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CHAPTER ONE :

	

QUANTUM MEaiANICS .

1 .1

	

Matter Waves .

In 1923 Lade Broglie suggested (1) that radiation and matter might i n

some way be both wave-like and corpuscular . He was led to this idea by the fac t

that in some experiments, such as that of Young's slits (2), light behaved as i f

it were a wave, whereas in others, such as Compton scattering (3), it behaved

like a corpuscle . He postulated that electrons might also possess a dual nature ,

and should thus be able to display wave-like characteristics .

Let us now assume that matter or de Broglie waves exist, and attemp t

to find their form for a single particle moving uniformly in the absence o f

any external force' (4) . Let the mass of the particle be m, its momentum p

and its energy be E . We should expect the de Broglie wave of the particle to b e

longditudinal and hence we represent it in the standard manner by the wave

function (5) :

1J1' (x, t)

	

=

	

A exp (jx . k - j f t) ,

	

(1 .1 .1 )

where x and t are the position and time co-ordinates of points on the wave ,

A is the amplitude of the wave, f is its frequency, and k is its wave o r

propagation vector . De Broglie' s problem was to find a formula for 16. in terms

of the kinematical and dynamical variables of the particle . The wave describe d

by (1 .1 .1) is a plane wave, whose planes of constant phase, 4 , are given by

(x . Is - ft) _

	

(1 .1 .2 )

These planes, and hence the whole wave, propagate with the phase velocit y

of

	

f'k,~k2 .

	

(1 .1 .3 )

However, in the light of later developments, we find that we must not equate

the phase, but the group velocity of the de Broglie wave to the velocity of th e

particle . Group velocity is the velocity with which a signal or 'packet' o f

energy may be propagated on the wave in a dispersive medium, and it is given

by the formula (6) :

v = (df /dv) (dv/dk) .

A further postulate is that the relation



E = gf

	

(1 .1 .5 )

which Planck had suggested for photons in 1900 (7), and which had been verified

experimentally by Lenard (8) and Millikan (9), also holds for de Broglie waves .

is a constant known as Dirac's constant, define d

= h/2'T, (1.1 .6 )

where h is Planck's constant, the value of which is currently acknowledged t o

be (10) :

h = 6.6219620(10) x 10 -34 J s .

	

(1 .1 .7 )

Using relativity (see Appendix A), we obtain

E _ Xf = (mc2)/(,(l - ( v/5 2 )) ,

and substituting in (1 .1 .4), we have

dk

	

1 df

	

m

	

1 - v 2

	

-3/2

dv

	

v dv

	

(' .

	

c
Sinc e

k

	

1/>. ,

	

(1 .1 .10 )

it is reasonable to assume that the boundary condition

k- 0,

	

v 0

	

(1 .1 .11 )

pertains, and hence, by integrating (1 .1 .9 )

	 my	
gk

	

l —	 (v/c)2j = p ,

	

(1 .1 .12 )

which is known as de Broglie's relation . Since the direction of k must alway s

be the same as that of p in (1 .1 .12) it is often easier to express this formula :

(1 .1 .13 )

in vector notation . De Broglie's relation may be obtained without assuming

(1 .1 .5) using relativity, and this method is used in Wichmann : Quantum Physics ,

McGraw-Hill 1971, pp . 183-186 .

1 .2	 Experimental Verification of De Broglie's Hypothesis . (11 )

In 1927 C .Davisson and L .Germer (12) attempted to detect and record

electron diffraction patterns . An electron beam emitted from a heated tungsten

filament was focused and accelerated to an energy of between 15 and 350 eV by

a charged slit . The beam was deflected by a nickel crystal upon which it wa s

normally incident and was detected by a sensitive electrometer which could mak e

an angle of between 200 and 90 0 with the original beam . The interference patterns



observed were very similar to those produced by 'soft' Laue-Bragg x-rays (13) ,

which was satisfactory, since the electrons' wavelength as predicted by de Broglie' s

relation was very similar to that of these x-rays .

Thomson performed a similar experiment of a more spectacular natur e

using the Debye-Scherrer method2 in x-ray diffraction work . He scattered an

undirectional monochromatic beam of cathode rays with a very thin film containin g

a large number of randomly orientated crystals of white tin . Experiments with

x-rays had shown that the diffracted beam should emerge from the group o f

crystals along the surfaces of concentric cones centred about the inciden t

direction . In Thomson's experiment (14) a photographic plate was placed 32 .5 cm

from the group of crystals at a normal to the beam . The image on this plat e

was found to consist of a series of concentric circles similar to those obtaine d

with x-rays . In order to prove that these were caused by the electrons themselve s

and not by secondary electromagnetic radiation, a magnetic field was applied to

the diffracted beam, causing the image to move . Panto (15) developed Thomson' s

technique by using metallic oxides deposited on a thin metal wire instead o f

delicate crystalline films . In 1920 Rupp and Worsnop (16) showed that electron s

were also diffracted by ruled gratings .

Johnson investigated the wave-like nature of hydrogen (17) by reflectin g

the gas from crystal surfaces . His detector was a plate smoked with molybdenum

trioxide, which becomes blackened when it reacts with hydrogen . Stern, Knauer,

and Eotermann found that the wavelength of molecules in hydrogen were in exac t

agreement with de Broglie's relation (18) . Ellett, Olson and Zahl (19) then

showed that mercury, cadmium and arsenic ion beams could be diffracted b y

crystals, using rock salt as a detector . Some years later Zinn (20) demonstrate d

that neutrons also displayed wave characteristics . Neutrons from a chain-reacting

pile were slowed down by graphite blocks and collimated by a series of cadmiu m

slits . They were reflected from the face of a calcite crystal and detected b y

means of a boron trifluoride counter .



1 .3	 The Schrddinmer Equation . (21 )

In order to progress beyond problems concerning purely a continuous

harmonic de Broglie wave, it is useful to have an equation for which both

this wave and more complicated waves are solutions . This equation must obey

two fundamental requirements . First, it must be linear, so that its solutions

may be superposed to produce effects such as interference, and second, it must

contain only such constants as $ and the mass of the particle, and it must b e

independant of all kinematic variables of the particle . An equation of thi s

.type may be obtained directly from the wave equation (1 .1 .1 .) . Differentiating

this partially with respect to t once and with respect to x twice, we obtain

a/Z t

	

— -2-ri jf exp 2rrj(kx — ft)

	

(1 .3 .1 )

and

'a2 r/ax2

	

_ -4`n 2 k 2 exp 2Tc j (cx - ft),

	

(1 .3 .2 )

Substituting with the original function

	

we find that

2 14l/ 2 t

	

=

	

-2 -rr j f

and
--e,

2 /a x2

	

-47
2

k2

	

(1 .3 .4 )

Solving for f and k in (1 .3 .3) and (1 .3 .4) and substituting these solutions i n

(1 .1 .13)
2 a 2 V

—

	

,

	

(1 .3 .5 )r t

	

2m

	

x

which is known as the Schrddinger equation for a free particle l .

The above treatment may readily be extended into three dimensions .

We use the vector form of the de Broglie relation (1 .1 .13), and assume that

k = }k) ,

	

(1 .3 .6 )

so that the Schrddinger equation in three dimensions becomes

2l

	

_ 2 2

	

l

	

2m v

	

( •3 .7 )

where 72 is the Laplacian operator
2

	

2

	

2
2

	

-2 + -~—2 -~-

	

2 .

	

(1 .3 .8 )
xl

	

a
x2

	

o x 3
By comparing (1 .3 .7) and (1 .1 .13), we can deduce that the energy and momentu m
of a free particle may be represented by differential operators acting on its

(1 .3 .3)



'wave functio n

at

	

( 1 .3 .9 )

P —4

	

grad 3

	

(1 .3 .10 )

We now write down the four so-called 'harmonic' or plane wave

solutions for the Schrddinger wave function '1 (22) :

cos (kx -- ft) ,

	

(1 .3 .11 )

sin (kx - ft) ,

	

(1 .3 .12 )
ej(kx-ft),

	

(1 .3 .13 )

e j(kx-ft) .

	

(1 .3 .14 )

1 .4	 Interpretation of the Wave Function . (23)

In classical physics, the value of a wave function represents an

associated physical parameter . For example, in the case of waves in air, i t

represents the displacement of the air particles . In 1926 Born suggested (24 )

that the value of (x, t) for the de Broglie wave of a particle corresponds

to the probability that the particle will be at a point x on the x-axis at a

given time t . However, a probability must be real and positive, but values o f

4T(x, t) are, in general, complex . Hence Born suggested that the probability

should be the product of the value of the wave function and its complex conjugate ,

so that the probability of finding the particle between x and x + dx is given by

P(x, t) dx . ^1iI*(x, t) ' T(x, t) dx .

	

(1 .4 .1 )

This so-called 'position probability density' may readily be extended int o

three dimensions :

P(x, y, z, t) dx dy dz =

	

x, y, z, t) S'(x, y, z, t) dx dy dz . (1 .4 .2 )

Let E be the volume of the infinitesimal element of space dx dy dz . Since it

is a certainty that the particle must exist somewhere in space ,

P(G , t) de = 1,

	

(1 .4 .3 )

henc e
+,

T*(E , t) 'Is(e , t) dE = 1 .

	

(1 .4 .4 )
_ oo v
Thus, in order to normalize a given solution to the Schrddinger equation, we

multiply it by its complex conjugate and integrate over all space, obtaining a

real number N . By dividing both the wave function and its complex conjugate by



IN, we have

)(e, t}

	

(e°t aE = N/N -

	

11

	

(1 .4 .5 )
N

	

,

v
Hence 'Li is said to have been normalized, and vN is said to be its normalization

factor .

If the function is replaced by its complex conjugate

	

in th e

Schrddinger equation (1 .3 .5) we hav e
U

	

_ 2 a 2
t

	

2-a

	

xr .

Xul tiplying (1 .3 .5) by '1+S' and (1 .4 .6) by ')1, and adding, we obtai n

2 r _

	

2 rf ...., +

	

.

	

4rc i n

	

h

	

a V
a t

	

2
x

	

x

	

r

or

	 h

	

der

	

-ay
a t
•

(Yin + 4v jm ax

	

-

	

,a x

	

d

	

(1 .4 .8 )

We adopt Born's suggestion (24) and define the probability densit y

P

and the probability current4

h

	

nicer

	

~ yf.

Sx - 2rrjm

	

x

	

-

T

	

x

so that (1 .4 .8) now become s

• P
t 'a xx

	

0 .

This equation may be extended to include the three dimensional case by writin g

• P
t

	

-i-

	

div S

	

O .

	

(1 .4 .12 )

Equations of this type are common throughout physics, and represent the

conservation of a fluid (25) . For example, it shows that for a liquid of

density P and with rate of flow S, the rate of increase of liquid per uni t

volume is equal to the rate of flow into that volume . (1 .4 .12) is known a s

the continuity equation of probability . It may also be obtained by showing tha t

the normalization constant of a wave function is independant of time, and thi s

method is used in Schiff : QuantumMechanics, McGraw-Hill, 1955, p .23 .

The Born interpretation makes it possible to write an expression for

the expectation value of a physical parameter associated with a particle . The

expectation value of a given measurement is defined as the most probable resul t

(1 .4 .6 )

at
0, (1 .4 .7 )

(1 .4 .9 )

(1 .4 .10 )

(1 .4 .11)



of that measurement . Hence we may write the expectation value of the positio n

vector r of the particle as

<r) _ CvZ?(z, t) dE = 5 \T (r, t) ry. (r, t) de ,

	

(1 .4 .13 )

'V being normalized . Parameters which do not depend directly upon r and t mus t

be converted into operators before their expectation values may be computed .

The question of how these operators may be combined with the probability densit y

may be solved by assuming tha t

<E> - <22/a,> + <V) ,

	

(1 .4 .14 )

V being the potential of some external force . In terms of the differential

operators (1 .3 .9) and (1 .3 .10), (1 .4 .14) may be rewritten
2

j

	

_

	

-

	

2t

	

2u,

	

<v> .

	

( 1 .4 .15 )

This equation is only consistent with (1 .3 .5) if we say tha t

S,yl(IF) de. ,
where F is a parameter and f is its corresponding operator. Thus

(1 .4 .16 )

and

dE ,

	

(1 .4 .17 )

-j)rad'~1I dE

	

(1 .4 .18 )

1 .5

	

quantization .

Let us consider a particular solution to (1 .3 .5) of the form

NJ( r, t ) =

	

f (r) • g ( t ) .

	

(1 .5 .1 )
Substituting for

	

in (1 .3 .5) and dividing both sides by the right-hand side

of (1 .5 .1), we obtain

Jig _

	

( V 2 fg d

	

f

	

-j- V(r) f

	

(1 .5 .2 )

Since the left-hand side of (1 .5 .2) is dependant purely on g and the right-han d

side purely on f, both sides must equal a constant, E . Thus we obtain th e
expression

- jEt/X
g(t) —

	

Ce

	

(1 .5 .3 )
for g, and

2

	

2
-

	

v

	

-t-

	

V(r)

	

f (r)

	

—

	

E f(r)

	

(1 .5 .4 )

for f . Thus a particular solution to the wave equation is



(r~
t)

	

_

	

f(r) ejEtm

	

(1 .5 .5 )

We now apply the function (1 .3 .9) to (1 .5 .5) to obtai n

'-Tt-

	

E T - (1 .5 .6 )
Thus E is an eigenvalue5 of the energy operator, and 1)1 is an eigenfunction o f

it . An energy eigenfunction is said to represent a 'stationary state' of a

particle, since ► ^`r is constant in time . Similarly, E is an eigenvalue i n

(1 .5 .4) . Thus we see that only an eigenvalue E is a possible energy for the

particle, and hence we have quantized the SchrNdinger equation (1 .3 .5) .

As an example of the process of quantization, we shall now quantize

the harmonic oscillator6 . The potential energy of a particle of mass m which

has been displaced x units from its equilibrium position is given by (26 )

V(x) = 2712 m v.02 x2 .

	

(1 .5 .7 )
Substituting with this in the one-dimensional SchrNdinger equation (1 .3 .5) we hav e

U -2

	

mr,

	

+

	

(W - 2 7T 2 my 2 x2 )

	

O .

	

1 .5 .8x

	

n d

	

0

	

(

	

)

We now introduce the variables (27 )

X = 8 712 mW/h2

and

(1 .5 .9 )

oC = 4 7T 2m v0/h ,

so that (1 .5 .8) become s
2 2 + (\ - c 2 x 2

~ x

	

)

	

0 .

(1 .5 .10 )

(1 .5 .11 )

Following Sommerfeld : ?Wave,:echanics, Dutton, 1929, p .11, we now use th e

polynomial method for finding a solution for 1V. First we find the asymptoti c

solution for 1f1 . Since for large 4x 4 , )\ is regligiLle compared with p2 x 2 ,

the asymptotic wave equation becomes

2

	

2 x2
a x

	

( x ) =

	

e(02) x2 f (x)

	

(1 .5 .14 )
for finite x . Obtaining a power series, differentiating, and solving for ,

	

we obtain

	

1

whose only physically meaningful solution i s

2r(x) = e -('x/2) x?

Now we let

(1 .5 .12 )

(1 .5 .13)



2
(x)

	

=.

	

M e -~ ~2

	

Hr.(~' )

	

(1 .5 .15 )n

	

n
where

x .

	

(1 .5 .16 )

H n (3) is a polynomial of degree n in , and N is the normalization constant

for
In

. (1 .5 .15) is analogous to (1 .5 .5) for a free particle, and may be

quantized in a similar manner . The implications of the quantization of (1 .5 .15 )

may be found in Sc'niff : C'u^ntum ilechanics, ,:cGraw-Hill 1935, pp . 73-82, or in

Pauling and Wilson, Introduction to (`'Jnntum i.:echanics, McGraw=Hill 1955, pp . 60-69 .

1 .6	 The HamiltonEquations ._ (28 )

We define a function L, known as the Lagrangian 29 , such that

L

	

T - V .

	

(1 .6 .1 )

Thus, in one dimension, for a single particl e

L = -m x2 - V,

and since V is a function of x but not of i ,

'6 L/3i = Si ,

and

(1 .6 .2 )

(1 .6 .3 )

L
dt (a )
he partial derivative with respect to x i s

	

L/2x

	

=

	

-

	

aV/3 x = m ,

and hence the equation of motion in one dimension for the particle i s

	

d 2 L

	

'6L

	

- 0 dtax

	

- V X

(1 .6 .4 )

( 1 . 6 . 9 )

(1 .6 .6 )

m2
do
d t

This equation of motion may readily be extended into three dimensions by writing

three separate equations, one in x and i, one in y and y, and a third in z and Z .

