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W ell I'm very happy to be here today, if only in virtua l form .

I guess when this conference was first being planned, I had hoped very much to
be able to corne also in physical form.

But as some of you probably know, for the last eight years I've been doing a very
very big science project, and to get it finished, particularly recently, I've had to
become more and more of a recluse.

In fact you would probably be surprised at how little I'm getting out now: in fact
the very last conference I traveled any distance to was the IMS in Southampton
four years ago.

So anyway I'm very much looking forward to having my science project finished,
and being kind of free again.

And it' s perhaps because I've been a recluse so long I've decided that here I
would try to talk about some somewhat advanced and abstract thin gs-about the
foundations of mathematics, and their relationship to my big science project, and
their relationship to Ma tbematica,
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Some of you probably know a little about what my science proje ct is
about- though I haven't talked much about it . What I'm doin g is something
very ambitious.

I'm basically tryin g to build a whole new kind of science, certainly as big as any
of the existing sciences, like physics and chemistry and things, and perhaps in
some ways bigger.

T he basic point of the science I' m trying to build is this. If you look at the
history of science for the last 300 years, it' s probably fair to say the hard sciences
have been following one basic idea: to find mathematical equations that represent
things in nature.

Well, that idea worked pretty well for N ewton and friends in studying orbits of
planets and things like that. But in lots of othe r cases-for example in
biology-it 's really never worked at all.

So the question is: what else can one do?

Well, I think it's reasonable to assume that nature follows definite laws, definite
rules: otherwise we couldn' t do science at all. But the question is: why should
those rules be based on the constructs that we happen to have come up with in
traditional mathematics?

Why should they be about numbers, and derivatives, and all those kinds of things
in mathematics?

Well, what I decided to try to do nearly 20 years ago now was to see what science
would be like if one thought about using more genera l kinds of rules: the kinds of
rules that can easily be embodied in computer programs, but can't necessari ly be
represented easily in traditional mathematics.

Some of you probably know some of the things I did in the early 1980s on
cellular automata, and getti ng the field of complex systems research star ted. And
I'm pretty happy with the work I did then, though I'm actually far from thrilled
with the way the field developed in general terms afterwar ds.

I figured out quite a lot of stuff in the early 1980s: enough to convince me that
the idea of generalizing the kinds of rules one uses to study nature isn' t com­
pletely crazy.

But then in the mid-1 980s I got kind of stuck-I didn 't have very good tools to
use for my computer experiments, and I seemed to be spending all my time
writing little pieces of code and gluing them together and so on. And it was
about then that I had the idea that perhaps I should build a big software system
that would be able to do all the things I needed, and might even be useful to
some other people as well.

And that was kind of one part of how Matbematica came to be. Of course since
I'm a practical fellow, I trie d to design Matbematica to be as useful as possible to

as many other people as possible, too.

But a big part of my motivation for building Mathematica was that I wanted to
use it myself.
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196 Stephen Wolfram

And I'm happy to say that starting just after Version 2 came out, I was able to
start doing that very seriously.

Well, I've discovered a huge huge amount of science with Matbematica, And I' m
very much looking forward to telling everyone about it. But it's a big in tellectual
structure that I've been building, and I'm not quite ready to talk about all of it
yet.

I'll talk about a few pieces here. And I hope that when my book about all of
this-it 's called A New Kind of Science-is out you' ll all have a chance to really
read abou t it more completely.

Well, what I want to do today is actually to talk about a topic that 's sort of at the
intersection of my two most favorite kinds of topics: my new kind of science and
Matbematica.

It turns out that at that intersection are questions about the foundations of
mathematics, and there are some new things I' ve realized about the found ations
of mathematics from working on my new science, and also from working on
Matbematica.

I'm particularly happy to be talking about this here because there are several
people in the Mathematica community who I've really enjoyed in teracting with
on these topi cs-though they definitely don 't always agree with me-particularly
includ ing Bruno Buchberger, Dana Scott, Klaus Sutner, and Greg Chaitin .

OK, well what I'm going to say here may be somewhat abstrac t, but I hope and
believe that with all of your background in M athematica, you' ll be almost
uniquely in a position to really get something out of what I'm trying to say. So
let me try to get started.

I' ll tell you a littl e bit about my new kind of science, then I' ll tell you how it
relates to the foundations of mathematics, and Ma thematica.

T here are some pretty big shifts in intuition involved in my new science, and I
certainly won't be able to explain all of it here. But to und erstand the rest of what
I'm going to say, I have to spend a few minutes explaining some of what my
science is about.

Well, as I said, what my science is based on is thinking about what arbitrary sets
of rules do: in effect, what arbitr ary simple computer programs do.

ow normally when one builds computer programs, one sets up the computer
programs to do specific things. But what I'm interes ted in in my new science is
what arbitrary computer programs- say ones one might choo se at random-do.

It's very hard-in a sense pro vably impossible- just to figure this out by pure
thought.

But it's easy to do experiments. And what's actually particularly fun about these
experiments is that they're so easy that they could even have been done probably
thousands of years ago.
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Maybe they were. I actually don 't think so. Because I think if people had ever
seen the results they give then science would have actually developed along a
very different track than the one it's actually followed.

OK, so let' s take a look at these experiments, and let 's look at what some simple
progra ms do.

I'm going to talk first of all about some things called cellular automa ta, because
they happened to be the first thin gs I looked at in the early 1980s. But one of the
things I've discovered in the last eight years is that nothing I'm saying is really in
the slightest bit specific to cellular automata .

OK, so what is a cellular automaton?

One can set one up by having a line of cells, each one let's say black or white.

And then one has a rule for evolving the thin g down the page. So let me show
you an example.

So this might be a rule for the cellular automaton. It says if you have a cell, then
that cell will become black on the next step unless it and its immediate neighbors
are all white.

So let's ask what happens if we take this parti cular rule and just start it off from a
single black cell.

OK, so this is what we get: it' s very straightforward. We start off with a single
black cell at the top there, we apply this rule over and over again, and we just get
a simple uniform pattern .

OK, well let' s try changing that rule a littl e bit and see what happ ens to the kind
of pattern we get. H ere's a rule, very similar to the previous one, yet slightly
different.

Le t's see what that rule does.
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198 Stephen Wolfram

So, wha t we see is a checkerboard pattern.

Well, at this point we might guess that there's some kind of th eor em. And the
theor em might say if you have a sufficiently simple rule, and you start it off with
a sufficiently simple initial conditi on , then what you' ll get is a simple, let's say
periodic or repetitive, pattern.

Well, let's try another rule. We can just change th e rul e we 've been using a little
bit.

Let's try this rul e here. Let's see wha t pattern that produces.

We ll, that produces a rather different pattern. What 's thi s pattern going to do ?
Let's run it, let' s say for 100 steps. H ere's th e result that we get.
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And what we see here is that thi s particular cellular automata rul e, when it starts
off from a single black cell, inste ad of just makin g a repetitive patte rn, it makes a
nested self-similar pattern . T his is one of th ose Sierpinski gasket fracta ls.

Well, just to emphasize how simple a kin d of program a cellular automaton
actua lly is, we could for example just wri te a cellular automaton program in
Mathematica. Le t me show you what a step of cellular automaton evolution looks
like in a modern Ma tbematica. Here it is.

Sign [Bi tAnd [2 A Li stConvolve [{t. 2. 4} . a, 2] • num]] t

So here for example, a is the current state, and num is the rul e number. So here
for instance, this was rule number 90. Let me regenerate the picture that I had
above, by just running this little ListConvolve thing, which is the cellular
automaton rule.

