the use of the C/ and D/ in the analysis of final states from 
deep inelastic lepton-nucleon scattering in a future publication. 

The t; may also be useful in an analysis of the structure of final states in high­
energy hadron-hadron (hh') collisions involving the production of jets of hadrons 
with large transverse momenta (Pi)' We shall work in the c.m.s. for the colliding 
hadrons. We consider the C/ for a plane n orthogonal to the directions of the initial 
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A HADRON- HA DRON COLLI SION IN VOLV IN G 
LARGE Pl. JET PRODUC TI ON 

h' 

Fig. 53. A typical hadron-hadron collision involving the production of two high transverse 
momentum jets of hadrons, shown projected on to the plane n orthogonal to the directions 
of the incoming particles in their c.m.s. 

hadrons, as illustrated in fig . 53. The fragments of the initial hadrons should form 
a halo of particles around the hh' axis. Fig. 53 shows a typical event involving the 
production of two jets of hadrons with high transverse momenta, as expected from 
QeD models for large P 1 processes [22] . QCD also predicts that in some events, 
three high transverse momentum hadron jets should be produced, arising, for exam­
ple, from the subprocess qq -)0 qqG. Measurements of the CI could be used to disent­
angle the different types of event. In an experiment with an azimuthally symmetric 
trigger, the halo of low P 1 particles from the fragmentation of the beam and target 
will be distributed symmetrically about the hh' axis. Because of their isotropy, these 
unwanted particles will not contribute significantly to the values of the CI for an 
event. Care must be taken if a trigger is used which requires a particle or a jet at a 
particular azimuthal angle. In that case, the beam and target fragments tend to be 
directed oppositely to the trigger particles, and will therefore affect the values of the 
q [23]. The application of a transverse momentum cut on the particles used in the 
calculation of the Cl would , however, remove their effect. (This cut is the two­
dimensional analogue of the total momentum cut Pc discussed in sect. 5.4.) Final 
states containing two high transverse momentum jets will give CIICo ~ 1 (l even) 
and Cl ~ 0 (I odd), while those in which more jets are produced will give rise to a 
wider distribution of Cl values. 

It appears that the CI should provide a powerful tool for the analysis of high P 1 

hadron events. QCD makes definite predictions for the distributions of events in the 

Cl · 

9. Conclusions 

In this paper, we have presented several sets of observables for the analysis of the 
'shapes' of final states in events of various processes. We have considered mainly 
e + e- annihilation, for which no natural axis is defined in the final state. The HI 
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(defined in eq. (1.1)) appear to be the most suitable class of observables for this 
case since they are rotational invariants whereas previous observables proposed 
require minimization to find a preferred axis in each event. An axis must be chosen 
to evaluate the HI, but their values are independent of the choice. In sect. 2, we 
showed that the information on the 'shape' of an event contained in the HI may be 
reexpressed in a generalized 'correlation function' F(x) for the relative density of 
particles at different angles. F(cos m may be interpreted as an energy correlation 
function between two detectors an angle ~ apart, in the limit that their areas tend 
to zero (see subsect. 2.6). In sect. 3, we showed that to order g2 in QeD perturba­
tion theory, the moments of the HI are infrared finite, and we gave arguments that 
this result will survive the inclusion of higher-order effects. (F(x) is not, however, 
infrared finite.) If the quarks and gluons produced in the primary interaction are 
allowed to fragment into hadrons, then the resulting distributions in the HI are also 

. infrared finite. The reason for this is that the fragmentation process acts somewhat 
like a detector with finite energy (and angular) resolution and properly averages 
over 2-jet events (qq) and 3-jet events (qqG) that are 'near' the two-jet kinematic 
configuration. 

For the process e+ e- ~ qq, HI = I for even I, and HI = 0 for odd I. Energy-mo­
mentum conservation requires Ho ~ I and HI = O. For final states consisting of three 
quarks and gluons, H2 and H3 are simple functions of the energies of the final par­
ticles. We gave analytic expressions for <H2) and <H3) for the processes e + e- ~ S ~ 
GGG, where S is a heavy vector meson containing a pair of heavy quarks, and 
e + e - ~ qq(G). The latter process is defined to be a combination of e + e- ~ qq and 
e + e - ~ qqG. According to QeD, only this combination should be present. The fact 
that <H2) and <H3) are finite for that case is an explicit demonstration of the infrared 
stability of the HI to order g2 . 

We used the Field-Feynman model for the fragmentation of quarks and gluons 
into hadrons. We found that for c.m. energies above about VS = 10 GeV, the distri­
butions of events in H2 and H3 allow good differentiation between the various mecha­
nisms. The H2 distribution was particularly powerful at distinguishing the processes 
e+e- ~ qq(G) and e+e- ~ S ~ GGG, while the H3 distribution should provide a 
good measure of any pure e+e- ~ qq processes. At least VS ~ 30 GeVis required, . 
however, before the H2 and H3 distributions for realistic hadronic events become 
similar to those obtained in the free quark and gluon approximation. Only for these 
energies can the H2 and H3 distributions be considered as direct quantitative tests of 
perturbative QeD; at lower energies, the details of the distributions calculated from 
QeD perturbation theory are blurred by the fragmentation of the quarks and gluons 
into hadrons. The agreement between the results for realistic hadron final states and 
for free quarks and gluons can be improved slightly by considering only the higher­
momentum hadrons in each event. This procedure does not affect the discrimination 
between different types of events offered by the HI; it merely gives results which are 
closer to the free quark and gluon approximation. 