Often the co-ordinates of a system, each corresponding to one of its degrees of

freedom, are written qr , so that the Lagrange equation (1 .6 .6) should be solved

for all permitted r . From (1 .6 .6) we see that

pr = ~L/2qr .

	

(1 .6 .7 )

We now define H, the Hamiltonian function (30), such tha t

H = T t V .

	

(1 .6 .8 )

For a single particle in one dimension, where V is assumed to be time-independant,



.2+ V

Thus

H = (1/2m) p 2 -{- V

and

H = (p/m)

	

p + ('3v/ x) Six .

Hence

an d

H

	

. ..

	

Cl V

	

s

a x -

	

x

	

-p
•

Equations (1 .6 .12) and (1 .6 .13) written in the more general form

a H

a pr
= 4r

-p ,, ,

	

(1 .6 .15 )qr

consitute the Hamilton or canonical equations, which are true for any mechanica l

system . A complete proof of these relations may be found in Jeffreys :

;Mathematical Physics, C .U .P ., 1956, pp . 325-327 .

1 .7	 The Dirac Equation . (31 )

The non-relativistic relation

E = p 2 /2m

corresponds to the relativistic (32) relation

E2 = c 2 2 + m 2 c4 .
Substituting in (1 .7.2) with the operators (1 .3 .9) and (1 .3 .10) we have

2
.42	 2

	

=

	

-,2c2,72

	

-7- m 2c 4

	

(1 .7 .3 )a t
which is the relativistic form of the Schrddinger equation . It has solution s

of the type

exp j(k . r

	

- ft) ,

where
= It:oec2k2 + II

2c4 ) 2 .

The possibility of the right-hand side of (1 .7 .5) being negative correspond s

to the existence of a negative energy or anti-matter state 6 of any particle .

(1 .6 .13 )

(1 .6 .14 )

2H

(1 .7 .2 )

(1 .7 .4 )

(1 .7 .5)



By substituting the relativistic formul a

E2 = p 2 -~- m 2

into the wave equation (1 .1 .1) and differentiating, we obtai n

2yi a t 2

	

=

	

(Q2 - m2) 'y ,

	

(32 )

which is known as the Klein-Gordon equation, and which is suitable fo r

describing free spinless relativistic particles .

Due to certain difficulties which arose in the interpretation of

(1 .7 .7), due to the existence of second-order differentials in the relation ,

Dirac suggested in 1928 (33) that both space and time derivatives should occur

to first order in a relativistic wave equation . He used the operator

xr

	

(r w 1, 4)

	

(1 .7 .8 )

where x is a four vector containing the three space components and an imaginary

fourth component of time, according to the i ;iinkowski convention (34), an d

combined it with another four vector in order to obtain a scalar product Which

was Lorentz invariant . Thus he obtaine d
4

Yr ~

	

1 .7 .9 )~r

	

(
r

	

r=1

	

air
which is a Lorentz invariant scalar operator . However, it is possible tha t

the wave equation for a particle contains another scalar operator not involvin g

the term (1 .7 .8), and thus we write the equation in its most general form :

Yr a-xx + c 2I
r

This equation must satisfy Einstein's relation (35) :
-6 2

p2 -

	

2 =

	

-- - m2 ~►j = 0r

	

-m

	

oxr
and operating on the left by

--L.Y

	

- cs x s

c 2

	

U

	

0 .(Ys Yr ax ax -
s

	

r Thus we see that (1 .7 .11) is satisfied by (1 .7 .10) if and only i f

Y % Yr t Yr Ys = 2~sr

where E is the Kronecker delta function (36), such that

(1 .7 .6 )

(1 .7 .7 )

we have

= 0 . (1 .7 .10 )

(1 .7 .11 )

(1 .7 .12 )

(1 .7 .13)

(1 .7 .14)



r e
and

0 (1 .7 .15 )

(1 .7 .16 )
The commutation relation (1 .7 .14) implies that 1 is not a number, since i t

does not commute, but no unique solution is possible, since (1 .7 .14) is the

only defining relation . 4 is usually identified with the set of 4 X 4

Dirac-Pauli (37) matrices, define d

0

	

- j 6
k

	

(k - 1 ;2,3 )
J '

	

0k

Y4=
0

	

-1 _

each element standing for a 2 X 2 matrix .
r_

(S1 _ 0

	

c

	

I-o
1

	

0

	

_
Li

	

0

and

(1 .7 .19 )

number of matrices,
1

	

(unit matrix)

	

1

1/ r
ar ds

	

(r < s)

Yr (s ~t
(r K s Kt)

y l Y2Y3 (4 ( = Y5 )

It is useful also to define a matrix Y 5

c = m .

(1 .7 .17 )

t5K are the Pauli spin matrices :

(1 .7 .18 )
1 o

d 3
0

-1

	

1 = r l

	

0

	

o

	

[o

	

0

	

L0

	

Lo 0

The multiplication of the Y matrices among themselves yields sixtee n

further independent matrices :

product

4
6
4
1

Y 5
0 -1

-1

	

0

y-2 , (1 .7 .20)



The letters on the right-hand side imply that the products behave as scalars,

vectors, tensors, axial vectors, and pseudoscalars respectively under th e

Lorentz transformation . With the Dirac-Pauli matrix choice of representation ,

we may writ e

r

	

~r '

	

(1 .7 .21 )

where i is the complex conjugate transpose or Hermitean adjoint of r .
From (1 .7 .21) we see that b is Hermitean or self-adjoint . A useful relation

between the '(matrices i s

Y 5 Y r

	

Yr Y 5

	

2 5

	

(1 .7 .22 )

The Dirac equation may also be obtained by means of group theory, and thi s

approach is used in 0mnes : Introduction to Particle Physics, Wiley 1970, pp .

191-207, and Weyl : The Theory of Groups and Quantum Mechanics, Dover 1928 ,

pp . 202-218 .

In the Dirac equation (1 .7 .10), Yr is a matrix, and so also is -U.

Sinc e

(AB) t = Bt At ,

	

(1 .7 .23 )
t t

	

_ la m
(x) r

r

	

-4- m t -
xr ► r -t'

	

-Y+

	

0 ,

	

(1 .7 .24 )

and hence, multiplytng from the right by b 4 and introducing the definition

Vtr4

	

(1 .7 .25 )

we obtain the adjoint form of the Dirac equation :

(;Yx r

	

r

1 .8	 The Solution of the Dirac a7uation .

In order to obtain an expression for the current of a Dirac particle ,

we first reduce the continuity equation (1 .4 .12) to four-vector notatio n

2S~axr =

	

0,

	

(1 .8 .1 )

0 (1 .7 .26)



and thus, from (1 .7 .10) and (1 .7 .26), we hav e

J ( a / a.r) ( ' yr T' )

	

=

	

i (m Zy -

	

m'TIJ)

	

=

	

0 ,

	

(1 .8 .3 )

and

P = (Ili) S4 -

	

i4 Y4 )

	

= r-lj ,

	

(1 .8 .4 )

which is the conventional quantum mechanical expression for probability density ,

(1 .4 .9) .

The Dirac equation may be proved to describe the wave functions o f

massive particles of spin or total angular momentum-, such as the electron o r

proton, and this proof is given in Nuirhead : Elementary Particle Physics ,

Pergamon 1971, pp . 50-52 . We now examine a few of the simpler solutions o f

the Dirac equation, which represent possible wave functions for spin 2 particles .

Obviously, since it must be compatible with the f matrix in (1 .7 .10), any

solution must be a four-component wave function, known as a spinor . We writ e

the plane wave solution a s
( r~ t)

	

_

	

uJ eJPixj

	

(J = 1 , 4) ,

	

(1 .8 .5 )

where u is a spinor. Now we set

2

	

p 3 ,

	

(1 .8 .6 )

and thus we obtain, from (1 .7 .10) ,

(-E + m)ul +

	

pu3 0 (1 .8 .7 )

(-E -+ m)u2 -

	

pu4 0 (1 .8 .8 )

( E + m)u3 -

	

pul 0 (1 .8 .9 )

( E + m )u4 -f..

	

put 0 . (1 .8 .10 )

We know that

2

	

2p

	

= E2 - m (1 .8 .11 )

and that
2

	

=

	

1 , (1 .8 .12 )

since u is normalized . Hence,from (1 .8 .7)

(1 .8 .13 )u3iu1

	

=

	

P/( E - m )

and writing

(1 .8 .14 )ul =

	

1 ,

we deduce that

(1 .8 .15 )u 3

	

= PMI's m ) ,
u 2 =

	

u 4 =

	

0 . (1 .8 .16)



Similarly, from (1 .8 .8), setting

c 0 ,

	

(1 .8 .17 )

u 2 - 1 ,

u
4

= -p/(E + m) .

Thus two of our four possible solutions may be writte n

0

1
u4

	

p /( E t-m)

	

u7--

	

0

0

	

-p/(E +-m )

From (1 .8 .9) and (1 .8 .10), we obtain the other two solutions :

-plUE) tm)

	

0
0

	

p/OE1* m )
u -+

	

1

	

u

	

0

	

(1 .8 .21 )

L 1

The solutions (1 .8 .21) may also be found from the alternative plane wave

1' (r, t) — uj e 'jp j X j ,

	

(1 .8 .22 )

which has momentum -vim and energy -E . These assignments are permitted since
=

	

m
2

	

(1 .8 .23 )
does not determine the sign of E. Thus the solutions (1 .8 .21) are negative -

energy ones, corresponding to the antiparticles of spin z particles . Naturally ,

any combination of the solutions (1 .8 .20) and (1 .8 .21) is also permitted . If we

consider the rest frame of the particle, where

p = 0 ,

	

(1 .8 .24 )

then all terms in p dissappear, and from (1 .8 .20) we are left with

	

1

	

0
u+ - _

	

0

	

u ++ -=

	

1

	

(1 .8 .25 )
'^

	

J

which are the two-component non-relativistic Pauli spinors (38) and which

correspond to the two possible spin projections for an electron .

	

u

	

u

	

l

	

3

we obtain

1

0

(1 .8 .18 )

(1 .8 .19 )

(1 .8 .20)

0



CHAPTER TbO :

	

FIELD THEORY .

2 .1	 The Operators PCT .

The parity or space reflection operator, P, reverses the sign of the

x-co-ordinates of a wave function, which is equivalent to reflecting it in th e

plan e

x _ 0 .

	

(2 .1 .1 )

Most physical systems can be described by wave functions which are eigenfunction s

of the P operator . For these, we may write

P ).T(z)

	

(-R)

	

=

	

E, 4r(r) .

	

(2 .1 .2 )

From geometrical considerations, it is obvious that

P2 Ni(r.)

	

_

	

(=)

	

(2 .1 .3 )

and henc e

EZ = 1, C _ } 1

	

(2 .1 .4 )

Thus, for systems with only one linearly independent eigenfunction correspondin g

to a particular eigenvalue, the wave function has a definite intrinsic parity, P ,

which may be even (P = 1) or odd (P = -1) .

We assume that we may write a Hamiltonian in terms of the three-vector

x and that

	

(2 .1 .5 )
i .e . the Hamiltonian is invariant under the P operator . The time-dependen t

Schrddinger equation (1 .3 .7) written in Hamiltonian form i s

H (x ) 1)-(x, t )

	

_

	

jY(ox1t)

	

(2 .1 .6 )

in natural units ( = c =1) . Replacing x by -x in (2.1 .6) and defining

' (x, t )

	

_

	

t ),

	

(2 .1 .7 )
we have, using (2 .1 .5) ,

H(z) ~ _'(x, t)

	

_

	

{x't )

	

J

	

a t
Thus the function Zf'(x, t) is a solution to the same differential equatio n

as 1Y(x, t) .

For the Dirac equation, we write the equation of motion of a particl e

(2 .1 .8)



in two parts (1) :

t )

	

= 2t (2 .1 .9 )

H(x)

	

=

	

oc
p+Y4

m + v(x) =

	

-ix, (a /a k) t't4m + V(x) (2 .1 .10 )

We assume a similar symmetry for the potential V(x) as (2 .1 .5) for the Hamiltonian ,

and writ e

V(-x)

	

=

	

V(x) ,

	

(2 .1 .11 )

Using the anticommutation relations of the

	

matrices, we obtain the property

H(-x) _ 4 H(x) Y4 (2 .1 .12 )

for the Hamiltonian in (2 .1 .10) . Applying the P operator and using (2 .1 .12) ,

(2 .1 .9) become s

v4 -H(x) Y4

	

t)

	

j	 ( x ,t)

	

(2 .1 .13 )

Introducing

y' (x, t )

and multiplying by y4, (2 .1 .13) simplifies t o

H(x) .1J' (x, t )

	

=

	

~ZI~ 	
~(x

4	 t )
a t

(2 .1 .15) is identical with the original equation (2 .1 .9), and hence thi s

equation is invariant under the P operator, implying that in all physical processe s

which are describable by the Dirac equation, the quantum number of intrinsi c

parity is conserved .

The charge conjugation operator, C, transforms a given particle into it s

antiparticle . From similar considerations as those which we employed fo r

parity, we may see that many physical systems will have a definite eigenvalue

with respect to the C operator, or C parity . Symmetry under the C operato r

in classical physics is shown by the invariance of Maxwell's equations under

a change in the sign of the charge and current densities . Only a few particle s

have even C parity, since all baryons (nucleons and hyperons) have B z 1 ,

while antibaryons have B

	

and similarly leptons have L 1, whereas

antileptons have L - -1 . Since both baryon number, B, and lepton number, L ,

are thought to be conserved in all reactions, no baryon or lepton may ever

commute with its antiparticle . The only stable particles with neither charge

nor lepton or baryon number are the photon, the m, and the K° . Of these, only

the IT° has even C parityl (2) .

(2 .1 .14 )'(4(-, t )

(2 .1 .15)



In 1939, Wigner introduced the time reversal operator, T, (3) whereb y

all time variables in an expression change sign . We take the time-dependen t

non-relativistic Schrddinger equation, stated in Hamiltonian form (2 .1 .6) . We

define ~!o :

( x , 0 ) _ yo (x) ,

	

(2 .1 .16 )

and

	

T)

	

=

	

(x) .

	

(2 .1 .17 )

In the original system, the wave function or state vector2

	

evolves fro m

0 into l after a time T, but in the time-reflected system, the state 'n
develops into

	

after the same time T . If we were simply to negate th e

t variable in (2 .1 .6), then the expression would change sign, since the right -

hand side of the equation is linear in the first derivative with respect to t .

In order to compensate for this, we take the complex conjugate of our expression ,

so that the j on the right-hand side introduces a further change of sign .

Thus we define the time-reflected wave function b y

74f' (x, t)

	

14(x., T-t),

	

(2 .1 .12 )

which fulfills the boundary conditions (2 .1 .16) and (2 .1 .17) after complex

conjugation . The state vector ¶' is found to obey an equation which is obtained

from (2 .1 .6) by complex conjugation of each term :

Ham'' (x, t )

	

j
a-lf'(x,t)

	

(2 .1 .19 )~

	

a t

Since it is only the absolute square of the Schrddinger wave function which

is of any physical significance, the operation of complex conjugation does no t

affect the validity of the Schrddinger equation, and hence the two equation s

(2 .1 .6) and (2 .1 .19) are essentially congruent . Thus, any particle or system

which is describable by the Schrddinger equation must be invariant under the

operation of time reversal or reflection .

2 .2	 The Free Scaler Field .

The free scalar Hernitean (real) field fulfills the Klein-Gordon equation

	

- m 2 ) 4)(x)

	

=

	

0 ,

	

(2 .2 .1 )

where 0 is the d'Alembertian operator (4) given by

	

2

	

2

	

a2

	

0 2
q —

	

ax2 + a2 f al t -t x 2 .

	

(2 .2 .2 )
I

	

2

	

3

	

4



1
V

In order to discover more about the degrees of freedom and nature of the field ,

it is useful to perform a Fourier decomposition (5) on it, or to resolve i t

into a series of harmonic components . Thus we obtain

0(x)

	

1V

	

,17� c3 (
ejkz a(k) + e jkz a t(k) ) .