Show [Gr aphi c s [Ras t e r [1 - Reverse [
NestL ist[Sign[BitAnd[2 AListConvolve[{t . 2, 4}, # , 2] . 90]] t .

IntegerDigi ts [2 A 25 , 2 . 51] , 25] ]]] •

As pe c t Ratio -+ Automat ic , Frame -+ True, FrameTicks -+ None] ;

Looking at what we get here, with our simple cellular automaton rule, starting
off from a simple ini tial condition, we again get a pattern th at we can recognize
as quite simple. It's a nested pattern. So again we might guess that the true
theorem is if you star t off with a simple rul e and a simp le initial condition, then
you either get a repetitive pattern or a nested pa tte rn . But we might guess-and
certainly that was my original guess-th at if one has a sufficiently simp le setup
like that th en there's nothing more complicated that one can get.

OK, well let's try thi s parti cular crea ture her e. H ere's ano the r cellular automaton
ru le, same kind of idea as th e previous ones but different parti cular choices of
outcomes for different configurations.

Let's see wha t thi s does.
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200 Stephen Wolfram

Well this does something very strange. We 're starting off from just a single black
square here, but now instead of making something that looks like it's obviously a
repetitive pattern or a nested pattern, it looks like some more complicated mess.
Well, let's go on. We can run that rule for a bit longer, see what it does.

It doesn't seem to do anything terribly simple. We can keep running it. Let's
keep running it, let's say for 400 steps. Here's the patte rn that we get.

TheMa/hema/ica Journal 8:2 (200 J) @ 200 I Wolfram Media, Inc.



The Foundations ofMathematics and Mathematica 201

Well you can see there's some regularity in all this . But much of it is pretty
random. And actually I know rather well that it's random, because essentially
we've been using the center column of this pattern as the thing that makes
integer random numbers in Mathematica for the last 11 years. And so a lot of
people have tested it, and nobody's ever found any deviation from randomness.

But let's just look at this picture.

It's just nothing like we would expect.

I mean, from building things ourselves and doing engineering and so on, we're
used to the idea that if we want to get something complicated we'd better have a
complicated set of plans or rules-or else we'll just get something very simple
out. But here we have some simple rules, there they are, and we start off from
this very simple initial condition, yet we get something very complicated out.

So the question is: what's going on here?

Well, I think what's going on is that we're basically seeing in a very direct form
what I think is essentially what has been sort of the big secret of nature for a
really long time.

You see, there's a funny thing. If you look at two objects : one's an artifact, one's
something made by nature, it's a pretty good heuristic that the one that looks
more complicated is the one that nature made. And the one that looks simpler is
the one that humans made.

And I suppose it's kind of that sort of thing that made people assume that there
had to be some kind of superhuman supernatural intelligence behind the things
that got built in nature.

But one of the things that's happened in the past few hundred years is that it's
been pretty much figured out what a lot of the underlying rules in nature are.
And actually they're really pretty simple .

So that makes it even more bizarre that nature can produce all the complicated
stuff we see.

And it's been a big mystery how that can possibly happen.

But I think-and actually now I've accumulated a huge amount of evidence for
it-that this thing that I've seen in simple programs like the cellular automaton
that's called rule 30, is the key to what's going on .

See, the rules that we use for engineering are essentially special ones that we've
set up to be able to do the tasks we want to do. And to make that work these
rules have to produce only fairly simple behavior-behavior whose outcome we
can reasonably foresee.

Otherwise we wouldn't be able to use those rules to achieve particular tasks. But
the point is that nature doesn't have any constraint like that. So it can effectively
pick its rules much more at random.
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And the big fact that I've discovered is that if one does that a lot of the rules one
sees-even if they themselves are very simp le indeed-can produce incredibly
complicated behavior.

And I think that's basically what the sort of underlying secret of nature is. There
are a huge number of questions in all sorts of areas of science that one can tackle
for rea l once one knows this . And that's part of what I've been doing for the past
eight years.

But this phenomenon is also important for thinking about mathematics. In fact, I
think the general approach I've been taking should lead not only to a new kind of
science, but also to something that's essentially a major generalization of mathe­
matics. And that's a large part of what I want to talk about here.

W ell let me explain why that is.

One can think of mathematics as being something that effectively tries to work
out the consequences of abstract sets of ru les.

The question is what kinds of rules one uses.

And I think what's happened is that mathematics has ended up using only rather
specia l kinds of ru les.

But in fact there's a vast universe of other rules out there, which mathematics has
essentially never looked at.

And actually the character of what those rules do, and what one can do with
those rules, is somewhat different from what happens with the ones that are
usually dealt with in mathematics.

I should say that if one wants to, one can certainly write a cellular automaton like
the one I was showing there, in sort of mathematical form. T his is in fact its rule.
If P, Q, and R are the colors of neighboring sites, this is the rule for the color of
the next site .

Mod [p + q + r + q r . 2]

But it turns out that even though one might be able to state this as a mathemati ­
cal rule, it's not a terribly natural thing to do. And the usual ideas of, for exam­
ple, algebra that one might try to apply to something like this, tell one almost
nothing about th e behavior that one gets from the rul e.

So effectively what's going on here is something tha t ends up being quite discon­
nected from the kinds of things that we usually think of a~ mathematics.

OK, so one question is, if mathematics isn't dealing with genuinely arbitrary
abstract rules, what exactly is it dealing with?

I think in the end to figure this out, one effectively has to look at history.

I think defining mathematics is a little like defining life. One knows definitions of
life that say something is living if it can move itself around, or if it can reproduce
itself, or if it eats things, and so on. But as one goes on and looks at all these
definitions, one realizes that there are lots of devices , physical processes, and so
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on, that satisfy all of th ese various definitions, just like life does. And in the end
the only definitions that actually work and correspond to what we intuitively
think of as being a living system, are ones that involve the specifics of containing
D A and things like that. And essentially involve the particu lar history that life
has taken on Earth over the course of geological time.

And I think it's sort of the same with mathematics. On e can come up with all
sorts of abstractions for what mathematics might be, but in the end one basically
has to look at history.

And essentially one has to go back to thin gs that were happening in ancient
Babylon .

What seems to have happened in Babylon is that two thin gs were developed:
essentially arithmetic, and geometry.

And I think that what's happened is that since then essentially all the mathemat­
ics that 's been developed has somehow been derived from those original forms of
arithmetic and geometry.

Actually if one looks up the definition of mathematics in most dictionaries, one
will find a definition tha t basically agrees with this.

But it's no t the definition that most professional pure mathematicians imagine is
the appropriate one for mathematics. T hey think that somehow mathematics is
about studying quite arbitrary abstract systems.

And that's actually how I thought about mathematics when I named Mathematica
"Matbematica".

But if you actually look as a practical matter at what mathematics as mathema ti­
cians actually do it is- how that' s defined, it 's somewhat different.

See for a long time in the history of the development of mathema tics, people
thought of mathematics as somehow being about describing the way our universe
works. And that was the justification that was used for the kinds of constructs
that were developed in mathematics, the ones that should be considered, and the
ones tha t should not be considered.

And that's what led for example historically to the fact that the idea of having
more than three dimensions to space was a hard thin g to introduce, and things
like that.

And-particularly after ewton and friends did their stuff-it was kind of felt
that for sure the generalizations of arithmetic and geometry that have been so
successful in their efforts to kind of put a formalism into science should be
enough to describe everything that's relevant in our universe.

But one thin g I can tell you pretty definitively from the science that I've done is
that that's just not true.