We also considered the production and decay of heavy leptons and of mesons 
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containing heavy quarks. These processes give rise to events of a rather spherical 
'shape', which should be clearly distinguished from other types of event. Several 
possible mechanisms for the weak decays of heavy mesons were considered. It 
should be possible to discriminate between them on the basis of measurements of 
the 'shapes' of events using the HI. 

In sect. 6, we discussed a class of observables (BI) which use the direction of the 
incoming beams as an axis and are , therefore, not rotationally invariant. There is no 
clean separation of e + e- -+ qq and qq(G) in the BI distributions and generally they 
do not provide very good discrimination between different types of events, although 
events involving heavy quark or lepton production could be distinguished by their 
use. 

In sect. 7, we considered the extension of our analysis of event shapes in e + e­
annihilation to final states in deep inelastic lepton-hadron scattering. The main dif­
ficulty in this case is the presence of fragments of the target in the final state. Never­
theless, it appears that the HI could be used to identify three-jet final states in deep 
inelastic scattering. 

Finally, in sect. 8, we gave a very brief discussion of the analogues of the HI in 
two dimensions (the CI ) . These should be useful for analyses of final states in which 
a natural plane is defined. If this plane is chosen to be orthogonal to the virtual 
photon direction in the target nucleon's rest frame , then idealized two-jet events in 
deep inelastic lepton-nucleon scattering give CI ~ 0, while three-jet ones give non­
zero values for C21. The CI also promise to be useful in the analysis of hadron-hadron 
collisions involving the production of particles with large transverse momenta. The 
related variables DI , also discussed in sect. 7, appear to allow a more precise formula­
tion of certain azimuthal angular correlations that have been previously proposed 
as tests of QCD. 

We hope to present more detailed analyses of the 'shapes' of events in deep ine­
lastic lepton-nucleon scattering in a future publication. 

We are grateful to R.D. Field and R.P. Feynman for the use of their jet-develop­
ment computer program, and to the MATHLAB group of the MIT Laboratory for 
Computer Science for the use of MACSYMA. 

Appendix 

Three-jet kinematics 

The momenta for e + e - annihilation to three particles via a virtual photon are 
assigned according to fig. 54. In our calculations, at most one of the final particles 
has a non-zero mass, and , in this case, the kinematics for the process become very 

I 
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MOMENTA FOR 2--3 PROCESS 

Fig. 54. Defmitions of the momenta for a 2 --> 3 process. 

simple. Let us work in the rest frame of the 'decaying' virtual photon, so that 

Q=Pl +P2 +P3=0 , 

£1 +£2 +£3 =Vs. 
Now define 

x. = 2Ei 
I vs ' (i = 1,2,3) . 

Energy conservation demands 

6Xi=2. 

Take particle 3 to be massive, and write 

pi = p~ = ° , P~ = p2 . 

Then 

q = (.;s, 0, 0, 0) , 

Pi = ~Xiv'S (1,0, sin (Xi, cos (Xi) , (i=1,2). 

The expression for P3 does not have such a simple form. However, for all i and 
j(k =1= i =1= j) 

Pi' Pi = Pi ' (q - Pk) - pi = Pi' (q - pd - pJ 

= H(Pi + Pi) . (q - Pk) - pi - pJl 

= Hq2 - 2q· Pk + p~ - pi - pJl . 

If all the final particles are massless, this gives 

Pi' Pi = ~s(1 - xd . 

When particle 3 has mass p, define 

p2 p2 
{3=_=2 . 

s s 
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(A.l) 

(A.2) 

(A.3) 

(AA) 

(A.S) 

(A.6) 

(A.7) 

(A.8) 
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Then 

Now 
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PI· P2 = !s[1 -X3 +~] , 

P2·P3=!s[I-Xl-~] , 

Pl·P3=!s[I- X2-m. 

PI · P2 =E1E2(l-cOS<1>12) 

=!XIX2S(l-cOS<1>12)·=1S[XI +X2 -1 +~], 

(A.9) 

(A.lO) 

so that the angle <1>12 between the three-momenta of particles 1 and 2 is given by 

=2[(l-xd(l-x2)-~] - 1. 
xIX2 

(A.ll) 

The physical region for the process of fig. 54 is determined simply by demanding 
that 

-1 < cos <1> 12 < 1 , 

which implies 

(A.l2) 

(A.13) 

The physical region for a characteristic value of ~ is illustrated in fig. 55. Solving the 
inequalities (A.l3), one finds that 

(A.l4) 

while 

(A.I5) 

The expressions for cos <1>13 and cos <1>23 are simple only if all the final particles are 
massless, in which case 

2(l-Xk) 
cos <1>i; = 1 - , 

xjX; 
(ii=ii=k) (A.16) 

The momenta q 1 and q2 of the incoming electron and positron clearly satisfy 

(A.l7) 
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DALITZ PLOT FOR 3 PARTICLE FINAL STATE 

~----------------------~o 

1-/3 ...---~ 

1- v13 

1-/3 I xI 

Fig. 55. The physical region in the fractional energies xi = 2E;/.Js for a process with three final­
state particles. Particles 1 and 2 are taken to be massless, while particle 3 has a mass jJ. = .J(ii. 

in their c.m. frame (virtual photon rest frame). Momentum conservation requires 
the momenta of the final particles to lie in a plane. Let (J be the angle which the nor­
mal (N) to this plane makes with the direction of the electron's momentum. Then, 
if all the particles are massless, 

ql . Pi =!SXi (1- sin (J cos 4>;), (i = 1,2,3), 

q2 . Pi = !SXi (1 + sin (J cos 4>;) , 
(A.I8) 

where 4>i are the angles of the final particles' momenta relative to the axis formed 
by the intersection of the plane containing N and the e - direction with the plane of 
the final particles. 
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