	

(2 .2 .3 )
`

The normalization constant (1/j 2o,;) is so chosen so that the operators a(k) and

al" (k) fulfill the commutation relations (6 )

Ca (k) , a (k' )1 _ [a t (k) ,
al-(LO]

0

	

(2 .2 .4 )

[a (k) , at (103 _ E kk,

	

(2 .2 .5 )

where

[X , Y]

	

=

	

X .Y - Y .X

	

(2 .2 .6 )

V represents a large normalization volume, which is usually considered to b e

a rectangular box with sides L x , Ly and L z . k_ is an energy-momentum four-

vector3 , which, because of (2 .2 .1), obeys the relatio n

k2 4- m 2

	

=

	

0 ,

and, by normalization ,

ki Li = n i 2i

	

( i = x, y, z ) .

	

(2 .2 .8 )
Thus the total number of state vectors , An (7), in the interval d3k i s

An = (1/(217) 3 ) V d3k .

	

_

	

(2 .2 .9 )
When V is large, it is often convenient to replace the summation over allowe d

values of the momentum by the formul a

k
f(k) . being a slowly-varying function giving all allowed momenta . The equating

of the two sides of (2 .2 .10) involves a slight error, but this tends to zer o

as the normalization volume V becomes very large .

We now consider the operator a(k) and its Hermitean adjoint at (k) .

From the commutation relations (2 .2 .4) and (2 .2 .5) we may guess that a(k )

and a1 (k) are the destruction (or annihilation) and the creation operator s

respectively. We begin with a normalized state

(2 .2 .7 )

f(k)

	

=
(2 7

1
7?

	

f (k) d3k (2 .2 .10 )

1 TO (2 .2 .11 )

containing n bosons, each with a momentum k . Here we employ the Dirac notation

(8) : X> is a ket, and represents the wave function or state vector of th e

particle or system of particles X . <Xi is a bra, and represents the complex



conjugate of the ket . We operate on the state (2 .2 .11) :

ak nk / — (—1)k (n+l ) k~

	

(2 .2 .12 )

thus increasing the number of bosons by one, and creating a new particle wit h

momentum 'n . f (n 1)k is added as a normalization factor, to aid the physica l

interpretation of the operator . Similarl y

akSp'k~

	

F''ic

	

(n_ 1)k) ,

so that in this case, we have destroyed a particle . We note that we

n particles by operating on the vacuum state 10 :

1 n> = ( 1/1np ) (at (k) ) n 1 0> .
Hence, the Ha'niltonian for the system is given b y

H = K- Wat (k) a(k )
where

k 2 +

(2 .2 .13 )

can creat e

(2 .2 .14 )

(2 .2 .15 )

(2 .2 .16 )

By operating with H on a state 11f> containing n l particles, each with momentum

hi and energy Gn 1 , then on one containing n 2 particles, and so on, we obtai n

Hfv->

	

ni oJ i 1'0 .

	

(2 .2 .17 )
From (2 .2 .17), we may deduce that our states are eigenstates of H with eigenvalues

equal to the total energy of the state . Furthermore, we observe that the operator

a fi (k) a(k)

	

(2 .2 .18 )

corresponds to the total number of particles with momentum k present in th e

system .

We now consider the quantization of a free charged scalar field . Here

the field is no longer Hermitean, and hence we must write two Fourier decompositions :

	 1	 (e jkz

	

2

	

a()
-~-

	

ejkz bt
() )

	

(2 .2 .19 )J-2--j--z

	

—

	

—

~t(x~

	

1	 1	 (e jkz b (k )

	

ejkz a~(k) )

	

(2 .2 .20 )k f2 w

Here the operators a('^) and b(k) are the destruction operators of two differen t

types of particles with the same mass . They obey the commutation relation s

[a (k ) , a (k' S

	

Lb(k) , b Of)] — & k ,

	

(2 .2 .21 )

Other commutators vanish . The neutral Hamiltonian (2 .2 .15) now become s

H = 2- w(a fi (k) a(k) + b t (k) b(k) ),

	

(2 .2 .2.2 )k
and thus the energies of the two kinds of particles must be added together to

give the total energy of the system . The difference between our two types of

1



particles, a and b, is that the signs of their charges are opposite . The

total charge, Q, of the system is given by the operato r

Q = e _ 0 (a (k) a(k) - 'ct( k ) b ( '=) ) , (2.2.23 )

where e is the electronic charge . It is possible to demonstrate that (2 .2 .23 )

corresponds (with the addition of a constant tern) to the integral over al l

space of the time component of the vector

r

	

xr

	

a xr

which fulfills the continuity condition

'� Sr (x )

xr

Thus (2 .2 .24) is usually interpreted as the current density for charged particles .

It vanishes for a neutral or Hermitean field.

2 .3	 Transformational Properties of the Scalar Field . ,

Under the transformation P, we say that the four-vector x r transf orris :

P (xr) = - xr

	

(r = 1, 2, 3)

	

(2 .3 .1 )

P (x4) =

	

x4

	

(2 .3 .2 )

Thu s

P ( (1) ( P ( x )) )

	

e p (;)(x) .

	

(2 .3 .4 )

Sinc e

C- 2 = tl ,

we find that, as in (2 .1 .4 )

± 1 .

	

(2 .3 .6 )

The eigenvalue +1 corresponds to the scalar field, and that of -1 to th e

pseudoscalar one .

Under the operator T, a four-vector x r transforms :

T (xr )

	

_

	

xr

	

(r = 1, 2, 3 )

T (x4 )

	

- x 4 .

Thu s

T (

	

( T ( x )) )

	

e T 4)(x) .
1

Here E T is an arbitrary phase factor of the form

E T

	

-

	

exp ( j0 ) .

	

(2 .3 . 1 0 )

However, in (2 .3 .9) all numbers in the field p (x) are transformed into thei r
complex conjugates, since T is an antiunitary operator . A unitary operator o r

0 .

x (2 .2 .24))I,

(2 .2 .25 )

( 2 .3 .5 )

(2 .3 .7 )

(2 .3 .8 )

(2 .3 .9)



matrix is one such that

Wt = u tU = I,

	

(2 .3 .11 )

I being the identity element . An antiunitary operator transforms

AAt = A A - I*

	

(2 .3 .12 )

One interesting feature of time reversal is that it transforms all outgoing

states into incoming ones and vice-versa . Using the interacting field (Heisenberg

definition) (9), we obtai n
	 T

>an (k, 'co)	 J %tut

	

'co) ,

where a t acting on the vacuum creates an incoming particle, and a

	

anou t
outgoing one .

The charge conjugation operator, C, acts on the scalar field :

C ((P (x) )

	

=

	

e C

	

t( x ) ,

	

(2 .3 . 1 4 )
which implies the transformatio n

C1 , k> = C-~ jp, k> ,

	

—

	

(2 .3 .15 )
where 4 represents a particle in the field and

	

its corresponding anti -

particle . If the transformations C and T commute, which is probable, since they

are physically unconnected, we see that

(2 .3 .13 )

E T C- C

	

.

If 4)(x) is a Hermitean field, then

E —c

	

± 1 .

(2 .3 .16 )

(2 .3 .17 )

2 .4	 The FreeSpinorField .

We recall the Dirac equation (1 .7 .10) and Fourier decompose the stat e

vector 'y(x) which we now reinterpret as a field operator (10) . Thu s

(ejgx u,, (-') (r) (2.) a(r) (2.)

.~

	

jqx uo,(-)(r) (-g) bb(r) (4 (2 .4 .1 )9. 9

where

ac (r )u

	

(g)

	

(2 .4 .2 )

is a Dirac spinor with polarization (spin) state r and momentum g, and

runs from 1 to 4 according to the gamma matrices .

a (r) (s)

	

(2 .4 .3 )
is the annihilation operator for a particle with polarization r and momentum



g. Similarly we see that

b (r) (g)

	

(2 .4 .4 )

is the annihilation operator for antiparticles with polarization r and

momentum 2, and this will occur in place of b t in the adjoint field operator .

bt (r) (s)

	

(2 .4 .5 )

creates an antiparticle and

at (r) (g)

	

(2 .4 .6 )

creates a particle . For an electron, which has a spin of -4-, we can have two

possible spin orientations, parallel to the momentum 2, or antiparallel to it ,

corresponding to the polarizations r =1 and r = 2 respectively . These state s

are known as left- and right-handed states of the electron . The operator s

(2 .4 .3), (2 .4 .4), (2 .4 .5) and (2 .4 .6) obey the anticommutation relation s

[a() , at(r1) (r. ' )J + [b(r) (a) , bl-(r' ) (a' )] = 1

	

(2 .4 .7 )
+

	

rr

	

qq '
and all other anticomautators vanish .

From (2 .4 .1), we may calculate that

H = >- E (a t(r) (s) a(l) (s) + b() b(r) ())

	

(2 .4 .8 )
a, r

Since we are now concerned with half-spin particles (fermions) which obey the

Pauli exclusion principle3 (10), the value of the occupation operator (2 .2 .18)

can only be either one or zero . From (1 .8 .3) we may write the current density o f

a spinor fiel d

Sr ( x )

	

—

	

( je / 2 ) C "~,~( x) ,

	

Y(x)] .

	

(2 .4 .9 )
This current density is adjusted so that the vacuum expectation values of

all S vanish :
r

<°( Sr (x) 0> = 0 .

	

(2 .4 .10 )

Furthermore, (2 .4 .9) implies

Q = -j

	

S4 (x) d3x

e

		

(at(r)(g)a(r)(g) - bt(r)(3)b(r)(a) )Si,

2 .5	 Transformational Properties of the Spinor Field .

Under space inversion the spinor field behaves

P ("X(P (x )) ) _ G p Y4 V( x )

where

E
P

--

	

±1, — j

(2 .4 .1 1 )

(2 .5 .1 )

(2 .5 .2)



(2 .5 .3 )

(2 .5 .4 )
(2 .5 .5 )

and under time reversal

T (T( T ( x )) )
where B is a unitary matrix such that

1

	

`^
B v

ir B

	

r
B

	

-B

eT B 4t(x )

E C

Under charge conjugation

c (V' ( x ) ) 1C " 7(x ) (2 .5 .6)

	

.
where C is a unitary matrix fulfilling the condition (2 .5 .5) an d

C

	

- -'r

	

(2 .5 .7 )

If T and C commute, then (2 .3 .16) is valid again . If

C ( 'yf(x) )

	

= ' ( x )

	

( 2 .5 .8 )
then 'yf(x) is a Najorana field (11), and is said to be self-conjugate .

Thus, for a Majorana field X(x) ,

X(x)

	

_

	

C (X_(x) )

	

=

	

c–"j- (X ( x ) ) .

	

(2 .5 .9 )

All particles in a Najorana field must be identical with their antiparticles ,

i .e . they must have even C parity . An interesting consequence of (2 .5 .9) i s

that a Najorana field may not be subjected to a gauge transformation of the

first type . This transformation has the form (12 )
j
"

	

(2 .5 .10 )

where > is a real arbitrary parameter and G is the particular gauge . Example s

of gauges in particle physics are charge, baryon gauge, lepton gauge, hypercharge

gauge, and, in weak interaction theory, vector current gauge . When we say that

an interaction is invariant under a gauge transformation, we mean that it is

invariant under the one-dimensional internal symmetry group q. . One reason

for which the ;ajorana field may not be subjected to a gauge transformation

is that the vector current associated with gauge invariance :

(.(x) Yr X(x))

	

(2 .5 .11 )

vanishes because of (2 .5 .9) . However, the chiral gauge transformatio n

X (x)	 > e5 )((.)

	

(2 .5 .12 )
may still be applied to the Najorana field, and its associated curren t

X(x )

	

" 5 X ( x )

	

(2 .5 .13 )
is nonvanishing.

From (1 .7 .10) we now write the Dirac equation for zero mass :



`,{ r (a/axr ) J(x) = ( Y i ('a /a x.) + r 4 (2/3 x4 ) x) = 0 (2.5 .14 )

Multiplying through by Y4 and using the '( matrix properties, we obtai n

(j Y 5 Si ( /a xi ) + ('O/a x4 ) y(x) = 0 .

	

(2 .5,15 )

If we choose a representation such as the one discussed earlier for f5 so that

it is diagonalized i .e . all its nonzero components lie on its leading diagonal ,

and then write our field W(x) in terms of it, we hav e

	

't' (x)

	

=

	

+ (I +Y5)y'(x)
+

z(1 - Y5)v(x)
a (x)

	

(x) .

	

(2 .5 .16 )

(2 .5 .15) now resolves into two uncoupled relations

(J6, (a/ax) -f- (a/ax4 ) cx (x) =

	

0

	

(2 .5 .17 )

(—J6 r (~ /a x r ) + ( /a x4) l (x) =

	

0 .

	

(2 .5 .18 )

(2 .5 .17) and (2 .5 .18) are known as the Weyl equations for massless spin 1
particles, and which describe the neutrinos . The spinors 0((x) and

	

(x )

have only two components each, and hence the matrices 6r are 2 X 2 matrices .

These are usually identified with the Pauli spin matrices (1 .7 .18) . We find that

the massless spinor if(x) may be represented, according to the Weyl equations (13 )

o<(x)''
V(x)

	

cig(x)

	

(2 .5 .19 )
L / 2

since if c><(x) is a -solution to (2 .5 .17), then 4x) will be a solution to

(2 .5 .18) .

Let w(p) be a two-component spinor . We se t
h

	

(x)

	

= w(p) e jPx ,

	

(2 .5 .20 )

which is a plane wave solution to the Weyl equation . we find that w(p) satisfies

( (

	

.

	

)

	

E ) w( p )

	

=

	

0 (2 .5 .21 )

and thus nontrivial solutions exist only when

(2 .5 .22 )E2 =

	

2
.2 ,

E ± f p.(

	

, (2 .5 .23)

the latter possibility corresponding to the existence of an antiparticle state .

We let v(p) be the antiparticle solution, and write two relations concerning th e

orientation of the particle spin,

	

:

((6 . p)/(J ))) u ( p )

	

_

	

- u (p)

	

(2 .5 .24 )

((6 . 2)/((2.))) v(p)

	

=

	

v ( p ) •

	

(2 .5 .25 )

Thus the particle's spin is always aligned antiparallel to its momentum, and th e



antiparticle's is always aligned parallel to it . We define an operato r

( p )

	

(i • 2)/)a\ ,

	

(2 .5 .26 )

called helicity, which is negative for the solution u(p) and positive for v(p) .

These states are said to be left- and right-handed respectively . In general ,

helicity, H, is define d

H

	

=

	

o< v/c

	

(2 .5 .27 )

and hence it is only constant for massless particles . The relation {2 .5 .27 )

may be obtained from the Dirac equation and this is done in Huirhead :

ElementaryParticlePhysics, P ergamon 1972, pp . 41-46 .

2 .6	 Interacting Fields .

In the time-dependent Hamiltonian form of the Schrddinger equation

(2 .1 .6), we assume that the total Hamiltonian may be written as the sum of a

free and an interacting Hamiltonian, which we label H0 and HI respectively .

We now define the state vector

	

(x, t) :

1) (x, t)

	

=

	

ejHet

	

t)

	

(2 .6 .1 )

and the operator 0(x, t) :

0 (x, t)

	

=

	

ejH ° t ' e- ;H°t .

	

(2 .6 .2 )

At

t

	

0

	

(2 .6 .3 )

the total Hemiltonian, H, is identical to the free Hamiltonian, H 0 . From

(2 .6 .1), (2.6 .2), and (2 .1 .6), we thus obtain

J
	 Cl) ( xt	 t) .

	

(x, t ) ,

	

'C()~

	

gI

	

(2 .6 .4 )

and hence we see that the state vectors in the 'interaction picture' (14) hav e

the same dependence on the interacting Hamiltonian as those in the 'Schrddinger

picture' have on the total Hamiltonian . Let us rewrite (2 .6 .2) as

0 (x, t)

	

=

	

e jHot 0 (x, 0) e 0 .

We now interpret 0(t) defined in (2 .6 .5) as being an operator in the 'Heisenberg

picture', ignoring the position vector ( ::) . In the 'Heisenberg picture' the

free Hamiltonian in the 'interaction picture' acts as the total Hamiltonian ,

and hence the operator in the 'interaction picture' is identical to the one

in the 'Heisenberg picture' for the case of a non-interacting system . Thu s

both equations of motion and commutation relations for operators from th e

(2 .6 .5)



'Heisenberg picture' may be used in the 'interaction picture' . From (2 .6 .5 )

we may write the differential form of the Heisenberg equation of motio n

j	 0(tl

	

=

	

[0(t), H i

	

.