And in fact it's that assump tion that's made a lot of science get stuck.

A big part of what I've discovered is that the kinds of rules that nature really
seems to follow are ones that are pretty easy to represent in simple computer

The Mothematico Journal 8:2 (200 I} @2oo l Wolfrom Media, Inc.
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programs, but almost impo ssible to represent in traditional kind of arithmetic­
and- geom etry mathematics.

So the idea that one shouldn 't make the rules in mathematics more general
because that would mean going beyond anything that 's in our actual universe is
just wrong. T hat's not a reason to not think about genera lizing the kind of
arithmetic and geometry-based rules in mathematics.

Of course, people in mathe matics kind of thought they stopped worrying about
making rules correspond to our universe about a century ago.

T hat was one of the big achievements of Cantor , and to some extent Galois, and
friends. To start making constructs in mathematics that were purely abstract, and
not intended to be linked to anything in the actual universe.

But OK, without the constraint of linking things to what happens in the actual
universe, how do people pick the constructs to use in mathematics?

Well that' s an interesting story and it 's sort of central to what mathematics is,
and what it isn't.

And it turns out that what it all revolves around is the idea that mathematicians,
at least in the last century or so, seem to have been proudest of: the idea of proof
in mathematics.

I guess that mathematicians always feel that they want certainty; they want to be
sure that they are figuring out things that are true.

And they have the idea that the way that one does this always has to do with
proofs.

I guess that idea started with Euclid and friends. Euclid didn' t want to rely on
how some geometrical figure was drawn in the sand or whatever, and whether
two angles that looked like they were the same, were the same as far as he could
measure them. H e wanted to know precisely were these two angles the same, not
just did they look the same as well as he could measure them.

He wanted a proof, some kind of logical proof, that these two angles were exactly
the same.

So he got into the idea of essentially using logic to take some statement and see if
it could logically be deduced from some set of axioms.

Now, to be fair, not all mathematics has historically been done that way. Particu­
larly in areas like number theory, people-people like Gauss for example- quite
often did experiments to see what was true.

But particularly as things got more hairy with infinitesimals, and thin gs where
everyday intuition seemed never to work, it got pretty much taken for gran ted
that proof was the only way to move forward in mathematics.

And in fact if you look at the Bourbaki books, for example, their opening words
are: "Since the time of the Greeks, to say 'mathematics' has meant the same as to
say 'proof".
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Well, I myself have never been a grea t fan of the idea of proof.

And perhaps that shows that I really am a scientist, not a mathematician. I like
starting out without knowing what's true, and making observations and doing
experiments, and then findin g out what' s true. Sort of discovering thin gs from
scratch.

I don 't like somehow having to guess what's true, then work backwards and try to
find a proo f of it.

And actually my experiences have kind of strongly conditioned me this way by
now. Because in the science I've done I've discovere d- by being I think a fairly
careful experimenter- things that I' d never possibly have guessed .

And actually I've discovered quite a few things that I at least had thought I had
proved were impossible.

Of course, once I actually found out what's true, I could see that there were bugs
in the proof.

But at least until we have things like Bruno's T heorema up and running there's
no way at all to detect tho se bugs. It's not like Matbematica, where we can do all
kinds of automated software quality assurance and so on.

We have to rely on human reviewers in journals and things like that, which is a
very unreliable basis I think for findin g out what might be tru e.

W ell even though I myself don 't happen to be particularly thrilled with it,
mathematics as an activity has taken proof pretty seriously.

In fact, it' s taken it so seriously that it hasn't really looked much at areas where it
seems like you can' t do proofs easily.

And essentially I think that' s why there's never been mathematics that's looked
for example at my friend the rule 30 cellular automaton.

In fact, I think it 's a pretty good model for how mathematics has grown-that
there's a pretty good model tha t one can make that's pretty much this .

It all started some time in ancient Babylon from plain ari thmetic and geometry.
And those in turn actually arose from practical applications in commerce and
land surveying and so on .

And in these areas, some neat theorems were found, and some proofs were
developed for those theorems.

And being extremely pleased with the theorems, mathematicians started looking
for ways to get the most out of these theorems.

And to do this, what they tended to do was to generalize the constructs that these
theorems dealt with in such a way that the theorems always stayed true .

So the idea was to make things as general possible, making that generalization by
having the constraint that some theorem or ano ther could still be proved, but
then sort of take away as many pieces as possible while still letting the theorem
be proved.
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So of course with this schem e one thing one can be sure of is that the systems
that one was going to set up, were ones where the idea of proof still worked.

Well, one of the questions that's often asked is a question about whether mathe­
matics is sort of invented or discovered.

I think it' s pretty clear that the sets of rule s that mathematics has actually ended
up looking at were very much invented-in a definite human way, with particular
constraints.

I suppose it' s kind of weird : one usually thinks that mathematics is somehow
more general and more abstract than, say, physics, or some other kind of natural
SCIence.

And the reason for that is that one thinks its rules are som ehow more arbitrary.

It's somehow dealing with more arbitrary kinds of rules.

But actually the conclusion that I've come to is that that's not true, and that in
fact the rules in physics-while there are many fewer of them-are chosen in a
sense more arbitrarily- and are probably much more representative of all possi­
ble rules than the ones that have typically ended up being studied in mathemat­
ICS.

So, in a sense, my adventures in looking at what arbitrary pro grams do can be
thought of as a big generalization of ordinary mathematics-in a sense a study of
what arbitrary mathematicses in the space of all possible mathematicses do.

Well as I'll talk about a little later, an arbitrary mathematics has some similarities
to our particular human mathematics-the one that's developed historically-but
it also has some pretty substan tial differences.

But before I go on and talk about that, let me say a little about how all this relates
to Matbematica, and to thinking about what one can call the foundations of
Matbematica.

Well, first let 's sort of say what my kind of abstra ct view of Matbematica is.

I've kind of viewed my job in designing Matbematica to be to think about all
possible computations that one might want to do, and then to identify definite
chunks of computational work that would get done over and over again in thos e
computations.

And then what I've tried to do is give nam es to tho se chunks. And thos e are the
primitive functions of Mathematica.

Well, one of the things I've learned from building my new kind of science is that
I did a decent job in a certain way: the constructs that I put into Matbematica
correspond pretty well with the constructs that seem to be relevant for represent­
ing for example the rules in our universe and in the natural world.

That has a very practical consequence. If you look at my new book when it's out,
you 'll find the notes in the back are full of Matbematica programs. And those
programs implement the various kinds of programs that I talk about in the book.
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But the point is that those imp lementations are mostly very very short. In other
words, it doesn't take many Mathematica primitives to build the kinds of con­
structs one needs to represent the things that I think are going on in our uni ­
verse .

H ere's an extre me example of that : one of the things I've been doing a bit of is
taking what I've discovered, and trying to use it to finally come up with a truly
fundamental theory of physics. In a sense I've been trying to reduce physics to
mathematics: to get a single abstract stru cture that is, exactly, everything in our
universe.

T hat sounds like an extremely tall order, but for reasons I'm not going to go into
here, I'm increasingly optimistic about my chances of success.

But the point is that one of the ways one can measure how well the primitives in
Matbematica were chosen is how complicated the final program that is the
universe needs to be, when it's written in Mathematica.

And actually, I had thought it was going to need to be rather long. But I noticed
a year or so ago that in fact the basic system I was studying could actually be
written as a surprisingly short collection of somewhat bizarre rules for M athemat­
ica patt erns. T he only problem was that they didn' t run all that fast.