	

(2 .6 .6 )at
We shall now transform some of the results which we obtained in 2 . 2

concerning the free scalar field into the 'interaction picture' . The destruction

operator a(k) defined in (2 .2 .13) is now redefine d

a(k, t) = eJHo t a(k) ,-''Hot ,

	

(2 .6 .7 )

and the creation operator is similarly redefined . Thus the Fourier decompositio n

of the field become s

(x) __

	

lV~2~
k

(a(k, t)ei kx
+ al- (Is, t)e j1 ) .

	

(2 .6 .8 )

We now wish to solve (2 .6 .7) . The only term in the scalar field Hamiltonian

(2 .2 .15) which does not commute with a(k) i s

w(k)a1 (k)a(k) •

	

(2.6 .9 )

Using the method outlined in Schwebor, Bethe, de Hoffman ; Fields, in

Mesons and Fields (Vol . I), Evanston 1955, section 15b, we obtai n

a(k, t)

	

= a(k.)e-j w(k)t (2 .6 .10 )

an d

a t (k,t)

	

= at(k)e
-Ica()t , (2 .6 .11 )

where

w(k)

	

k
0

= J(m 2 ~ k 2 ) . (2 .6 .12)

At this point, we may substitute with (2 .6 .10) and (2 .6 .11) in (2 .6 .8) and we

obtain for the scalar interacting fiel d

Is (x )

	

5	 	 (a(k)e,,dx+ at (k ) e jkx }

	

(2 .6 .13 )
ko= o('r_)

summing over all allowed momenta k . Often the field is decomposed

1(x) _

	

Cr(x) .

	

0- (x) ,

	

(2.6 .14 )
where ()$ are the parts of the field containing only destruction or creatio n
operators respectively . The vacuum definition

a(k) 0> = 0,

	

(2 .6 .15 )
which implies that it is not possible to remove a particle from the vacuum, nay
now be replaced by

I0>

	

_

	

0 ,

	

(2.6 .16 )



and from (2 .6 .13) and (2 .6 .14 )

(4+ )t

	

Cp

	

(2 .6 .17 )

Now let us attempt to calculate the value of the commutato r

[4(x) ,

	

4(x')1 ,

	

(2 .6 .18 )

where x and x' are two position space-time four-vectors . Since two creation

or two destruction operators commute, only cross-terms will contribute, and thus

[(x ) ,

	

0(xiF	

V

(2 .6 .19 )

	

)

	

T2

	

i (
L

r a(s), a-1(k`)J ejkx-jk x

	

w(_'

	

,1 o o
[a t (), a(k')] e ')

o(k)

d3k (e jk(x-x') _ e jk(x-x') )
koz W(~

	

ko

	

,
1

(27) 3 . 2

anticipating going to the limit of normalization and using

(2 .2 .10) . We defin e

1
A(x)

_

	

d :
(2Tv)3 k W(k)

	

k sin itx ,
0

	

0
so that

E(x ),

	

(x' ;) =

	

j b(x-x' )

From (2 .6 .20) we see that ,6.(x) is a real odd function of

invariant scalar . Thus

t = 0 -

	

1

	

cd 3'~
O(_,

	

) (2~ ) 3 J w(k) sin kX - 0

so that the 'equal times' commutator

the approximation

(2 .6 .20 )

(2 .6 .21 )

x, and is a Lorentz

(2 .6 .22)

0 .

Since the Ls, function is a Lorentz invariant

2s(x) 0

	

x2 - x2 - t2 > 0,
and thus the 0 function vanishes outside the 'light-cone '

J x ` - it( ,
and similarly the commutator in (2 .6 .21) vanishes for points with space-lik e

separation :

(x-x') 2

	

0 .

	

(2 .6 .26 )

If the commutator (2 .6 .18) was non-vanishing for space-like separated points

x and x', then this would imply that the measurements of the field at two

separated points in space interfered with each other, necessitating a signal

travelling faster than the velocity of light . The vanishing commutator thu s
upholds the special theory of relativity .



2 .7	 The CPT Theorem . (15 )

The CPT theorem was first mentioned by Schwinger in 1951 (16), it was

verified by Lttders (17) and was proved by Pauli in 1954 (18), Hence it is

sometimes called the 'L-Ciders-Pauli theorem' . It states that, if all physical

systems can be described by relativistic field equations, then all system s

should be invariant with respect to the combined transformation CPT or

'strong reflection', S (19) . Since it is thought that all fields can b e

constructed ultimately from the spin 1 Dirac field, it is the CPT transformatio n

properties of this field which we consider here . We tabulate the transformation

properties of the Dirac field operator

	

(x) and its adjoint 'y(x) (20) :

Operator ,

	

C

4f(x)

	

C J(x)

"11 1)

	

C 1
y(Z)

T

TV(x,-x o )

T-l (X,-xo )
where x is a space-time four-vector. From this table, it is possible to

calculate the properties of the Dirac field when two or more operators are

applied to it . Adopting

4( x )

	

T	 ).T '-

	

-x o ) ,

	

( 2 .7 .1 )
where T is an operator acting on the spin indices of the field function, we

may obtain an explicit expression for T. We assume that the Dirac equatio n

(1 .7 .10) and its adjoint (1 .7 .26) are invariant under time reflection, an d

by considering these two expressions we see that the matrix T must obey th e

relations :

r
T

	

=

	

T(- Vr) _ C-1 Y r C

	

( r 1,2,3)

	

( 2 .7 .2 )

T l Y 4 T

	

=

	

T(- y= C 1 Y C

	

(2 .7 .3 )
and thus

T —

	

4 5 C

	

(2 .7 .4 )
Hence we may writ e

PT ( ' (x) )

	

5 CV(-2i, -x o )

	

=

	

V5 C (r)(-x , -xo )

	

(2 .7 .5 )
and similarl y

PT (y(2) )

	

r5 C (V)(-x, x o ) •

	

(2 .7 .6 )
Thu s

CPT ('~1^ (x) )

	

=

	

r 5 ' (-x )

	

(2 .7 .7 )



an d

CPT (

	

'(x))

	

--TA-2,:) 5

	

(2 .7 .8 )

We know that the sixteen different field operators or bilinear covariant s

obtained by combining one Dirac field operator with the Hermitean conjugate

of another, may be placed in five groups according to their properties unde r

the Lorentz transformation . We tabulated these possibilities in 1 .7 . Under th e

combined CPT operation, we have

>Fs (-_) (2 .7 .9 )F S (x)
- Fv (-x) (2 .7 .10 )(x)FV

FT (-x ) (2 .7 .11 )F T (2)

- F A (-x) (2 .7 .12 )FA (x)
F2 (-x)

	

, (2 .7 .13 )F p (x)

where F S, for example, is the scalar bilinear covariant . We find that any

interaction Hamiltonian which is Lorentz invariant and which we construct from

the field operators (2 .7 .9), (2 .7 .10), (2 .7 .11), (2 .7 .12) and (2 .7 .13) i s

invariant under the combined CPT transformation . As an example, we tak e

the interaction Hamiltonian :

HI

	

=

	

g d3x F S (x) FP (x) -H Herm . conj . ,

	

(2 .7 .14 )

where g is a constant dependent on the strength of the interaction, and i s

known as the coupling constant . This Hamiltonian is invariant under CPT but

not under the three operators performed separately . Thus we have shown tha t

any Lorentz invariant interaction Hamiltonian constructed from the Dirac field

operators is invariant under CPT, and that hence, if it is not invariant under

one of the transformations on its own, then it must also be not invariant unde r

another in order to preserve invariance under the combined transformation .

The argument given above applies only to spin 3- fields, since it i s

these which we shall consider primarily in later chapters . However, it i s

possible to prove the CPT theorem in general, assuming Lorentz invariance and

the connection between spin and statistics4 . This is done in 1. arshak, Ria7uddin ,
Ryan : Weak Interactions of Elementary Particles, Wiley 1969, pp . 74-75 . An

alternative proof, assuming only the axioms of field theory, was presented i n

Jost : Helv . Phys . Acta 30, 409, (1957) .



CHAPTER THREE :

	

vCLEAR BETA DECAY .

3 .1	 Phenoscnolcg of Beta Bees .

In 1896 Becquerel (1) found an ionizing radiation issuing from uraniu m

salts . In 1899 Giesel (2) demonstrated that it was deflected by a magneti c

field, and it 1900 the Curies (3) showed that it consisted of a stream of

negatively-charged particles . In the same year Becquerel (4) obtained a value

for the charge-to-mass ratio, e/a, for the new radiation, and by 1903 mien had

made a first estimate for the magnitude of their charge (5) . Rutherford name d

tt .s radiation 'beta radiation' (6) in 1902, and by 1904 the experiments of

Kaufmann (7), Bestelmeyer (8) and Bucherer (9) had confirmed that it consiste d

of a stream of high-energy electrons whose mass varied in the manner prescribe d

by relativity.

At first, absorption experiments seemed to indicate that the electron s

emitted in the beta decay of nuclei were monoenergetic, but in 1909 Wilson (10 )

showed that they did, in fact, have a wide range of velocities . Von Baeyer ,

Hann and iH .eitner (11) found that there existed seversl distinct velocity group s

in the beta rays emitted from mesothorium two . The much more accurate method

of the Dempster mass spectrograph was used by Rutherford and Robinson (12) i n

1913, she found a number of well-defined lines in the beta ray spectrum o f

radium B and C . The principle of the mass spectrograph was to place th e

radioactive source to be analysed, in the forum of a thin wire, at the edge o f

a uniform magnetic field, so that the emitted beta rays would be bent roun d

in semicircles whose radii were inversely proportional to their velocity . The

distribution of the deflected beta rays was recorded by means of a photographi c

plate . In 1914, Chadwick (13) showed that two types of beta ray spectra

existed, continuous spectra and line spectra. The line spectrawere explained

as being due to the removal of extranuclear atomic electrons from their shell s

by high-energy gamma rays from the disintegrating nucleus .

However, the existence of continuous beta ray spectra posed a problem.

If the nuclei in the initial and final states in the decay had unique characteristic



energies, then it we difficult to see how the transformation could occur

by the emission of an electron which could have any energy lying within a large

continuous range . The reaction appeared to violate the law of the conservatio n

of energy . The first suggestion was that the electrons were initially emitte d

with energies of the observed maxima for particular nuclei, and that the n

random energy losses occured, causing a continuous energy spectrum . However ,

this hypothesis was refuted by Ellis and Waco-ter in 1927 (14) who measure d

the rise in temperature of a lead vessel containing the beta emitter radium E .

They found that the energy absorbed by their 1 .3 mm of lead corresponded to

the average energy of the continuous spectrum, and not to the maximum energy ,

as the energy-loss hypothesis would have predicted .

Following the discovery of the neutron by Chadwick in 1932 (15), it wa s

suggested that beta decay was caueed by the decay of a bound neutron into a

proton and an electron . The proton would remain bound within the nucleon, bu t

the electron would be emitted as a beta ray . Following the precise measuremen t

of the energy loss in beta decay byEllis and Mott in 1933 (16), Pauli postulated (17 )

the existence of a new particle which would be emitted together with the electro n

in beta decay . This particle would have to be light and apparently undetectable ,

and, in order to conserve electric charge, it would also have to be neutral .

In 1934, Fermi (21) introduced the four-fermion interaction (see 3 .3) and name d

the new particle the neutrino . Since total angular momentum or spin must be

conserved in beta decay, the neutrino was assigned a spin of - . Thus in the

neutron decay

n	 > p + e + v ,

	

( 3 .1 .1 )

the spins of the proton and electron, for example, must be antiparallel, leavin g

the neutrino to have its spin parallel to that of the neutron . As we shall se e

later, it was advantageous to assume that it was not a neutrino but an anti -

neutrino which was emitted in beta decay.

3.2	 The Detection of the:ieutrine .

Twenty-five years after the neutrino had first been suggested by Pauli (17) ,

Cowan, Reines, Harrison, Kruse and McGuire (18) attempted to detect it . Sinc e

the neutrino itself could not be induced to interact with any type of detector,



and did not appear to decay, it was necessary to use some inverse reactio n

in which the neutrino took part . The process

e + p	 >v + n , (3.2.1 )

in which a proton captures an electron from the inner K shell and become s

a neutron with the emission of a neutrino was known to occur . Hence, by

crossing symmetry (T invariance and the Feynman rules) ,

3 + p --- > e * n (3.2.2 )

should also take place . It was thia reaction which Cowan et al . attempted to

detect . Their source of antineutrinos was the Savannah River nuclear powe r

station, which produced an estimated flux of 1 017 m - 2 11 eV antineutrinos .

If the process (3 .2 .2) occured, then the resultant positron woul d

produce an ionization trail in a p-terphenyl liquid scintillato rl , and ,

when it came to rest, would be annihilated by a negative electron ,

producing two gamma rays, each with an energy of about 0 .5 heV. Furthermore ,

it was discovered that the placing of a layer of Cd C 1 2 solution withi n

the scintillator resulted in the probable capture of the slow neutron b y

an atomic nucleus, with the emission of three or four gamma rays carrying a

total energy of around 9 .1 hell . These would be observed as coinciden t

flashes in the surrounding scintillator .

Cowan et al . sandwiched a tank of water containing a low concentratio n

of Cd C1 2 between two liquid scintiliator tanks, and enclosed the whol e

assembly within an array of about 500 photomultiplier tubes . They

expected the antineutrino from the nuclear reactor to interact with a

hydrogen proton in the layer of water according to (3 .2 .2) . The flas h

of light from the neutron capture gamma rays was estimated to occur abou t

10 r s after that from the positron annihilation . There were about 10 ton s

of liquid in the scintillators, and hence a considerable number o f

spurious events took place, due to cosmic rays and fast neutrons direc t

from the reactor, but these were usually revealed either by an erro r

1 . Scintillators are substances which emit pulses of light when charged
particles pass through then . The resultant light is usually directed int o
photomultiplier tubes, where it is converted into electrical signals so
that it may be analysed by electronic equipment . See e .g . Birks : Th e
Theory and Practice of Scintillation Counting, Pergamon 1964 .



in timing or by a pulse from a further scintillator situated above th e

other two . The equipment was in operation for about 2085 hours, with an

average event density of 3 .0 ± 0.2 hr 1 , so that, by the end of 1956 ,

it was possible to calculate the experimental cross-section for (3 .2 .2 )

as

(1 .2

	

+ 0
.7)

	

x

	

10-43 cm
2 ,

- 0 . 4
in agreement with the theoretical prediction o f

(1 .0 -+ 0.16)

	

x

	

10 43 cm 2 .

(3 .2 .3 )

(3 .2 .4 )

A number of tests were performed, such as increasing the amount o f

shielding surrounding the scintiilators, demonstrating conclusively tha t

the counting rate was associated with particles from the reactor. I n

1957, the reaction

it +

	

d	 > e +

	

n +

	

n

	

(3 .2 .5 )

was also definitely detected (19), and its cross-section was measured a s

2

	

x

	

10- 4 '

	

cm2 .

	

(3 .2 .6 )

At the same time as the work on antineutrinos described above wa s

in progress, a search was also carried out for the neutrino . Davis ,

Harmer and Hoffmann (20) used the inverse of the K-electron capture

process :

v +

	

n

	

-

	

> e

	

+

	

p ,

	

(3 .2 .7 )

and attempted to detect it in the case o f

1701 + v	 —	 > 37« + e ,

	

(3 .2 .8 )

with an expected cross-section of

(12

	

±

	

6)

	

x

	

10-' 4 cm 2/atom .

	

(3 .2 .9 )

They set up a tank containing about 3900 litres of C C 1 4 in a heavily-

shielded underground location near the Brookhaven nuclear pile, whic h

produced neutrinos at a rate of about 4 x 1 0i8 s -1 . Since the half-lif e

of 18A is in the order of 34 days, the tank was left untouched for betwee n

36 and 75 days, after any argon initially present had been removed b y

bubbling gaseous holium through the tank . After irradiation, helium wa s

again bubbled through the tank, and the argon was separated from it by

fractional distillation, using solid CO 2 as a coolant . The sample was the n

tested with a Geiger counter, but was not found to exhibit detectable



traces of K-electron capture radiation, setting an upper limit on the

cross-section for the reaction (3 .2 .8) o f

2

	

x

	

10-' 2 cm 2/atom .

	

(3 .2 .10 )

3 .3	 The:Neutron Decay Honiltonien .

In 1934, Fermi suggested (21) that a Hamiltonian for the neutron

decay (3 .1 .1) might be constructed in direct analogy to that for th e

generation of electromagnetic radiation . The latter is proportional t o

the electric current four-vecto r

Jr

	

=

	

j e

	

Yr

	

,

	

(3 .3 . 1 )

and Fermi postulated that the neutron should beta decay at a rat e

proportional to the 'current' ' " p Y r Tfn associated with the proton-

neutron transition . Since the complete Hamiltonian must be a Lorentz-invarian t

scalar, it must initially consist of the product of two four-vecto r

currents . Thus, anearcing that no derivatives of the basic fields ar e

involved, we write :

HI

	

= (:G (-p Y r 'ti) ( "q' 'e yr`L'Iv) + Herm. conj .,

	

(3 .3 .2 )

where i is the beta decay coupling constant l , and we have transposed

all the particles in (3 .1 .1) on to the left hand side of the equation ,

since the Hamiltonian is slightly easier to handle in the more symmetri c

form (3 .3 .2) . The latter is known as the 'four-fermion interaction' ,

since it involves four fermion fields interacting at a point in spacetime .

It is not, however, the most general neutron decay Hamiltonian, since

it assumes that only a vector Dirac interaction occurs . Generalizing fo r

all five bilinear covariants, and enforcing the condition that the

Hamiltonian be a Lorentz-invariant scalar, we obtain (22 )

HI

	

o i .(

	

p O i a ) ( ;lf e of '- v ) + Hem. conj . ,

(3 .3 .3 )
where the Oi are the five different types of Y -matrix product . The Ci

are the coupling constants for each kind of interaction . However, with

1 . Coupling constants are complex parneters which characterize th e
strength of a particular interaction . For an interesting discussion of
their underlying theory, see Heisenberg : Introduction to the Unified Field
Theory of Elementary Particles, Wiley 1966, pp . 79-89 .



less rigorous but still physically acceptable Lorentz invariance required
1

,

we obtain another possible Hamiltonian (23) :

ci_ S (

	

p Oi e r n) (-q Oi Y 517v) + Herm . conj .H2

	

_
I

(3 .3 .4 )

We now assume that the total interaction Hamiltonian is given by

xI

	

HI

	

+

	

H

	

(3 .3 .5 )

or

	

C
HI

	

i J (

	

p Oi -ij n ) (r e Oi

+ Hem. conj .,

	

(3 .3 .6 )

which is the most general local. (point interaction) nonderivative Hamiltonian

for neutron decay .

We now consider the elect on (3 .3 .6) of altering the order o f

the particles in the process (3 .1 .1) . Our Hamiltonian above directl y

describes the two reaction s

n p + e + v , (3 .3 .7 )

n + v	 	 >p + e . (3 .3 .8 )
However, the neutron decay could equally have been writte n

n + v	 >e + p

or

n + > v -f- e , (3 .3 .10 )

requiring a rearrangement in the order of the field operators in th e

Hamiltonian. Let us write the particles of (3 .1 .1) in the form of numbers :

p :1

	

n :2

	

e : 3

	

v : 4 .

	

(3 .3 .11 )
We now define the function . such that

Ai (1 2 3 4)

	

-

	

(^`~1 0i -V2 ) (" P 3 0i lis4 ) ,

	

(3 .3 .12 )

summing over all permitted i, as before . Since there are only five

Lorentz invariants of the form (3 .3 .12), the coupling constants fo r
A . (3 2 1 4) ,

	

(3 .3 .13 )J
for example, must be a linear combination of those for the origina l
Hamiltonian (3 .3 .12) . The relation is given by the Fierz reorderin g
theorem (24) :

Ai (3 2 1 4)

	

--

	

. A . (1 2 3 4) ,

	

(3 .3 .14 )1

	

1 3

	

J

1 . In fact, under only the proper orthochronous Lorentz group .

)( ci + cl

(3 .3 .9)



where

rl 1 1 1 1 ;

4 -2 0 2 -4 I

)■

	

= 'a 6 0 -2 0 6 1 (3 .3 .15 )

4 2 0 -2 -4(._41

-1 1 -1 1j

Denoting the five coupling constants by S, V, T, A and P when they occu r

in the order (1 2 3 4) and by 5', V', T', A' and P' when they occur

(3 2 1 4), we have

S' ( S + V + T + A + P) ,

	

(3 .3.16a )

V'

	

_

	

-4 (4S - 2V + 2A - 4P) ,

	

(3 .3 .16b )

T' _

	

- (6s - 2T + 6P) ,

	

(3 .3 .16c )

A'

	

=

	

4 (4s 2V - 2A - 4P) ,

	

(3 .3 .16d )

P'

	

=

	

- y ( S- V + T - A

	

P) .

	

(3 .3 .16e )

From the relations (3 .3 .16) we may deduce tha t

V' - A'

	

=

	

V - A ,

S' -

	

+ P'

	

S - T

	

P ,

and hence these combinations are invariant under Fierz reordering .

We now consider the properties of the neutron decay Hamiltonia n

under the P, C and T operators . In 2.7, we showed that any interaction ,

such as our neutron decay Hamiltonian, constructed from Dirac (J = i- )

fields must be invariant under the combined transformation CPT (Ldders-

Pauli Theorem), but not necessarily under the separated operators . For

the space reflection operator, P, we hav

eP ( H I (x, x o )

	

-

	

E'P

	

i S ( 7 ,rp (-x, x o ) 0 i l
i n (-x, xo ) ) X

x

	

(-x, xo) O i (C i - Cl y5 ) y v

	

xo ) )

(3 .3 .17a )

(3 .3 .17b)

t

+ Hem. conj . ,

where the intrinsic parity factor E P is given by

E P

	

=

	

E; (p ) • g (n) . Ep (e) • e p

Thus P invariance would requir e

Ci

	

=

	

0

	

(i = 1, 5) ,

(3 .3 .18 )

( v ) .

	

(3 .3 .19 )

(3 .3 .20 )

and for this reason, the Ci are known as the parity-violating couplin g



constants . Noninvariance of the weak Hamiltonian under the parity operato r

would imply that the weak interaction differentiates between differen t

directions in space, and hence that the multiplicative quantum numbe r

of intrinsic parity, which is assigned to all hadrons l, is not a 'good '

or conserved quantum number in the weak interactions . For the time

reversal operator :

	

I r
T (HI (x, xo ))

	

-

	

E T Zi (

	

p (x' -xo) 0 . -Y'n (x, -xo ) )

	

X

X

	

( '(re (_, - xo) O i (C i +

	

cl)r 5 )-yv (x, -xo)) +

+ Hem . conj .,

	

(3 .3 .21 )

where

E T

	

=

	

E T ( p ) . e-T (n) . 0 (e)

	

ET (v) .

	

(3 .3 .22 )

If the neutron decay Hamiltonian is to be invariant under T, then it mus t

act as a pure scalar under this transformation, so that

E T Ci

	

=

6 T Cl '~

	

=

C
i

	

(3 .3.23a )

Ci

	

(3 .3 .23t )

With respect to the charge conjugation o perator, the Hamiltonian behaves :

C (HI (x, xo ) )

wher e

E C

	

=

	

F_c ( p ) . E c (n) .

	

c(e) . 6C (v) .

	

(3 .3 .25 )

Thus we may deduce that C invariance demand s

G. * Ci

	

=

	

Ci

	

(3 .3 .26a)

E
C

C'

	

=

	

- Ci

	

.

	

(3 .3 .26b )

Finally, under the combined transformation CPT :

CPT (HI (x, x e ))

	

=

	

E c e p E T

	

i 3(lir n (-x, - x o ) O i l r
i (-x, -xo )) X~

X

	

(-yry (-_,, -xo ) Oi (Ci - ci y 5 )1'Ie (-x, -x o)) i-

+ Helm . conj. (3.3.27)

1 . As we shall see in 3 .7, the weak. iamiltonian is indeed not invarian t
under the parity operator, and hence those particles which only take part
in weak interactions have undefined parity . The photon's parity has see n
established as -1 by observing electromagnetic interactions .

E C ~ i j (Zl n (x, xo ) Oi 3Vp (2 xo ) )

	

x

X

	

( v (-, xo ) 0i ( ci + c! r 5 )'r (x, xo) ) +

+

	

Here . conj .,

	

(3 .3 .24)



so that the condition for CPT invariance is simpl y

EC
EP E T

	

_

	

+ 1 ,

	

(3 . 3 .2.8 )

and this, it is thought, can alwayn be arranged .

Since there exists good evidence that the neutrino is mansless l ,

we now assume that the free neutrino field is invariant under the

so-called 'gauge' transformations (24 )

exp ( j a Y 5

	

+

	

j b ) ,

	

(3 .3 .29 )

as a consequence of lepton conservation (see 4 .5) . Since the weak interactio n

coupling constant is very small, we see that, so long as we only calculat e

to first order in the weak interaction, the interacting neutrino

field may be represented just as well by 2

exp ( j a Y 5

	

-f-

	

j b)

	

(h, x o )

	

(3 .3 .30 )

as by
,--v (., xo )

	

(3 .3 .31 )

Replacing (3 .3 .31) by (3 .3 .30) in (3 .3 .6), we write

Hi

	

J L i (1 P Oi T'rn ) ( re Oi (B i + Bi Y5) y' v )

+

	

Herm . conj .,

	

(3 .3 .32 )

wher e

Bi

	

e j b (C i cos a + j Ci sin a) ,

	

(3 .3 .33a)

Bi

	

,=

	

e jb (C! cos a + j Ci sin a) .

	

(3 .3 .33b )
We note that, on transforming from H to H', some bilinear combination s
of the coupling constants remain unchanged :

C . C " t

	

Ci ej

	

Bi B 'j # + B1 B: ,

	

(3 .3 .34a)

C .

	

C .

	

-t-

	

C'

	

C' '

	

B .

	

B~

	

-t-

	

B' B~ '' .

	

(3 .3 .34b )
1

	

i

	

3
Obviously the interactions represented by Hi (3 .3 .32) and by H I are

physically indistinguishable, provided that we calculate them only to
first order, and hence we may state the conditions for invariance unde r
the operators P, C, and T in terms of our new coupling constants B

1
, an d

1. The 2upper limit on the neutrino mass is usually thought to be abou t
60 eV/c (Barash-Schmit etal ., Phy, . Lett . 50B, 1 (1974)) .
2. Obviously, this is only correct if the neutrino takes part purely in
weak interactions . Neutrino-photon interactions are sometimes postulated ,
but these would have too low an amplitude to affect our calculations above .



B
i
rather than of the C .. and C

i
. The condition for P invariance now reads :

B
i

	

0 ;

	

(3 .3 .35 )

T invariance demands that the coupling constants B i and B! must all be

relatively reall, and C invariance that all the Bi must be real, and al l

the B
i
pure imaginary. Using (3 . 3 . 33), we may now translate these condition s

into statements involving the C i and C! . P invariance :

Ci

	

C~

	

+

	

C! C~ = 0

	

; (3 .3 . 3 6 )

T invariance :

C! C~ )

	

= 0

	

, (3 .3 .37a )lm (C . C~

	

+

lm (C . C
0

.

	

+ C! C! )

	

= o

	

; (3 .3 .37b )

and C invariance :

C! Ci

	

) 0, (3.3.38a )Re (C i C~

	

+

Im (Ci Ci

	

t C! C!

	

) O . (3 .3 .38h)

3 .4	 The Kinematics of Beta Decay .

In beta disintegration, momentum must obviously be conserved in th e

three-body system of the electron, antineutrino, and residual nucleus, bu t

not necessarily between the electron and antineutrino alone . Thus, if E

is the kinetic energy of the electron and Eo is the total energy availabl e

in the decay, then the antineutrino energy may be fixed as (E0 - E), and

since the neutrino is massless, this is also its momentu m 2. Hence we

may now write the electron momentum : (25 )

Pe

	

=

	

,JE(E

	

+ 2 m0 ) .

The statistical distribution of electron momenta may be obtained b y

considering the phase-space volume accessible to an electron with a

momentum between p e and pe + d pc)3, and to an associated antineutrin o

1. i.e. the ratios must be real .

2. As usual, we employ natural units (g

	

c = 1) . In non-natural unite ,
the relation between the energy and momentum of a zero mass particle i s
E = p c .

3. The reason for this finite momentum range is that the neutron has a
finite lifetime (^' 918 s) and hence the uncertainty relation
~p Ax

	

1 forbids the precise measurement of the electron energy .

(3 .4 .1 )



with momentum pv 	 >pv + dpv . The number of available electron state s

in the phase space element of volume 4TC pe dpe i s

pe dpe /(2712) , ( 3 .4 .2)

assuming normalization to unit volume . Similarly, the number of possibl e

antineutrino energy assignments i s

p 2 dpv /(2 re) .

	

(3 .4 .3 )

For given values of p e and Eo , the antineutrino energy is fixed a t

(E0 - E) with an uncertainty

dp
v

	

=

	

dE
u
.,

	

(3 .4 .4 )

Assembling the factors (3 .4 .2) and (3 .4 .3), and substituting with (3 .4 .4) ,

we find that the density of states or number of possible final state s

per unit energy range is given by

dN/dEG

	

=

	

( pe dpe )/( 2 rm2) (Pv dpv )/( 2n2 ) ( l/dEG )

(P 22 dp e )/( 2 n2)
(1/2,, .s

2 ) (ED

	

-

	

E ) 2

(1/47,4 ) p e (x:G

	

-

	

E) 2 dpe

	

(3 .4 .5 )

We know the transition probability formula (the 'Golden Rule Number Two') :
W

	

2 m
;il. f

t (did/dEG )

	

(3 4 . 6

and since the matrix element iiif is approximately constant for al l

electron momenta in the so-called 'allowed' or 'favoured' transition s

(see below), we may deduce that

N(p e ) dp e oC pe (E G - L ) 2 dpe • ( 3 .4 .7 )

This formula gives an excellent description of the beta-ray spectrum fo r

low-mass nuclides, but tends to become less accurate forhigher values of
Z . In order to correct this failing, we introduce the so-called 'nuclear
coulomb factor', which compensates for the deceleration effect in the

emitted electrons produced by electromagnetic attraction to the positively -
charged nucleus . For nonrelativistic electrons, we may write this factor
as (26 )

F(Z, F.)

	

2 TN n ( (1

	

-

	

exp (-2nn) ) -1

	

(3 .4 .8 )
where

n

	

Z e 2/v
e

,

	

(3 .4 .9 )
v e being the velocity of the electron far from the nucleus, and e being the



universal electromagnetic coupling constant (the 'fine structure constant' ) l .

Thus, for relativistic electrons, this factor tends rapidly to unity .

Prior to Fermi' s theory of beta dec a y, all attempts at empirical

curve-fitting to the beta decay electron spectrum were unsucessful, bu t

with the introduction of the Coulomb-corrected relatio n
=.

~T ( p

	

( g2 m5 )e ( 6 4 '4) I►f if}~
2 F(z, p

e) (E0 - Ee)2 pe2 ap e ,e ) dp e

(3 .4 . 10 )

Nordsieck, Kurie, Richardson, and Paxton pointed out that a straight line (48 )

should be obtained by plotting (l(pe )/p 2 ) 2 against E . This type o f

graph is known as a Kurie or Fermi plot . In deriving the formula (3 .4 .10 )

we have made two major assumption : first, that the matrix element i s

independent of pe , and second, that the neutrino has zero rest mass .

For nonzero antineutrino mass, the Kurie plot should bend and cut the axis at

E' =

	

EO

	

-

	

mQ . 3 .4 .11 )
Experiments on the parameter E' indicate (28) that 'allowed' Kurie p7_ots ,

such as that obtained from 3E decay, are linear down to an antineutrino mass

of less than 60 eV . Alternatively, it is possible to measure the maximum
energy of the electron emitted during a nuclear transition in which th e
energies of both states have been accurately determined . Investigation s
of this kind (29) have also failed to establish a nonzero antineutrino
mass .