I suppose that' s no t surprising if you're trying to reproduce the whole universe,
that it not run all that fast.

But in the next version of Mathematica, or perhaps the one after that, I will tell
you now the slight secret that there'll be a few hidd en optimizations that make
the universe run a littl e faster in Mathematica!

Well, I' m pretty confident that the primitives in Mathematica are well chosen if
one wants to represent fairly arbitrary computations of the kind that for example
seem to get used in natural science.

But what if one wants to "do mathematics"? Are the primi tives that one has the
best possible primitives?

Well, obviously one can go a very long way with these primitives, as we've all
done.

And actually that right there tells one something about what's involved in mathe ­
matics.

But obviously there are a lot of primitives in Mathematica-say thin gs like
Factor and Expand and so on- that are very specifically set up to fit into particu­
lar kinds of structures that people often use in mathematics.

And then way down at the bottom level in Mathematica there are general transfor­
mation rules , which seem to be a good representation for arbitrary computations.

But the question is: what are the interm ediate constructs that are not specific to
particular areas of mathematics, but are constructs that support the genera l kinds
of rules that are used in mathematics?
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Well, to answer this one has to know more about what mathematics actually is,
and what special characteristics its rules have.

One might think that the question of "what is mathematics?" is just one of these
abstract things only of interest to philosophers.

But actually if one's trying to design the most general stuff that will be useful in
Mathematica, for mathematics, it becomes very important in practice.

And I should say immediately that I haven 't figured the answers here out, though
I think I'm now beginning to define at least some of the relevant questions.

I kind of like these kinds of problems; in fact, in a sense this is ultimately the kind
of thing I've spent most of my adult life doing: Trying to kind of whittle things
down to find the very simplest most minimal constructs that one needs to do
things. Whether that's cellular automata and models of nature, or whether that's
constructs to support programming in Matbematica .

Of course it's the fate of someone like me who spends a huge amount of time
figuring out things like this that all these things in the end come to seem obvious .

Actually I've often thought how terrific it would be if people would study a little
more carefully why things in Mathematica, for example, are done the way they
are. There's often a huge amount of thought behind things that might seem
obvious, and having that thought more widely understood would be really good
for everyone.

Anyway, I'm gettin g off-topic.

I was talking about understanding what the essential feature s of the activity that
we call "mathematics" really are.

So how does one start on a question like this? Well, like any natural scientist I
think the place to start is to build a model.

By the way, just in case there are any official mathematical logic model theorists
in this audience, I don 't mean quite your kind of model. I mean the kind of
model a physicist, for example, builds.

And the essence of that kind of model is that it's somehow an idealization of a
system.

What one tries to do in making a model in natural science is to capture those
aspects of a system that one cares about, and ignore all the others. A model is in
the end an abstract thing. I mean , one doesn't think a planet going around its
orbit has a bunch of little cogs-or little M athematicas-inside it solving differen­
tial equations .

Instead, the differential equation is an abstract representation of the effect of
what happens.

Now, I must say that scientists-even physicists-regularly get extremely con­
fused about this issue.
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I mean, the number of times I've heard physicists say: but how can your cellular
automata model be a model for such-and-such, because we know the thin g itself
is solving a differential equation?

Well of course that's not true, both the differential equation and the cellular
automaton are just abstract representations of an idealization of what the system
is doing.

The bottom line is that a mod el, as that term is used in natural science, is an
abstract idealization of something .

OK, so what' s a good model for mathematics?

Well what we need is something that captures the essential features for our
purposes of mathematics, but leaves all the inessential details out.

Well, I think it's been fairly clear for a century or so that the first step is to think
about mathematics in terms of operations on some kind of symbolic structures.

And there are areas of mathematics like category theory that go a certain distance
in defining general operations on symbolic structures.

But I've never thought they go nearly far enough.

And when I was designing Matbematica what I ended up trying to do was to set
things up so one could go much further . . . so one could set up absolutely
arbitrary symbolic structures and do essentially completely general tran sforma­
tion s on them.

I originally came to this-actually when I was working on SMP around 1979-by
thinking about how to capture and generalize what humans do when they're
doing mathematics by hand .

I sort of imagin ed that one was always looking up books and finding rules that
said that an expression like this gets tran sformed into an expression like that.

And then I kept on generalizing that idea, and ended up with the notion of
tran sformation rules for patterns.

And, as we all know from Matbematica that idea is extremely successful in repre­
senting all kinds of computational and mathematical ideas. And gradually mor e
and more people even seem to understand that point.

W ell, what I did with transformation rules in SMP and later Matbematica is a bit
like the whole tradition of work in mathematical logic and in the theory of
computation.

But it 's different-at least in intent-in some subtle but rath er important ways.

And to understand more about what peopl e usually think of as being the disci­
pline of mathematics I'll have to explain something about that.

Ultimately the big difference is between being interested in doing proofs and
being interested in doing calculations.
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But to see what's gone on I' ll have to tell you again a little bit about the history
of all this.

Well, I guess it was at the end of the 1800s, particularly following all the discover­
ies made by generalizing Euclid's axioms and so on, there got to be the idea that
somehow mathematics could be thought of as a study of the consequences of
appropriately chosen sets of axioms.

And it turns out that axioms in this sense are very much like transformation rules
for symbolic expressions.

These are Peano's axioms.

YxS(x) * O

«. (Y y (S(x) ==S(y) =>x == y » )

Yx x +0 == x

Yx (Yy x +S (y ) == S (x +y »
Yx x 0 == 0
Yx (Yy X S (y ) == y x +x)

A(O) => «Yx (A (x ) => A(S (x)))) => (Yy A(y)))

So this is just an example of an axiom system. These are Peano's axioms for
arithmetic. And one can see that they're-I'm not going to go into this in great
detail-one can think about these things as essentia lly like transformation rules
for symbolic expressions.

W ell actually, in the way things are often set up, there are usually so-called "rules
of inference" in addition to axioms. And it' s these rule s of inference tha t are the
direct analog of transformation rules .

But actually, as I'll perhaps explain later, one can just as well think about the
axioms the mselves as being like transformation rules.

And essentially what the axioms say is that one mathematical construct or state­
ment can be transformed into another mathematical construct or statement.

OK. W ell that sounds very much like transformation rules in Ma thematica. But
there 's a crucial difference, and it' s associated with the word "can" .

You see, in Mathematica, one just takes an expression and then uses a sequence of
transformation rules and looks at what comes out.

But in the axiom setup in mathematics, one is usually interested in asking
whether one can find any sequence of transformation rules that will get one from
one particular expression to another.

It's basically the difference between calculation and proof.

In a calculation one just wants to follow a procedure and get an answer.

In a proof one wants to know whether there's any path one can follow that goes
from one statement to another.
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And as a practical matter it's usually much easier to do calculations than to do
proofs.

And that 's sort of why Mathematica can work well, and why logic programmin g
languages like Prolog and so on that are closer to emulating proofs never really
work that well.

And that' s why I've always tried to be very careful in designing Matbematica to
set modest expectation s with the names of functions like Simplify that have to
do things that are more like proofs.

But anyway, the idea of thinking of mathematics as the study of the consequences
of axiom systems did introduce the notion of transformation rules historically.

But so what were these transformation rules like?

Well, actually, some of them were actually formulated very much like the ones in
Mathematica.

And in fact by the 1940s there were transformation rules being talked about that
are very similar in spir it to the ones in Matbematica.

But at least when people thought about these being applied to mathematics, they
normally thought about them as being used in a proof kind of way rather than in
the kind of way they are used in Mathematica.