The best method of calculating the matrix elements involved i n

nuclear beta decays is to measure the total decay rates, R . Defining

Q

	

=

	

EO/m e

	

(3 .4 .12 )
and assuming that F(Z, p) - 1, we hav e

R

	

( g2 m5e ) ( 647,4 ) i1 2 h (Q) ,

	

(3 .4 . 1 3 )
where

h (Q)

	

=

	

Q ( (1 + Q2 ) 2

	

-

	

1 +

	

2 2 d
Q0

	

(

	

Q)2 )

	

Q

	

- 4 Q

	

i22 Q3

	

10 Q5 t ` ( l + Q2 )3 log (Q

	

(1 -~ Q2 )+ )

(3 .4 .14 )

1 . The currently acjnowledged value for the electromagnetic coupling
concant is oc

	

e /Xc

	

1/137 .03604(11) (Cohen, Taylor : J . Phys . Chem .Ref . Data 2, 663 (1973) ) .



which has the limiting form s

h(Q)

	

---

	

(1/30) Q5 ,

	

Q. >> 5

	

(3 .4 .15 )

(the Sargent rule), and

h(Q) (2/105) Q7 , Q < 0.5 , (3.4.16 )

the logarithmic term being unimportant at high energies. Experimentally ,

the 'comparative half-life' ,

ht

	

=

	

(h(Q)) Ti ,

	

(3 .4 .17 )

of beta-emitters is often measured, and, by substituting values fo r

EO in (3 .4 .14), this may be used to give information concerning matri x

elements . We now append a table giving the values of log10ht for a few

typical beta decays : (30)

Parent nucleus JP Product nucleus JP lo ,lOh t

n 4 1H ;- 4 3.0744
3x

- 3He 3.03

6He 0+ 6Li 1 + 2 .77
39A 7/2 39Kr 3/2 1- 9 .0 3

380l 2 38A 0 + 8 .1 5
22Na 3 +

2

	

e 0 + 11 .9

,Table 3 . 1

We see that the beta decay matrix elements vary over a wide range of

values, but that transitions with large amplitudes all involve

J = * 1, 0. (3.4.18 )

Obviously the electron and antineutrino carry away zero angular momentu m

if they are emitted with their spins antiparallel, corresponding to th e

Fermi selection rul e

	

DJ

	

=

	

0 ,

	

(3 .4 .19a )

and unit angular momentum if with their spins parallel, according t o

the Gamow-Teller rul e

	

~J

	

=

	

± 1 .

	

(3 .4 .19b )

In neither of the cases (3 .4 .19) does the decay involve a change in

intrinsic parity . When beta decay matrix elements were first measured ,

it was thought that only transitions of the pure Fermi type (3 .4.19a)



occured, but the observation of the Gamow-Teller deca y

6He	 > 6Li + e + v

	

(3 .4 .20 )

invalidated this hypothesis . We note that decays need not be either pure

Fermi or pure Gamow-Teller, but may be mixed . Since the spin of both

initial and final states in the neutron decay is ± 1, this is an exampl e

of a mixed transition1 . Denoting the Fermi-transition (L J = 0) couplin g

constant by CF , and the Gamow-Teller (L1J = 1) one by C GT , we find tha t

the neutron decay rate is proportional to C2 + 3 CGT , the factor o f

three entering because there are (2 J + 1) — 3 possible spi n

orientations for the lepton pair when its total spin is one .

We now attempt to calculate the values of our coupling constant s

CF and CGT . We assume I
l`i f

l 2 = 1, and consider the decay

140

	

14N

	

e +

	

v ,

	

{3 .4 .21 )

which is a pure Fermi transition, since both initial and final states have

zero spin . In fact, it is a 'superallowed' decay, since it simply involve s

the transformation of a proton into a neutron, and requires no rearrangemen t

of the nucleus 2 . Hendrie and Gerhart measured the half-life of this decay ,

and found (31 )

t

	

=

	

70 .91 ± 0 .04

	

s,

	

(3 .4 .22a )

while Bardin et al . found (32 )

t

	

=

	

71.00 ± 0 .13

	

s,

	

(3 .4 .22b )

in excellent agreement . By listing and evaluating correction factors, such

as nuclear form factors 3 , screening of the electron wave function, and

competition from K-electron capture decay, Durant at al . have estimated (33 )

the total correction factor as +0 .289%. The necessary radiative correction s

have also been calculated to greater accuracy by Kinoshita and Sirlin (34) .

Thus, by measuring the maximum electron energy in the decay (3 .4 .21), i t

has been deduced that the corrected value of ht is (33 )

3043

	

a,

	

(3 .4 .2.3 )

1 . Since I -1`

	

11-1 _ 1-+l

	

- 1 -

14
This may be expressed alternatively by saying that the isobars 140 and

N belong to the same isospin multiplet (see 5 .1), i .e . they have the
same mass except for slight electromagnetic self-mass corrections due to
their differing charges .
3 . i .e . the finite spatial extent of the nucleus .



implying that

C F

	

1 .37 x 10- 65

	

3 m3 .

	

(3 .4 .24 )

The measured value of ht for the neutron decay is (35 )

1170 ± 35

	

s ,

so that

(ht) n/(ht) 04 =

	

( ict 2 * 31CGT12)/(21cF12)

	

=

	

(3043

	

10)/(1170 ± 35) ,

(3 .4 .25 )

yielding the important ratios (36 )

ICGT12/ICFi2

	

=

	

1 .563 s 0 .008 ,

	

(3 . 4 .26a )

'CGT I/IC F

	

1 .250 t 0 .09

	

(3 .4 .26b)

We note that we have not yet established the sign of this quantity .

We observe that in Table 3 .1, we may divide the beta decays into two

basic groups : those with log10ht

	

3, and those with logl0ht > 7 . The

former are known as the 'allowed' or 'favoured' transitions, and the latte r

as the 'forbidden' ones . Forbidden transitions basically correspond t o

those in which the electron and antineutrino carry off orbital angula r

momentum from the decaying nucleus (37) . Since (3 .4 .24) is comparatively

small, we are usually justified in making a ronrelativistic approximation '

and hence we write the lepton spinors as plane wave solutions to the Dirac

equation : (26 )

u e (r)

	

=

	

exp ( j Pe . r) ,

	

(3 .4 .27a )

uv(r)

	

=

	

exp ( —j2v . r) ,

	

(3 .4 .27b )

assuming that no interaction occurs between the daughter nucleus and the

emitted leptons . For the neutrino, this is a very good approximation, bu t

for the electron, only a fair one, since it is, in fact, subject to

electromagnetic forces from the nuclear charge . We find that, for th e

momenta usually occuring in nuclear beta decay, the electron spinor dominate s

the matrix element . Taking the electron wave function (3 .4 .27a), we no w

perform a multipole expansion 2 , obtaining

1. Obviously this does not apply to the neutrino spinor, but the latte r
does not make a significant contributuion to the matrix element (since the
neutrino mass is zero), and our predictions would not be changed, within ou r
large margin of error, by a relativistic neutrino wave function .
2. ? athematically, a ? aclaurin expansion .



u

	

=

	

e 3 P 'r

	

1 +

	

r +
(J	

p'r)2 . . .

	

(3 .4 .28 )
e

	

J 2 '-

	

2 :

It may be shown that the first tern in this expansion corresponds to th e

form of the electron spinor occuring in the matrix elements of decay s

involving no change in orbital angular momentum, the second term to those

in which it is altered by one unit, and so on . These transitions are know n

as S-wave ('bt = 0), P-wave (o( = 1), D-wave, F-wave, G-wave, etc .

In allowed transitions, the S-wave term will dominate the decay rate, an d

hence the matrix element will be of order unity. However, in 'first-forbidden '

transitions, the first term vanishes, and hence the major contributio n

comes from the second term of the multipole expansion . When r is aroun d

the nuclear radiu sl, this will be --1 0-1. Taking into account the fact

that a first-forbidden decay necessitates a change in nuclear configuratio n

and parity, which decreases the matrix element, we find that ou r

rough approximation yields values for ht of the correct order of magnitude .

'Second-forbidden' transitions effectively consist of two consecutiv e

first-forbidden ones, and have corresponding small matrix elements .

3 .5	 The Beta Decay of Unpolarized Nuclei .

The matrix element for neutron decay may be calculated directl y

from (3 .3 .6) : (38 )

<fIHi li>

	

:E i J up(i) (a) Oi un(+)(9n) (c i ue (+) (c,) O i X

x uv(-)(_1v) + C . ue(+)(1e) Oi f'5 uv(-)(_a, ) )

	

X

x exp (j x(gn - qp - q e - qv) , (3.5 .1 )

assuming that all particles involved in the interaction may be describe d

by plane waves (i .e. they are nonrelativietic) . However, in true nuclear

beta decay, the decaying nucleon is bound within a nucleus, and henc e

it may not be described by a simple plane *save solution of the Dira c

equation. Furthermore, the nucleus will usually contain many nucleons ,

any of which may undergo beta decay. The best approximation (38) i s

probably obtained by Fourier analysing the plane wave nucleon spinor ,

1 . Since this is the domain of the integral appearing in the matrix element .



and then applying the matrix element (3 .5 .1) separately to each

term of the decomposition . We denote the nonrelativistic Schrddinger wav e

function of the initial nucleon by 14 1
a

and that of the final one b

y and we Fourier decompose each of these according to the standard formulae :

	

(X)

	

=

	

2I

	

(2) eJ E
x

	

T(2)

	

=

	

5 e -j P x y (l ) .

(3 .5 .2a )

(3 .5 .2b)

Thus the matrix element between the nuclear states 4a> and lb>, each o f

which contain several nucleons labelled by the index r, becomes :

<bIEll a>

	

r

	

sp Irb(r) (E.) 1C(r) cap ) <9p' a., gv 3

	

En>

(3 .5 .3 )

Dropping the phase factor (exp(—j x0 ( En — Ep — Ee — Ev) ) ), we may evaluate

this matrix element explicitly, using nonrelativistic approximations (38) :

< b IHIla> _ 2i J

	

Yb`r)(.) of Va(r)(x)
ex p(—jx(3 e + S~)

	

X

X

	

(1/d2)
ue(+)(ae) of (Ci + Ci y5) uv(-)

(-av )

(3 .5 .4 )

Because of the comparative smallness of the nuclear radius, we find (38 )

that we may replace the exponential factor in this formula by unity, an d

hence we may writ e

(b i Hlla>

	

= 2E . %i ue (+) (ye ) F. uv(-)
(-3v ) ,

	

(3 .5 .5a )

F .

	

/=

	

( 1/f) 0i ( ci + Ci Y5 ) ,

	

(3 .5 .5b )

Mi

	

=

	

r

	

vo (r)(a) of ' a(r)(x)
.

	

(3 .5 .5c )

Using standard nonrelativistic approximations for the 0
i
, we find tha t

Mi

	

= < 1>

	

, i

	

= s,

	

V

	

, (3 .5 .6a )

Mi

	

± <6 > , i

	

=

	

T, A

	

, (3 .5 .6b )

N.

	

= 0

	

, i

	

= p

	

. (3 .5 .6c)

In order to compare our predictions with experiment, we us e

the usual formula for the intensity of particles with a given momentum :

1 (4)

	

_

	

(1/27N) 5 q2
(Emax - E)2

X d1Ze dRv ,

	

(3 .5 .7a )



where

X

	

=

	

121, N . ue(+)(9.e) Fi uv(-)(_2v ) 2

Z i j

	

u e (+) (g e )

	

uv (-) (- ,)
uv(-)(-2

w ) Y4 Fj* (4 ue(+) (3e ) •

(3 .5 .7b )

Since, in the majority of experiments, the initial nucleus is unpolarized ,

and the polarization of the emitted particles is not observed, we now su m

over their polarization directions and take the average of the nuclear

polarization : (38 )

Xunpol

	

i j (,
.1 .1 J " ) pnal (145 G v ) Tr (( j Yk q e ( k ) - m)

	

X

o

u

i

1k qv(k) Y4 "j'' Y4 )

where we have used a number of standard formulae associated with the Dira c

equation . Since scalar and vector operators are obviously incapable o f

causing nuclear spin changes (39) because their products are independen t

of the Pauli spin matrices, these interactions must be associated only

with Fermi transitions . Similarly, since the tensor and axial vecto r

couplings can induce spin changes, these are taken as the terms responsibl e

for Gamow-Teller decays. Formally, we now defin e

F

	

2, T 1: (r)(2) Ta(r)(X)

	

(3 .5 .9a )

1"GTi2 =

	

(

	

1 2k

	

r J -vb (r) (_) 6k ya(r)(x)l2

	

(3 .5 .91) )

and in terms of these new matrix elements we have (38 )

( Ni Mj * ) av

	

=

	

Iv,i2

	

i , j = S,V

	

(3 .5 .10x )

since both the scalar and vector couplings are independent of the initia l

nucleon spin ;

(mi hi
Jw)av

	

0

	

i ,j = S,V ; j, i = T,A ,

	

(3 .5 .1ob )

implying that no cross-terms of the form (H)
.(HGT)

occur in the complet e

matrix element . We may alternatively reach this conclusion by writing (39 )

(MF)'(GT)

	

<1 > . <6>

	

,

	

(3 .5 .10c )

which vanishes upon averaging over all possible nuclear spin orientations .

However, (3 .5.10b) must obviously be modified if we take into account th e

X Fi (3.5 .8)



final state coulomb interaction between the daughter nucleus and the outgoin g

electron, but, as we saw in the preceeding section, this is slight fo r

light nuclei . (3 .5 .8) and (3.5.9) yield three further relations concerning

purely the axial vector and tensor couplings :

=

	

J,J' ( 1/3)(I <6>1 2 ) av

	

=

(1/3)
I ,IGTI 2

( 1/3) I
'IGTI 2

SJ,k ( 1/3) I x

	

2 . (3 .5 .10f )

We now writ e

xunpol

	

=

	

(1/2) it 1 2 A

	

+

	

(1/6) 1 1'10111 2 B ,

	

(3 .5 .11 )

where, by trace evaluation (38) ,

A

	

=

	

(Ic S 2 + c5I2) (1 - v case)

	

+

	

(Icv ;2 + ICl 2 ) (1 + v cos )

t (2m/E) Re (C s C7 t CS

	

) ,

	

(3 .5 .12a )

B

	

= 3(ICT2 +
IC.12) ( 1 + ( 1/3) v cos e) + 3(ICA I 2 + ICkI2)

	

x

x (1 - (1/3) v case) + (6m/E) Re (CT CA -r c, ca p' )

(3 .5 .12b )

introducing the variables 0, the angle between the electron and neutrino

momentum vectors, and v, the electron velocity . Finally, integrating ove r

all plane angles except 8), and using the intensity formula (3 .5 .7a), we

obtai n

1 (9)

	

( /4i 3 ) q2
(Emax - E)

2 (1 + a v cos 8 + b (2-/E)) sine de ,

(3 .5 .13a )

(Ifi

	

)av

	

= (~6~~

(r%A i Y+A )

	

=

J,J '

dav k ,k '

i

	

) av(NA
vfi

	

= (ti
.T

"A
r

u

	

)av

(3 .5 . 1 06 )

(3 .5 .10e )

z (IC S 1 2 + c 2 +

+

	

(I c T 1 2 + c112 +

(IcV I2

	

IcI 2 _

+ 1/6 (1 02 12 + ci
i
!2 -

	

12 + ICV12)

	

I , 1 2

	

l
2
* ! Cl~

I2)

	

N
GT I

2

i c gl 2

	

1cS12)I N,F I 2

	

2 _ i2

	

I 2
CAi

	

i 0A 1 )

	

SGT



b

	

=

	

i Re (C S CV + cS caw ) vF,1 2

	

+

+

	

i Re (CT C ,̀ + C l ca"') I AiGT 1 2 .

	

(3 .5 . 1 3d )

b is known as the 'Fierz interference term' (40) . We note that th e

coupling constants only appear in such combinations as IC 1 1 2 + ICi1 2

and Ci C
j

+ Ci C
j

in both decay-probability and angular-distributio n

formulae for unpolarized nuclei, and hence no experiment on the latter

may ever provide information concerning the possible appearance of th e

terms C . and C! in the weak Hamiltonian (i .e. whether the weak interaction

is parity invariant or not) .

3 .6	 The V - A Theory.

Since there exist two distinct types of beta decay (Fermi and Gamow -

Teller (41)) with different transformational properties, we are force d

to conclude that at least two of the five possible Dirac interaction s

occur in the weak Hamiltonian . As the pseudoscalar coupling is energy -

dependent, it is undetectable in normal beta decay, since the disintegration

energy rarely exceeds 2 HeV . All the beta decays which we consider her e

are 'allowed' and hence yield linear Kurie plots, implying no secondary

energy dependence, and thus b

may immediately deduce :

O . From our definition of b (3 .5 .13d), we

Re (C S Cv

	

+ CS Cr ' )

	

= 0

	

, (3 .6 .1a )

Re (CT CA

	

+ CT CA's )

	

= 0

	

. (3 .6 .lb )

Assuming precise time-reversal invarianc e
1

the relations (3.3 .23) reduce to

(C 3 CV

	

+ CS Cy)

	

= 0

	

, (3 .6 .2a )

( C T CA

	

+ Ci C :)

	

= 0

	

. (3 .6 .2b)

One simple hypothesis which explains the vanishing of these expression s

is that the Fermi interaction is either pure S or pure V and that th e

Gamow-Teller one is either pure T or pure A . Experimentally, we may

ascertain which coupling is responsible for which type of transition by

1 . As we shall see in chapter 8, this is not entirely justified . However,
the experimental T-violating amplitude -10-3 .



measuring the value of the coefficient a (3 .5 .13c) for pure decays . In a

pure Fermi decay ,

a

	

=

	

(I GV I 2 - jGSl2)/(IGVl2 + 1GSI2)

	

(3 . 6 .3a )

where

IGil2 = 4(Gil2 +

	

ICl2) .

Experiments yield (42 )

a

	

=

	

0 .97 ± 0 .14 ,

definitely favouring a vector coupling. Experiments on the pure Camow -

Teller proces s

6He

	

> 6Li

	

e + v

	

(3 .6 .4a )

imply (42, 43 )

a

	

(IGT l 2 - I GA I 2)/3(IG T I 2

	

I CA l 2 )

_

	

- 0 .3343 t 0.0030 ,

	

(3 .6 .4b )

suggesting an axial vector interaction in Gamow-Teller transitions . For some

years, 6He e-v angular correlation experiments tended to favour the S T
combination, but a critical analysis of these results (44) demonstrate d

that the experiments were, in fact, inconclusive .

There have been basically three attempts to predict the V- A

structure of the weak interaction theoretically (45) . The first method

was suggested by Marshak and Sudarshan (46) in 1958 . We define the so-calle d

'chirality' transformatio n

V(x) ----> y(x) =

	

Y 5 45(x) .

	

(3 .6 .5 )

However, the Dirac equation yield s

Y r ( a /axr) lf

	

=

	

- mil,

	

(3.6 .6 )

and thus we obtain

	

Yr ( a /3xr) (T 5 4r)

	

-Y5 (r r ( a /axr)V)

	

=

	

m (Y 5v )
(3.6 .7 )

Combining the equations (4 .6 .6) and (4 .6 .7) we may now writ e

	

rr
(a /d xr ) Vt

	

=

	

m i~1 3

	

(3 .6 .8a )

where

(3 .6 .3b )

(3 .6 .3c)



1g-t = z (1 + '( 5)y ,

	

(3 .6 .8b )

which are eigenatates of y- 5 :
Y5 4

	

=

	

± if± .

	

(3 .6 .9 )

We usually define i1+ to have positive chirality and r - negative

chirality . Writing (45)
1

= 1( 1

	

+

	

Y4)y (3 .6 .10a )

x

	

= 4 (1

	

-

	

Y4 ) -v , (3 .6 .lob )

we have

r49 - X
I+

	

_ '-z ( 1

	

t

	

Y 5 ) 1V 2 L-( ep - x)
(3 .6 .11a)

1 + x
( 1

	

-

	

Y5 ) 2 + (3 .6 .11b )

where

= (3.6 .11c)

We note that, if we project with positive chirality, we obtain th e

two-component spinor

	

- X) and if with negative chirality (0 + X) ,

and thus two of the components of the original four-component spinor ar e

now redundant .

We observe that, in the special case of a massless Dirac particle, the

Dirac equation is invariant under the chirality transformations, sinc e

(4 .6.8a) reduces to

r ( a / ax r ) =

	

0 .

	

(3 .6 .12 )

Evidently the wave functions of free particles with finite rest mass

chirality noninvariant . Nevertheless, narshak and Szdarshen (46) suggeste d

that the complete four-fermion interaction might be invariant under
1 5

applied to each field separately 2. This implies that the Dirac operator s

appearing in the weak Hamiltonian obey the relations

[o. , Y5] +

	

=

	

0 ,

	

(3 .6 .13a )

0 i

	

=

	

0i Y5 .

	

(3 .6 .13b )

1. These are ;mown as 'non-chiral-projected' spinors .

2. This is obviously only plausible if the weak Hamiltonian is parity non -
invariant .



The only two gonna-matrix products which anticommute with Y5 ar e

Y r (V) and Y5 Yr (A), and the condition (4 .6 .13b) demands that there

must be an equal admixture of these two operators in the Hamiltonian .

Thus the complete four-fermion interaction must be of the form

(G/j) ('f n Yr (1 + Y5 ) 11p ) (tire Yr (i + 15 ) tr)

	

+

	

Herm . conj . ,

(3 .6 .14a )

where G is a suitable coupling constant with the dimensions of (length )2 .

We now rewrite (3 .6 .14a) :

(GM) ( ( "fin (r lfp ) (fie rr (1

	

Y 5 ) ) - ( fin )r'Y'5P)

	

X

X

	

(Y e j YrY 5 (1 + Y5 ) v) + Heim. conj . )

(3 .6 .14b )

Comparing (3 .6.14b) with our original Hamiltonian (3 .3.6), we obtain :

C i

	

=

	

Ci

	

=

	

0

	

(i = 3, T, P) ,

	

(3 .6 .15a )

CV

	

=

	

C r (3 .6 .15b )

CA

	

=

	

C A , (3 .6 .15c )

Cv

	

= - C A

	

=

	

(G/r) .

	

(3 .6 .15d )

We note that the result (3 .6.15d) is, at this point, purely arbitrary :

if we had demanded invariance under negative rather than positive chira l

projection, we would have obtained

CV

	

= + C A .

	

(3 .6 .15e )

A second method for deriving the correct V-A structure of the

weak interactions was suggested by Feynman and Gell-Nann in 1957 (47) .

They realized that a wave function with only two components could b e

made to satisfy the Dirac equation . Let X(x) be a two-component spino r

defined :

¶(x )

	

_

	

(1

	

-

	

(1/m) Yr . (" /9xr) ) X(x) ,

	

(3 .6 .16 )

which satisfies the Klein-Gordon equatio n

(O

	

-

	

m2 ) X (x) =

	

0

	

(3 .6 .17a )

and the subsiduary condition

Y 5 1(x)

	

=

	

X(x) .

	

(3 .6 .17b)



We find that any wave function 14r(x) satisfies both the free Dirac equatio n

( r (Zxr)

	

+

	

m)q(x )

	

=

	

o ,

	

(3.6 .18 )

and also the 'chirality' relation

+ ( 1 + Y 5 ) 5(x)

	

=

	

X ( x ) .

	

(3 .6 .19 )

We now postulate that all spin - particles may be described by two-componen t

spinors of the form x(x), and from our definition (3 .6 .16), (3 .6.17), we

may immediately deduce thatl

e 1 (1 + Y 5 ) (3 .6 .20 )

This now implies a V - A structure for beta decay in the same manner a s

did the Marshak-Sudarshan formulation (46) .

The third theoretical justification for a V - A interaction wa s

proposed by Sakurai in 1958 (49) . He noticed that the Dirac equation

was invariant under the two transformations

9 Y5

	

(3 .6 .21a )

m	 >,- m

	

(3 .6 .21b )

applied simultaneously, where
2

=

	

1 .

	

(3 .6 .21c )

This is known as 'mass-reversal' invariance . We now observe that th e

relativistic requiremen t

m2 = p0 2 - 1 2 1 2 (3 .6 .22 )

involves only m2 and not m, and hence does not determine its sign . Thus

we are forced to conclude that the relation

(fr (a/axr)

	

-

	

m) r 5 "V(x)

	

=

	

0

	

(3 .6 .23 )

is exactly equivalent to the usual Dirac equation (3 .6 .18) . Using the

argument outlined above, we see that the Sakurai formulation also

predicts a V - A form for the beta decay interaction Hamiltonian. We

note, however, that sofar, we have produced no theoretical or experimental

evidence concerning the relative signs of the V and A couplings .

1 . Assuming 'chirality invariance' .



3 .7	 The Nonconservation of Parity .

In 1956, Lee and Yang (50) suggested that the weak interaction

might not be invariant under the parity operator, because of certai n

difficulties arising from the existence of two distinct decay modes fo r

the K0 with different intrinsic parities (see chapter 7) . They realized

that parity conservation in nuclear beta decay could be tested by measurin g

quantities which behaved as pseudoscalars under P . If parity were conserved ,

then these should vanish . In their original paper Lee and Yang (50 )

proposed that experiments should be performed to ascertain the value s

of the following parameters :

J 2, ,

	

(3 .7 .la )

(3 .7 .1b )

J

	

(6 x pe ) ,

	

(3 .7 .10 )

where J denotes the spin vector of the parent nucleus and 6 that of the

emitted electron . We now examine each of the quantities (3 .7 .1) in turn .

Since J is an axial vector, it is P invariant, but pe is a pure vector ,

and hence it changes sign under P . A 0 --)O beta decay obviously cannot b e

used to evaluate (3 .7 .1a) because the nuclear spin J is zero, ensuring

that J , pe is also zero, whether the weak interaction is parity invarian t

or not . As the testing of P invariance in forbidden transitions is very
difficult because of insufficient theoretical information on thei r

nature, we see that we must employ a Gamow-Teller decay of the for m
J -3 J * 1 for this purpose. We find (51) that the electron angula r
distribution, neglecting coulomb corrections, is given by

I(8)

	

=

	

4'r

	

(1 +

	

A pe
Ile ) ,

	

(3 .7 .2a)

where 5 was defined in (3 .5 .13b) an d

A

	

=

	

- ICAI2
I"07 I 2 R(Ja , Jb )

	

- 2 Re(CV

	

M
CA F NGT

*. )

	

x

x

	

Jarjb
3 Ja /(J a + 1)

	

(3 .7 .2b)

R (Ja , J b) - + (1/(J a * 1) ) (2 + Ja (Ja + 1) - Jb(Jb + 1)



- Ja/(Ja t 1)

	

J b = Ja +

1 ,

	

J b = J a - 1

	

(3 .7 .2c )

Ja and J b being the initial and final nuclear spins respectively . We note that ,

if we are considering positron rather than electron emission, then the

sign of A is reversed . We have assumed a V - A structure . In 1957, Wu ,

Ambler, Hawyard, Hoppes, and Hudson (52) set up an experiment to tes t

for parity noninvariance in the pure Gamow-Teller decay (5--3 . 4)
60Co	 > 60Ni + e-(0 .312 HeV)	 > 60 Ni

	

1(1 .19 HeV) 4 1(1 .32 MeV)

(3 .7 .3 )

by observing spatial asymmetry in the decay electron distribution . In this case ,

(3 .7 .2a) reduces to

I(0)

	

_

	

(1

	

+

	

A KJ> . pe/E ) ,

	

(3 .7 .4a )

where

	

(2 CA CA)/(IcA l 2 1
`
C

AI
2)

	

(3 .7 .4b)

If parity were conserved, then CA = 0 and (3 .7 .4b) would vanish, so

that the electron distribution would be isotropic .

In the experiment of Wu et al ., the 60 Co nuclei were polarized

by placing them within a crystal of cerium magnesium (cobalt) nitrate ,

which exerts a strong internal magnetic field, and thermal motions i n

the sample were reduced to a minimum by cooling the whole assembly t o

0 .01 K using adiabatic demagnetization . Specimens for testing were made

by selecting good cerium magnesium nitrate crystals and then growing a

crystalline layer of 60 Co, about 50 p m thick, on their surface . The

degree of nuclear polarization effected by the magnetic field was

monitored by observing the spatial anisotropy in the 60 Co decay Y-rays with two

Nal scintillation counters mounted in the polar and equatorial plane s
of the sample . The decay electrons were detected by means of a smal l

anthracene scintillator crystal located about 2 cm above the 60 Co source .

Scintillations from this device were transmitted along a Lucite 'light

pipe' about 1 .2 m long to a photomultiplier . When the nuclei had been

polarized, a pulse-height analyser connected to the electron-detection

photomultiplier was activated, and the apparatus was left for about 15 min .,



after which time the nuclei had become depolarized, and a heat-exchange

gas was allowed to enter the sample chamber . The first few runs of the

experiment were sufficient to demonstrate a definite asymmetry in th e

spatial distribution of decay electrons, and to indicate that A wa s

negative, implying that beta particles were preferentially emitted i n

the direction opposite to that of the nuclear spin . Further experiment s

were performed to demonstrate that the anisotropy was not, for example ,

due to distortions in the magnetic field of cerium magnesium nitrat e l .

The variation in observed results for electron velocities betwee n

0.4 and 0 .8 was measured, and was found to agree with the formula (3 .7 .4) .

Since the 60Co decay (3 .7 .3) is a pure Gamow-Teller transition, we writ e

A

	

= -2 (Re(C~ CA) )I(IGA I 2

	

+

	

ICAI2)

	

'--1

	

,

implying

(3 .7 .5 )

A
Cl (3.7 .6)

We note that, since the ratio
CAICA

is evidently not pure imaginary, th e

experiment of Wu et al . established not only parity nonconservation, bu t

also charge conjugation noninvariance .

Having considered parity noninvariance in a pure Gamow-Teller transition ,

we now examine its effect on the neutron decay, which is a mixed r

rtransition . Since this is an -'g -+ 4- process, we write I
MGT I

	

f5",
M? = 1. We now define a number of parameters, and simplify them o n

the assumption that the interaction occuring in neutron decay has th e

form V,A : (53 )

I GVI 2 + 3 IGA I 2

	

, (3 .7 .7a )

al

	

= I GV I 2
IGAI2

	

, (3 .7 .7b )

AY

	

= -2 ( GA I 2 + Re(GV GA ) ) (3 .7 .7c )

BY 2 (IGA I 2 r Re(GV GA''))

	

, (3 .7 .7d )

D5

	

_ 2 Im (GV (3 .7 .7e )

1 . Formula : 2 Ce(NO 3 ) 3 . 3 Hg(NO3 ) 2 24 H2O



where

C .

	

=

	

C!

	

=

	

G . /f 2

	

(3 .7 .7f )

We find that a is the angular correlation factor in polarized neutro n

decay, A and B respectively the electron and antineutrino asymmetry

parameters, and D the electron-antineutrino correlation coefficient .

Presence of the latter term would indicate both T and C noninvariance .

Experimentally (54), a beam of about 108 876-polarized thermal neutrons

was obtained by reflecting a collimated neutron beam at a glancing angl e

(8') from a cobalt mirror magnetized at a normal to the beam's directio n

of propagation. The neutrons were then admitted into a vacuum chamber i n

which a number of them decayed . Disintegration electrons were recorded

by a scintillation counter on the right hand side of the chamber, i n

time coincidence with the recoil protons which were detected by an electro n

multiplier . A grid was placed at the opposite side of the beam from th e

proton detector, and a potential difference of 12 000 V was applied betwee n

the grid and the first dynode of the electron multiplier . Since it was

important to have as high an intensity as possible, the recording unit s

were made as large as possible : the scintillation counter head had a

diameter of 15 cm and the first dynode of the electron multiplier had a n

area of about 225 cm2. Measurements of the anisotropy of electrons in

neutron decay were made by polarizing the beam towards and away from th e

electron detector . These demonstrated that about 20% more electron s

were emitted opposite to the spin direction than along it . Comparing thi s

with the theoretical distributio n

I(e)

	

= 1

	

+ A (v/c) cos

	

, (3.7.8 )

we obtain

A

	

= - 0 .114 ±

	

0 .019 . (3 .7 .9)

The angular distribution of decay antineutrinos was deduced by observin g

both electron and proton anisotropy, yieldin g

B = 0.88 -* 0.15 . (3 .7 .10 )

The parameter D was calculated by measuring simultaneously the direction s

in which the electron and antineutrino were emitted with respect to th e

neutron spin . No indication of time-reversal noninvariance was revealed ,



implying that the constants GV and GA were relatively real . Defining

R

	

=

	

GV/GA ,

	

(3 .7 .11a)

we may writ e

A

	

= -2 (1

	

+ R)/( l

	

+

	

3R2 ) (3 .7 . 11b )

B

	

= -2 (1

	

— R)/(l

	

+

	

3R 2 )

	

. (3 .7 .11c)

Our experimental results for A and B are consistent with A = 0, B = 1 ,

and substituting these values in the relations (3 .7.11) we obtain

GA

	

- 1.25 GV ,

	

(3 .7 . 1 2 )

and thus we have demonstrated that the interaction occuring in beta decay

has the form V — A. This is attractive, since the combination V — A i s

invariant under Fierz reordering (3 .3.17a) .