OK, so basically what we've learned here is that the kinds of transformation rules
that are in Mathematica are decent models for the kinds of transformation rules
tha t are in mathematics.

And of course in a sense the success of Mathematica already told us that.

But one question is, do we need all the compl icated stuff that' s in the transforma­
tion rules in Mathematica to be able to repro duce what are somehow the essential
features of mathematics?

Well, I don' t think so. Not at all in fact.

And actually that' s analogous to what I've found over and over again in physics
and biology and other natural sciences. T he really important and general phenom­
ena don 't depend on very much, so one can perfectly well capture them even
with very simple models.

OK. So what then is the appropriate minimal model for mathematics?

What can we get rid of and still have the most important phenomena in mathe­
matics?

Well, Mathematica patterns have already gotten rid of all sorts of hair that one
usually sees in formulations of mathematics.

For example, there are no explicit types in Matbematica expressions . Only
implicit ones from the structure of the expression tree or the names of heads .

I might say that when Mathematica was young, peop le often said: you can 't do
anything like mathematics without having an explicit notion of types.
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But actually I think it's fairly clear that they were wrong. What we can do in
Mathematica with symbolic expressions and their stru ctures is actually much
more general than what one can do with ordinary types.

Let me make a brief historical digression , that some of you may find fun, about
types.

Well, in an effort to build up all of mathematics from some kind of uniform set
of primitives the first really serious efforts along these lines got made by Frege in
the late 1800s and by Russell and Whitehead in the early 1900s.

All of these folks had the idea that one should star t from logic to try to build up
all of mathematics.

For various reasons, I actually happen to think that the basic idea is fairly
silly-that one wants to start actually from much more arbitrary symbolic stru c­
tur es, rather than from the parti cular stru cture defined by logic.

But anyway, what they were trying to do was a littl e like what I'm talking about
today in making minimal models for mathematics-or , for that matte r, what I
was trying to do in the underlying design of Mathematica.

T hey wanted to be able to have a small set of primitives, and then assemble these
to represent all the constructs of mathemati cs.

Well, they had a difficult time doing what they wanted to do. And of course they
had many practical disadvantages compared to what we can do today. Like never
being able to run the things they created.

But all in all I've actually always considered Principia Matbematica of Russell and
Whitehead to be perhaps the worst example of langu age design of all tim e. I
think some modern languages and systems are pretty bad. But actually nothing
compared to Principia Mathematica.

One of the most baroque pieces of Principia Mathematica in fact has to do with
types-and later ramified types-which were originally introduced as a way to
avoid various logical paradoxes and so on.

Well, anyway- it's all a long story, not all of which I even know-but this idea of
types that kind of came from this detail about avoiding paradoxes and this rather
baroque formali sm of Principia Matbematica somehow got assumed to be fund a­
mental to all of the form alism of mathematics.

But I think Matbematica proves that it isn 't really necessary to think about that
kind of thing.

So, alright, let 's assume Matbematica transformation rules are eno ugh to repre­
sent mathematics . But what can we drop then in these transformation rules?

Well, anothe r big feature of transformati on rules is variables, and the ways
variables are treated in scoping and thin gs like that.

Another big featur e of transformation rule s, at least in Matbematica, is that they
operate on expressions that can be thought of a bit like trees.
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But let' s for the time being assume we can just ignore both of these ideas.

Later, if there's time, I can talk a little bit about some rather abstract things
called combinators that actually don 't ignore these ideas, but still give very
simple models of mathematics. But the models are a bit harder to understand
than the models that I was planning to talk about.

OK., so we're going to ignore variables and tree stru ctures.

What's then left in Mathematica and its transformation rules and so on?

Basically what M athematica is then doing is transforming sequences of symbols,
or strings of symbols.

Well, in a practical use of M athematica the appropriate strings tend to be pretty
complicated.

In an effort to find the minimal stuff that' s going on, let' s see what happens if we
work only with very simple strings.

OK. So let me try and show you some examples of what an absolutely minimal
M athematica would look like.

Well, let's formulate this in M athematica. Let's have an object 8 that I'm going to
say is Flat.

I'm going to define various rules for 8 of various sequences of elements. And
then all I'm going to do at every step is to apply these rules to the sequence of
elements I've got, just following Matbematica's normal how-it-applies-rules
scheme.

So let 's take the rule 8[1,0]-+8[0,1,0]. This says " 1 , 0 gets turned into
0,1,0".

NestList [. / . {s [1, 0] ... s [0 , 1, O]} t , s [1 , 0 , 1 , 0] , 6]

OK? Let's see what that does.

{s[1 , 0, 1 ,0], s[O, 1,0,1,0], s[O, 0,1,0,1,0],
s[O, 0, 0 , 1, 0,1 ,0], s[O, 0, 0, 0, 1,0,1,0] ,
s[O, 0,0,0,0,1,0,1,0], s[O, 0, 0, 0, 0, 0,1,0,1, O]}

Well, we can make a picture that corresponds to the outcome that I got here, and
it says that at every step that rule just prepends a "0" onto the string that we
have. OK?
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Well so that's an extremely trivial example of what M atbematica can do, so to
speak. Let's try looking at anoth er rul e. Let's look at this rul e here. This rule has
two pieces in it . But it' s, again, it 's the same structure of rule.

Let 's see what that does if we just start it off from some string. So her e's what
that does after a few steps.

•••
• •-.....::::: 0-
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•• -.....::::: ::---~
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••• •
•• ••
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So you can see it' s doing something a little bit more complicated. And again what
thi s is doing is it' s just doin g a sort of minimal version of wha t Matbematica does
when it applies transformation rules . H ere's a slightly bigger version of wha t
happens with th at rule.

So again, just like our in tuition might have suggested, if we have sufficiently
simple rul es here, we're doing th e minimal versio n of what Matbematica does, the
results are simple just like the rules are simple.

Let's try ano ther example. Here's ano ther rule.

OK? It' s slightly more complicated. ow th ere are three rep lacements in our list
of Matbematica rules. Let's see what tha t one does .
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A little bit more complicated. You can just see it going down the left . It's a little
bit more complicated. You can see it's doing this sort of nested, kind of fractally
thing. But again, it's comparatively simple .

OK, let's try another example. This is another set of sort of minimal Mathematica
rules . Pretty simple set of rules.

We could just write it down in Matbematica notation so to speak. In Mathematica
notation, that rule would just be this thing here:

is [0, 0, 0, 1] ~ s [1 , 0, 0] , S [0. o, 0] ~ S [ 1, 1], S [1] ~ S [0 . o. 1]}

Let's see what that rule does if we apply it to some particular initial condition.
Say we start off with "1 0 1".

TheMothemotico }ournol 8 :2 (2001) © 200 1 Wolfrom Media , Inc.



218 Stephen Wolfram

OK, that's what this rule does. Pretty simple rule as I showed, pretty simple
initial condition. But that's the result it generates. Let' s try running it for a bit
longer. So what I've done here by the way is I've kind of folded this around so it
goes down the first column then up to the top of the second column, and so on.
Let's try running it, say just for a few hundred steps.

T here's what we get . Again I've folded these columns around. So this is again an
example, just like in my rule 30 cellular automa ton, of a case where we have very
simple rules, we start off with a very simple initial condition, yet the behavior we
get is something very complicated.

And notice that this is a minimal idealization of Mathematica. T his is not some­
thin g like a cellular automaton that we got from somewhere else. T his is some ­
thing that just comes from essentially looking at an idealization of Mathematica,
and in a sense an idealization of mathematics.
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So what can we say about pictures like this.

Well, one pretty much immediate thing that one can say is that it can end up
being undecidable what actually ends up happening in a picture like this.

I don 't think I have time to explain lots about universal computation, and about a
much stronger phenomenon that I call computational irreducibility.

But let's see what it might mean to say that something is undecidable in a system
like this one.

Le t me use a cellular automaton as an example. Let me pick a particular cellular
automaton and let' s start off running the cellular automaton with an initial
condition that has just a single gray square in it. Well it's very easy to decide
what will happen to the cellular automaton. After a little while the activity will
halt, and the pattern will die out.

But let's say we change the initial condition

a little bit. Instead of having just a single "I" [light gray], we have a "2 3" [dark­
gray cell, black cell] in the initial conditions.
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So that' s what it looks like then. It's a lot less clear what's going to happen then.
Let's run it for 300 steps for example.

Is it going to die out? Is it not going to die out? H ow can we tell? Let 's try
running it for say 1200 steps. OK, and here's the result we get.
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Here's the result we get from that. . . scroll down. . . well we see that sometime
before 1200 steps, after doing all kinds of crazy things, this pattern eventually
died out .

Well let's take another initial condition, let' s say a pair of ones [pair of light-gray
cells].
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Let's see what happens und er those circumstances. H ere's what we get then.
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And actually, I don 't know what happens in this case. I can follow it for perhaps a
million steps or so and it's still just kind of globulating around, and it sort of
hasn't made up its min d about what it's going to do. It's not clear whether it's
going to halt or not . And this is sort of a quintessenti al example of some thing
where, the question of whethe r it ultimately halts or not , is something that will
be form ally und ecidable. Well, how can one think about this?

If one thinks about trying to work out what will happen in a system like this,
what one does when one tries to predict the system is one tries to have some kind
of device that will outrun the actual evolution of the system. One can try to find
some clever system that will be able to predict whatever the cellular automaton
will do before the cellular auto maton knows it .

But the best kind of predicting device will end up being a universal computer. It
turns out that this cellular automaton itself is almost certainly a universal com­
puter. For those of you who know about these things, that' s actually a rather
surprising and stunning fact. But I won't go into that right now.

Anyway that means that one will never be able to have a predicting device that
will systematically outrun the actual cellular automaton.

So one will never be able to tell for sure what will happen after an infinite time,
except in effect by spending an infinite time figurin g it out, just like the cellular
automaton does.

And that's why one says that the halting problem of telling whether a pattern will
ever die out is und ecidable.

Well OK. So this undecidability thing also happens in the string rewriting
systems that I talked about before.

And it also happens in dealing with transformation rules in mathemati cs. But the
point is that one doesn 't need all the hair associated with actual ordinary mathe­
matics to get this phenomenon . It already happens in our very simple idealiza­
tion.

But back to the idealization.

T his string rewriting thing that I've talked about is a decent idealization of
Mathematica and of the calculational style of mathematics.

But what about of the proof style of mathematics?

Well, it turns out to be pretty easy to get an idealization of that too.

T he whole thing is tha t in the string rewriting system that I did above, I always
did things in sort of Mathematica style.

At each step, I just scanned the string, and applied the first rule that I could.

So at every step, there was a definite answer.

But in doing proof-style mathematics, one wants to do some thing different.
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One wants to make what I call a multiway system, where one looks not just at a
specific outcome from doing string rewriting in a particular way, but instead at
all possible outcomes.

So let's see how that works . Here's an example of a multiway system. So the idea
is that it's also a string rewriting system. This particular one uses these rules
here-one square can get rewritten to one square, or one square can get rewrit­
ten to a pair of squares.

~ m
r-r-,
o CD ITD

~o CD ITD DITD

~o CD ITD DITD DDITD

~o CD ITD DITD DDITD ITDITD

But instead of just rewriting the string, instead of just keeping the first rewriting
that we end up doing, what we do is to look at all possible rewritings of the
strings. So that means every little box here corresponds to one of the strings that
can be generated, and there are arrows joining the boxes to show what can be
derived from what by doing rewritings.

OK., so let me show you another example just to make clear what I'm doing here.

o
\

This one that I have here is a kind of Fibonacci-style string rewntmg system,
where white gets rewritten to white-black, and black gets rewritten to white. And
so it's fairly easy to work out that there will be GoldenRation approximate­
F1bonacci[n]- strings, at each of the 1, 1, 2, 3, 5, 8, etc . distinct strings at each
step.

So what's the analog of a proof in this kind of system?

Well, it's actually pretty simple . A proof is like a path on this network. A proof is
something that shows one that one particular string can be derived from another
string. Remember that the axioms were these transformation rules here, which
showed how strings can be rewritten. And the point is that what one is trying to
do when one derives theorems is essentially to make up sort of super-transforma-
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tion rules-things that for example say well if you have the string white-black­
white, it can get rewritten to white -white-black-black-black down here.

And one could then add that as an axiom, to say that white-black-white can turn
into this thing and then see what could be produced that way, and in the end the
set of strings that one would generate would be the same as the set of strings that
one generates just by following these axioms, but one would be able to do it
quicker.

So essentially adding theorems, deriving theorems and adding theorems allows
one to collapse the network, and get new theorems more easily.

Well, what can one tell from looking at these multiway systems? One question is,
what do they typically do? These ones that I've shown you here do pretty simple
things. But let's see what the typical multiway system does. One can sort of pick
here essentially the axioms for the multiway systems at random and one can ask,
what then is the resulting behavior of the network of theorems associated with
this multiway system. So here's an example of a rule for a multiway system, and
let's see what that one does.
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That one actually does something quite complicated. It's a pretty simple rule, yet
again, like all of my things here. But what it does is quite complicated.

And, for example, I can ask many kinds of things abou t this system . For example,
I could ask, starting off from this particular initial string, "when does the string
that just consists of a single square first occur?" And the answer is it takes quite a
few steps before that short string first occurs. Actually if you look at all possible
multiway systems , most either don't generate many strings at all, or generate
very rapidly increasing numbers of strings.

But it' s not hard to find these weird and funky multiway systems that don't
generate terribly many strings, but the number of str ings they generate varies
wildly with time . They don 't have to have terribly complicated rules, and so it' s
fairly clear, from the fact that you can get multiway systems like this, that it ends
up being essenti ally impossible to tell how long a chain of strings one will have to
go through to get even from some fairly short string to some other short string.

And that's essentially directly analogous to the observation in mathematics that
even pretty simple theorems can have very long proofs . But we're already seeing
that phenomenon in our extremely simplified model of mathematics.

And because we've got a nice simple model of mathematics, we can ask questions
about what the distribution of lengths of proofs for propositions of certain
lengths is. For example, this is a picture that shows tho se strings which are
eventually generated which correspond essentially to those propositions that turn
out to be true, and that turn out to be provab le. And it shows how far you have to
go before you can generate those things.
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I might say by the way, let me just show you another example of a slightly long
proof in one of these systems. This is a written out proof in one of these systems.
This says you rewrite a white square to black-white-black, you then rewrite the
whi te square in the middle there to black-white-black, in this way, and you' re
kind of writing out a proof here, to show how you get from a white square to a
black square.
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And in this particul ar system there's actually more than one way to get from a
white square to a black square, actually these are all the possible shortest proofs
that correspond to getting from a white square to a black square.

OK. Let's go back to talking about phenomena in mathematics and how they
relate to phenomena in this kind of simplified idealization of mathematics.

Well one very famous phenomenon in mathematics is Godel's Theorem. And I
thought I might tell you a little bit about how Godel's Theorem is related to
what I've been saying .

Well I have to admit something about the models I've been using so far. They
are a bit different from what people consider usually as mathematics, because
they don't have logic, they don't have a notion of logic explicitly built into them.
As I mentioned before , most of traditional and proof-based mathematics is
ultimately based on logic.

I'm not sure that's the best thing, but that's the way it is.

The kinds of multiway systems that I've been showing you so far, are fine ways of
representing relations in mathematics-but not quite the orems .

Actually some people may recognize my multiway systems as being things that
are sometimes called semi-Thue systems.
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And these are essentially semi-semigroups. You see, you can think of the transfor­
mations that I'm doing here as being like relations between words in an algebraic
structure. I'm going to get slightly technical here but it might be of interest to
some people and help people to understand what's going on.

In my systems the transformations can be absolutely anything. But if every
transformation can be applied in either direction then it corresponds to the
relations of a semigroup. And if in addition there are inverse elements allowed,
one has a group. Now, being even more technical, I should say that the pictures
I'm making you might think were Cayley diagrams, they're not. They're actually
a kind of lower level construct. They're pictures of sort of what's inside each
node of a Cayley diagram-of all the words that are equivalent, say, to the
identity.

OK. Well, some of you may know about the undecidability of the word problem
for groups. That's essentially the same statement I'm making-about the paths
that go from one word to another by applying transformations being arbitrarily
long.

Let me talk about a more familiar example. Let's think of the poor Simplify
function in Mathematica . It works by applying various transformation rules to an
expression . Let's say that we're trying to determine whether some particular
expression is zero. Well, some transformations may make the expression smaller,
but some may make it bigger. And we can end up having to go on an arbitrarily
long path in the attempt to find out whether our expression is zero or not. And
actually that's the same phenomenon I've shown you too.

OK. But back to the questions about theorems. I've said that these multiway
systems of mine don't really have logic built into them. The underlying problem
is that they don't have explicit notions of True and False . They're just dealing
with expressions, and transformations between expressions. If those expressions
are supposed to be propositions-eandidate theorems in some kind of
mathematics-they should presumably be either True or False .

So how do we set this up? Well, it's really very easy. We just need some opera­
tion on strings that's like negation, and that turns a True string into a False one
and vice versa. And so as an example the operation might just reverse the color of
each element.

OK. So now how do we find all the True theorems? Well, we just start from the
string that represents True, let's say a single black cell, and then we find all the
strings that we can derive from it. But . . . there are some nasty things that can go
wrong. If our rules-our axioms-aren't sensible, we might be able to derive two
strings that are related by negation. And that would mean that we have some
kind of inconsistency. There are two theorems we're saying are both true, but
they are negations of each other.

And most mathematicians would then say that the axiom system one's picked is
no good. But let's say we avoid this problem, and that we are sure nothing
inconsistent like that happens. Then are all axiom systems with this property
decent axiom systems for mathematics?
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Well, there's ano ther problem. And that probl em is completeness. Given a
theorem, can we actually determine from the axioms whether the theorem is
T rue or False? Well, in terms of our networks that's an easy question to formu­
late.

W e want to know whether anywhere on the network our particular proposition,
our parti cular theorem will appear, star ting from the string that corresponds to
T rue . Well, it's pretty obvious there are lots of axiom systems where tons of
str ings will never appear-axiom systems that are utterly incomplete. But what
would a mathematician think of one of those axiom systems? T hey'd probably
think for many purp oses that they were kind of stup id.

Let's say one had an axiom system that was supposed to have something to do
with arithmetic. And it was all very nice. But it couldn' t prove tha t addition is
commutative. Ma thematicians would pro bably say that that was a dum b axiom
system; that they need a more powerful axiom system.

OK, so here's the issue: is there any axiom system that's always powerful enough
to be complete? Well, it's actually quite easy to find one.

Here is an example of an axiom system that is complete and the list of strings that
it generates. T he axiom system has two rules in it, like this,

it star ts off from the str ing that represen ts T rue. And what one finds is that it
generates exactly half of the possible str ings of a given length. Le t's see, I have to
figure out what the interpretation of this thing is-but anyway, it genera tes
exactly half the strings of a given length, and you can apply negation to each of
these str ings and find out that it doesn't generate the string that is the negation
of that string.
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OK. T his axiom system is both consistent and complete, but it 's fairly trivial.
Well how about something that has all the richness of a real area of mathemat­
ics?

Well, Hilbert showe d that Euc lidean geometry is an example: something tha t is
complete and consistent. And people thought in the early par t of this century,
that all other serious mathematical axiom systems would be the same way.

But what happened in 1931 was that Codel showed that that wasn't true. He
showe d that Peano arithmetic was incomplete-tha t there were propositions in
Peano arithmetic that couldn't be proved in any fmite way.
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Again, one might say, so what? I mean, in what's called Robinson arithmetic one
has a fine set of axioms, but it so happens that it's fairly obvious that the system
isn't complete. Because, for example, you can't prove that addition is commuta­
tive. So why is it a big deal that Peano arithmetic isn't complete?

Well, it turns out that it's really a quantitative issue, not a qualitative one. The
point is that Peano arithmetic is very very nearly complete. I mean, all the simple
propositions are connected-or their negations are connected-to the big
network of all True propositions of arithmetic. But what Godel showed is that
there are some propositions that aren't connected to this big network of true
propositions of arithmetic. It's a network that might look something like this,
except that it grows much more rapidly at every step.

It's a bit of a long story, but basically Godel used the idea of universal computa­
tion to compile the statement "this statement is unprovable" into the very low­
level machine code of Peano arithmetic, and that's how he got his result. But the
machine code of that particular expression-the proposition in sort of algebraic
terms that's equivalent to "this statement is unprovable"- is incredibly long . So
that's what was so surprising about Codel's Theorem. That Peano arithmetic
could seem almost complete-but not actually be complete.

Well, one might ask whether Godel's statement is the shortest statement that
isn't provable in Peano arithmetic. And it's been known for some time that it's
not. There are some slightly simpler ones. But they're still incredibly compli­
cated. They're nothing like Fermat's Last Theorem, or some kind of question
that mathematicians might seriously ask.

Well, as probably most of you know, Godel's Theorem was a big deal when it
came out, because it showed that Hilbert's ideas about mathematics, and about
being able systematically to establish everything from axioms, weren't going to
work. But as a practical matter, in the past 68 or so years, nobody in practical
mathematics has ended up paying all that much attention to Godel's Theorem.
It 's always seemed too remote from the kind of questions that mathematicians
actually end up asking. And the reason for this is that in Peano arithmetic the
simplest incomplete propositions-that are known at least-are really compli­
cated.

Well, I happen to think there are some somewhat simpler ones-I even have a
potential candidate for one. But still, Peano arithmetic is basically a special
almost-incompleteness-safe axiom system.

So... what does this mean about our efforts to find simple models of mathemat­
ics? Is this feature of Peano arithmetic something that's very hard to get? And
that requires all the hair of Peano arithmetic and that's important in having
something that is a realistic model of what mathematics could be.

One might think so. But it 's actually not true. Let me just say that if one searches
through simple multiway systems , one can find other examples. Some systems
are obviously inconsistent; some are obviously incomplete.

But it's not hard to find ones where incompleteness happens sort of arbitrarily far
away. So there's nothing special about Peano arithmetic in this respect either.

The Mo themolico Journal 8 :2 (200 I) © 200 I Wolfrom Med ia. Inc.



Th e Foundations ofMathema ticsand Matbema tica 231

So, OK What are all these axiom systems that seem to have all the familiar math
properties? Well, you've never heard of any of them. They're just not things that
have ever been reached in the history of human mathematics. And there's a huge
huge world of them out there. Some have easy interpretations to us humans.
Some don't. They're sort of alternative mathematicses. So how does one com­
pare these mathematicses to the mathematicses we're familiar with?

I mean, each field of mathematics has a different character. Even within the
mathematics that we are familiar with, different fields have different characters.
How does that show up in the idealization of mathematics that I've been talking
about?

One can think of building this network of theorems for each field. Say for
number theory. Or geometry. Or functional analysis, or something like that. And
then one could for example start asking simple questions like, what the statistical
properties are. How connected it is? How many long paths there are in it?

Let me show you for instance for Euclid, Euclid's Elements. This is the depen­
dency graph of the propositions of Euclid's Elements, in Book 1, Book 2, Book 3,
etc .

You can unravel these to some extent. I haven't got the best unraveling yet.
Euclid was a little bit optimistic in what needed to have what depend on. But
anyway, this is the network that you get from looking at the dependencies in
Euclid 's Elements .

I was showing you this rather messy dependency network. This is the picture of
the particular theorems Euclid thought were interesting that you get from the
multiway system that is geometry. It reminds me of a quote from Codel, when
asked about mathematics, what the role of a mathematician was, his idea was that
the role of the mathematician was to work out what theorems are interesting.
That a machine can generate all the possible theorems, but the role of a mathema­
tician is to work out what theorems should be considered interesting.

Anyway, what do the properties of this kind of network mean in mathematics?
When people do mathematics they talk about deep theorems, powerful theo­
rems , easy lemmas, elegant theorems those kinds of things . And it turns out that
each of those kinds of things , one can start to try to define in a precise way in
terms of the properties of a network like this.
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And I think if one drew the networks for, say, number theory and say, algebra,
one would be able to see by looking at them something about the very different
charac ters of those fields.

So one question one might ask is, "What common features are there in the
networks humans happen to have thought up for their mathe matics?" I don' t
exactly know right now. T hat's some thing for which one would require quite a
bit of empirical data to be able to work out. But the critical question is whether
it 's all just historical, or whe ther some of it is a consequence of some general
principle-or perh aps some human limitation or human foible.

It' s a little bit like asking about human languages, whether there are all possible
forms that appear in human languages or not. T he actual observation is that
while there are incredibly many exceptions, typical human languages that people
actually und erstand are not that far from being context free.

Well, it's also interesting to think about what kind of mathematics . .. and
thinking about whe ther the mathematics that we have is necessary, to think about
what kind of mathematics the extra terrestrials might have. People tend to assume
that they'll think primes are important.

I think that 's a fairly absurd possibility. I' d bet on the rul e 30 cellular automa ton
over the primes any day. And actually I think from my studies of all possible
simple pro grams, I can say a certain amoun t about what's likely to certainly exist
in the mathematics of any creature. But it' s definitely not the primes, I think. I
mean, even in human mathematical history, there are lots of obvious twists and
turns. If you talked to Pyth agoras, for instance, he'd be much more excited about
perfect numbers than about prime numbers. But it so happens that primes have
won out in the history of mathematics in the way it's developed. But I don 't think
that's in the slightest bit fund amental.

But OK. If we think about building Mathematica, Ma thematica does reflect actual
history. I mean, we have all those special functi ons that happen to have been
identifi ed in the nineteenth cen tury, and so on.

And they' re very useful. T here's nothing wrong with us pandering to the history
of mathematics in designing Matbematica.

It's just that it would be nice to find constructs that are as general as possible to
represent what happens in humanly chose n mathematicses.

So that's a challenge. Now, if one tries for example to do the proof thing in
complete genera lity, and thinks that the idea of proof in general is the thing that
is special about human mathematics, then one will quickly fail.

I mean, let's say we try to make a function-eall it say, FindRules- that takes a
list of replacement rules, and instead of just having a single expression that it tries
to reduce-it has two expressions, and tries to find a sequence of replacements
from the list that it's been given that will take one expression into the other.

Well, this function will be very unsatisfactory. It'll have to work by doing the
same kind of thing that we have to do in one of these mul tiway systems. And it
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will have a very hard time trying to find whether there happens to be a path from
one of the expressions that we gave to the other expression that we gave.

We'd be getting tech support calls about this function all the time. And the
reviewers would be doing benchmarks and complaining that the function is too
slow, and so on . Because-and this is what I've discovered from looking at
random simple programs-much of the time the network of things one can get
to from the replacements is a big mess, and there's no quick way to find out
what's going on.

In a sense, people would be reporting the undecidability of the halting problem
as a bug all the time. But the question is: can one do better?

And there are two ways we might be able to do better. One is by using essentia lly
a directly historical approac h, and basing everything on the kinds of rules that
happen to have shown up in arithmetic and geometry and all the things that have
been derived from them.

But maybe, just maybe, one can do something more general. And to see if one
can one has to understand what it really takes to be a human mathematics. I
mean, if one looks at arbitrary mathematicses tha t come out from the simple
rules and simple programs I've investiga ted, one is usually thrown into und ecid­
ability and so on very quickly. And in fact the whole idea of doing proofs and
things pretty much disintegrates in that case.

But perhaps that isn't tru e for any set of rules that would come from axioms that
might realistically be used in human mathe matics . It' s sort of the following
question: if you see a ran dom collection of axioms, can you tell if they had a
human origin?

It's again a littl e bit like asking about languages. If one has an approxima te form­
al grammar for a language- a natural language or a compute r language-can one
tell if it was set up or used by humans? Or whether it was just randomly chosen?

I' m no t sure about the answer to this for mathema tics, and it' ll be interesting to
see. One thing I am sure about is that if one doesn't put on whatever constraints
are associated with human mathematics, there's an awful lot of other mathematic­
ses out there to investiga te. Mostly they can't be investiga ted by the same meth ­
ods as the ones that have been used so far in history in human mathematics .
Mos tly I think the proof idea for example won't work. And instea d one's left
with-just as in most fields of science-is mostly finding out what's true by doing
experiments, not by making proofs about what has to be true. And of course in
doing those experiments that's something that Matbematica can do very well in
its present form.

But even though there's a lot of other mathematicses out there that one might
investigate-with all sorts of weird and wonderful properties-that doesn't mean
there's no more to do with our regu lar old human mathematics. T here certainly
is. And I hope it can be done very well with Matbematica.

But as one tries to see how to do it, one has to understand what one is doing, and
the fact that the mathematics that one is investigating is I think very much a
historical, cultural, artifact. It happens to be a very wonderful artifact. Intellectu -
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ally I think it's much deeper than for example systems of human laws, or our
schemes for art or architecture and things like that. But nevertheless an artifact.

And that means that one cannot somehow expect it to be typical of all the possi­
ble mathematicses, or of what might happen in nature.

But that's what my new kind of science is trying to deal with : working out what
all those possibilities are, what all possible mathematicses might do. And that's
what I've spent the past eight years or so investigating, and in finding out how
the mathematicses that are sampled by the natural world-what those are like
and what their properties typically are.

Well, I should probably stop here. As is usual I've probably gone way over time.
And I'm afraid this has gotten very abstract, but perhaps I've managed to commu­
nicate at least a little bit about a few of the things I've been thinking about. So I
thank you all very much.
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