We now investigate our second P pseudoscalar (3 .7.lb), which

corresponds to the longitudinal polarization of electrons emitted fro m

nonoriented nuclei . Since we now do not sum over electron polarizatio n

directions, the relations (3 .5 .7) become (51), assuming a V — A interaction ,

I(q)

	

=

	

1/(2n) 5 q 2 (E

	

- E) 2 dlle fX dily ,

	

(3 .7 .13a )
max

X

	

=

	

- 1/(2Ev)

	

i , 3 (Mi i~~
)po~l

e(+)(r)(Ae) Fi 3
Yn

1v(n)
X

X Y4 F j* Y4 ue(+)(r)(ae) , (i,J = V, A) (3 .7 .13b )

where r denotes the decay electron polarization index . Since integration

over all possible neutrino momenta must evidently yield zero, only term s

involving Y4 and Ev survive, and, using properties of the gamma matrice s

and of the spinors u, we find that (3 .7.10b) may be written explicitly :

1X

	

v

	

' dS2

	

2n(~N
F ~2 G2 + 1M

GT 2 G GT
2 + u e

*(t)(r)(1e) Y5 ue(+)(r)(ae )

X

	

(IMr,I2 Re(CV C V ) + I MGT' 2 Re(CA C A)) ) .

	

(3 .7 .14 )

The remaining variable term in this expression may be evaluated using th e

standard formul a

u (+)(r) (fl) Y5 u(+)(r) (s)

	

_

	

- (1/E) ( !!(r) I 4a I ~ (r) > ,

(3 .7 .15a)

X



wher e

_1(1)
=

	

C(2)

	

_O

	

(3 .7 .15b )

Thus the expression (3 .7.15a) is given by the expectation value of the

spin projected along the direction of motion of the particle . Analysin g

the spin itself along this direction, we fin d
u*(+)(r)(g)

Y 5 u(+)(r) (1)

	

=

	

- v ,

	

r = 1

v ,

	

r = 2 .

	

(3.7 .16 )

We now introduce a new parameter known as helicity, which can adopt eithe r

of the values +- 1 . A particle whose spin is parallel to its direction of

motion is defined to have positive helicity, and one whose spin is anti -

parallel to it, negative helicity . We may now rewrite (3 .7 .16) in the form
u*(+)(r)(2)

Y 5 u(+)(r) (A)

	

-v h .

	

(3 .7 .17 )

Substituting (3 .7.17) in (3 .7 .14) we obtain

1x d12v

	

=

	

2n(S

	

-

	

by (Irrl 2
Re(CV cv )

	

+

	

1MGTI2
Re ( C: CA) )

	

(3 .

ron ,

7 .18 )

Experimentally, we measure the polarization of the outgoing elec t

defined by

	

number of electrons with h = 1 	 -	 number with h= -1P

	

all electrons

(3 .7.19a )

Introducing this parameter into (3 .7 .18) we have

p

	

=

	

- v (IMF I 2 Re(C I;'' Cl:,) + IMGTI2 Re(CA CA) ) .

	

(3 .7 .19b )

We note that, for processes involving a positron rather than an electron ,

the right hand side of (3 .7.19b) changes sign .

We now discuss the experimental determination of the electro n

polarization in beta decay . The first method (55, 56) is to measur e

the azimuthul asymmetry in a beam of decay electrons after single coulom b

scattering through large angles from heavy nuclei (Mott scattering) . Whe n

a transversely-polarized electron is scattered by a nucleus, the interaction

cross-section depends upon the relative orientation of its spin and of tha t

of the scattering nucleus . The magnetic moment of the electron is taken



to be aligned in a direction opposite to that of its spin vector 6 . In

the rest frame of the approaching electron, the nucleus appears as a

positive current, and hence it produces a magnetic field H parallel t o

its orbital angular momentum r . Thus, when 6 and r are parallel, there

is a repulsive force between the electron and the nucleus, and when the y

are antiparallel, an attractive one . Obviously, electrons will be scattered

to both sides of nuclei because of ordinary electrical forces, but mor e

tend to be scattered on the side corresponding to r and

	

antiparallel .

However, in order to utilize Mott scattering, we must first translat e

the longitudinal polarization of the decay electrons into transvers e

polarization . There exist a number of possible methods for effectin g

this transformation . One is to apply a transverse static electric field (56 )

to the electron beam . This leaves the spins of nonrelativistic particle s

unchanged, while their direction of motion is varied continuously .

However, if the electrons are relativistic, then their spins tend t o

precess in the same direction as their momentum vectors. This problem

may be overcome by bending the electron beam through an angle greate r

than the necessary 900 . A second method of changing the sense of electro n

polarization is to produce fields, E and H, so that they are mutually

perpendicular, an d

IEI/IHI

	

=

	

ve

	

(3.7 .20 )

An electron beam is then introduced at a normal to both fields, and

electrons of a particular energy, corresponding to v
e
, remain undeflected ,

since the effects of the electric and magnetic fields cancell each othe r

out. However, the spin axes of the electrons are rotated through th e

desired angle, since they are affected only by the magnetic field .

A further method (57) is to introduce the electron beam into a semicircular

arc of, for example, aluminium foil, in which multiple scatterin g

occurs. This does not affect the spin axes of the electrons, but, in

a few cases, will result in a 90 0 change in their direction of motion ,

thus translating any longitudinal polarization into transverse polarization .

Experimentally, it is necessary to have a very thin foil i n

which Mott scattering may occur, in order to reduce the probability of



multiple scattering, which can simulate true Mott scattering . The metal

nuclei in the foil are polarized by applying a transverse magnetic field .

Any anisotropy in the distribution of scattered electrons may be checke d

by reversing the magnetic field and observing whether the preferential

scattering direction is correspondingly reversed . Usually, the parameter

D

	

=

	

( N ( ep ) — s (~ + n))/(N(1) + N(c + 'R) )

=

	

he a(0) sin

	

,

	

(3 .7 .21 )

where N(12) is the counting rate at

an

angle ep to the beam and a(A) i s

the right—left asymmetry parameter, is measured in experiments . a(e )

must be calculated theoretically, the most important consideration s

tending to be nonunifoxmities in the beam striking the scatterer, th e

effects of multiple scattering within the scattering foil, and depolarizatio n

resulting from the finite extension of the source . Many experiments ,

using either the crossed—fields or double—scattering method, have been

performed, demonstrating that (58 )

h
e

	

— v .

	

(3 .7 .22)

Substituting this result in (3 .7 .19b), we have

(2 Re (c i s` cl))/(Ic i l 2
rt' I cil 2 )

	

=

	

1

	

( i = V, A) .

(3.7.23a )

This is satisfied if and only if we se t

CI

	

=

	

Ci

	

,

	

(3 .7 .23b )

and since Ci

	

0, our result is incompatible with parity invariance

(3.3.20), and thus we are forced to conclude that beta decay is parity

nonivariant .

An alternative method for measuring the longitudinal polarizatio n

of beta decay electrons is ;•;Oiler or electron—electron scattering . I t

has been found (59) that the cross—section for this process is dependent

upon the relative spin orientations of the interacting electrons . Using

the Born approximation; we find tha t

(6TT)/(61'1)

	

(E 2(1 + 6x + x 2 ) — 2E(l — x) + 1 — x 2 ) /

/ (8E2 — 2E(4 — 5X + X 2) + 4 — 6x + 2X
2 )

(3 .7 .24 )

1 . This assumes that only one virtual photon is ever exchanged .



where B is the total electron energy and X = (1 - 2q ) 2 . From (3 .7 .24 )

we may deduce that the spin dependence of the scattering cross-sectio n

is most pronounced when both electrons have the same energy . M'lle r

scattering may be differentiated from the background of ordinar y

coulomb scattering by a fast-coincidence technique and by energy an d

angular selections . In the experiment of Frauenfelder et al . (60) ,

electrons scattered from a magnetized Delta-Max foi l
1

were detected by

two anthracene scintillator crystals connected in fast coincidence .

By altering the angle of the detectors, it was calculated tha t

h e

	

=

	

- (1 .0 ± 0.11) v .

	

(3 .7 .25 )

The longitudinal polarization of decay electrons and positron s

gives rise to circular polarization both of their bremsstrahlun g2, and

of e - e annihilation radiation . The former reaches a maximum for high

energy-transfers in the forward direction, the degree of polarization bein g

Pman

	

=

	

(1 - (1/2E e ) P e ) .

	

(3.7 .7.6 )

The earliest experiment on this principle utilized a 90Y source mounted abov e

a 13-cm-long magnetized iron cylinder, below which was placed a n

8 x 8-cm NaI (T1) scintillation counter (61) . The measured antisymmetri c

effect was found to be given by

2 (N - N +)/(N- + N+ )

	

_

	

- 0 .07 f 0.005 ,

	

(3 .7 .27 )

where N,. denotes the counting rate when the magnetic field was in th e

same direction as the bremstrahlung, and N_ when it was opposite to it .

The negative value of the bremstrahlung circular polarization (3 .7 .27 )

definitely indicates that the electron has negative helicity . The smal l

magnitude of (3 .7.27) is due to the low momentum-transfer involved i n

the production of 90Y decay electron bremsstrahlung. Correcting for electro n

energy and for distortions in the iron magnetic field, we predict

h
e

	

- v .

	

(3 .7 .28 )

1'. A type of steel foil (effective atomic number 26) .

2. Litterally, 'braking radiation' (German) . It is emitted by all charged
particles when their state of rest or uniform motion is altered, i n
the form of photons whose frequency is proportional to the energ y
change involved .



The annihilation of free helical positrons by unpolarized electron s

will obviously give rise to circularly-polarized annihilation radiatio n

(usually photons) . Even for comparatively low positron energies (^-1 MeV) ,

we find that the forward annihilation gamma rays are almost 100 % polarized .

Experimentally, (62) positrons from a pure Fermi decay were momentum-

analysed by a thin-lens spectrometer, and were then brought to rest and

hence annihilated . The gamma rays produced were analysed by a standar d

polarimeter, yielding

h i,

	

(95 ± 14) % .

	

(3 .7 .29 )

• As in electron-electron (,Iller) scattering, the cross-section fo r

electron-positron annihilation is dependent upon the relative spi n

orientations of the two particles . This fact has been used (63) t o

determine the helicity of positrons in 64Ga decay, but depolarization

effects in the annihilation medium tend to render the result inaccurate .

An ingenious method for measuring the helicity of beta-decay positron s

was suggested and used by Page and Heinberg (64) . It involves the

formation of positronium, which undergoes the decay
+e

	

e

	

> 2 ' ,

	

3 f

	

(3 .7 .30 )
in about 10-7 s . In the absence of a magnetic field, the m 0 )1 substate s

of the singlet (J = 0) and triplet (J = 1) states of positronium are

described by the wave function s

1/Ti (A_ B + - B_ A + ) (3 .7 .31a)

1/5 (A_ B+ + B_ A + ) (3 .7 .31b)

respectively, where A denotes the 'spin up' and B the 'spin down' state .

The suffixes correspond to electrons and positrons . In the presence

of an 'upward' magnetic field H, the wave functions (3 .7 .31) become

l/

	

((1

	

- a) A_ B -

	

(1

	

+ a) B_ A+ )

	

, (3 .7 .32a )

1/ J c ((1

	

+ a) A_ B + +

	

(1

	

- a) B_ A + )

	

, (3 .7 .32b)

where a

	

= 2y/(l

	

+

	

y2 ),

	

y

	

. ((1 +

	

w2 )1 -

	

1)/w) ,

w - 4J-A(H)/s, I being the electron magnetic moment2 and s the mass-

1. m is here the magnetic quantum number, which describes the magnetic state
of an electron orbit in an atom . It may adopt any integral valu e
between +t and - .

2. N. = 1 .001 159 6567 e/2m,c (Cohen, op.cit . )



splitting between the triplet (J = 1) and singlet (J = 0) states fo r

H = 0 )1 . Thus we may deduce that the ratio of the number of positron s

with their spin 'up' to that with their spin 'down' i s

R =

	

(1 + a)/(l

	

a)

	

(3 .7 .33)

for the triplet and singlet respectively . This implies that a positron

which is completely polarized in the direction opposite to that of th e

field H is preferentially captured into the triplet state of positronium .

The singlet state decays into two oppositely-directed photons in abou t

10- 1° s, and the triplet into three coplanar gamma rays after about 10 -7 e ,

and on the basis of this difference in lifetime and decay mode, it shoul d

be possible to differentiate singlet and triplet states in a populatio n

of positronium . However, under some circumstances, one of the particle s

in a J= 1 state may 'spin-flip', and the state may decay via the single t

mode . Theoretical considerations (65) demonstrate that, for H

	

104 G ,

the singlet accounts for about 85 %o of all 2 y decays, and, using thi s

fact, Lundby et al . have obtained (65) a tentative value for the helicit y

of positrons in beta decay . Nevertheless, Page and Heinberg (64 )

devised an alternative method for discriminating between triplets an d

singlets decaying into the 2y mode . Since the singlet is only about

1 0-10 s old when it undergoes decay, it retains some of its formatio n

kinetic energy, and hence the two photons may emerge at any angle around

180°. However, the triplet lives longer, and thus it has usually los t

most of its original energy by the time it decays, so that, if two

photons are produced, they will tend to emerge strictly at 180 . By

analysing angular correlation spreads, Page and Heinberg (64) have show n

that the positrons in
22
Na decay have positive helicity .

Finally, we discuss the last of our three P pseudoscalars : (3 .7 .1c) .

This corresponds to the polarization and angular distribution of electron s

emitted from oriented nuclei . If a polarized nucleus decays by bet a

emission into an exited state of its daughter nucleus, then the spin o f

the resultant nucleus will be correlated with the direction of electro n

emission if the electron has a definite helicity. If the excited nuclid e

decays before its spin axis has been altered, then the circular polarizatio n

1 . When a magnetic field is applied, the Zeeman or splitting effect occurs .



of the decay gamma ray will be proportional to cos 0, where e is the

angle between the electron and gamma ray emission directions . Experimentally (66) ,

we must determine the sense of photon polarization . Initially, we

may measure either the effect of the interaction of the gamma rays with a

polarized sample or the polarization of secondary particles whose emissio n

was caused by incident gamma rays . The types of interaction of gamm a

rays with matter are, within the required energy range : the photoelectri c

effect ; formation of electron-positron pairs ; nuclear photo-effect, and

Compton scattering by electrons . Since there is, at present, no means o f

polarizing electrons in inner atomic shells, no direct estimate of gamma -

ray polarization may be made using the photoelectric effect . Nevertheless ,

observation of the longitudinal polarization of ejected photoelectrons

does provide some information concerning the helicity of the inciden t

gamma photon, although numerous correction factors render it inaccurate .

Both e+- a pair formation and the nuclear photo-effect methods rely on goo d

knowledge of the fine structure of atomic nuclei, which is not, as yet ,

available . The cross-section for Compton scattering is dependent upon

the angle between the spin axes of the interacting electron and photon .

A Klein-Nishina formula adapted for polarized initial particles may b e

used (66) to demonstrate that the cross-section for forward Compton

scattering is greatest when the spins of the electron and photon ar e

antiparallel, and for backward scattering, when they are parallel .

If we polarize electrons by magnetization , then we may measure th e

helicity of incident gamma rays by observing the differential cross-sectio n

(d 6/d 12) for scattering into a particular solid angle element .

However, backbground radiation caused by scattering from surrounding

objects tends to complicate this measurement . An alternative method i s

to calculate the probability of absorption of the photon by iro n

magnetized in a particular direction . The major sources of inaccuracy

in this method are scattering from the magnet coils and the difficult y

in determining the absorption length of magnetized iron. The most accurat e

measurement of e — ' angular correlation was made by Schopper (67) .

In his experiment, gamma rays from 60Co decay were absorbed in a sample



of iron whose direction of magnetization was reversed every 200 a . The

scattered photons were detected by an Nal (Ti) scintillator, and th e

results obtained (38) were consistent with he . - v.

3.8	 The Two-Component Neutrino Hypothesis .

With our knowledge of the type and strength of interaction s

occuring in neutron decay, we may now rewrite our original Hamiltonia n

(3 .3 .6) : (68 )

H 1

	

=

	

(Cv/1-2) J 1p Yryn re Yr (1 + Y 5 ) V v

- (CA/ 2) JJ p Yr Y5 1-n ljre
V1 r (1 + Y 5 ) V-v +

t Heim. conj .

	

(3 .8 .1 )

We observe that, in this expression, a factor (1 + '( 5 ) always

preceeds the neutrino field operator . Sinc e

( 1 + Y S )

	

_

	

( 1 ± Y 5 ) Y 5 ,

	

(3 .8 .2 )
the neutrino wave function must always be invariant under the 'chirality '

transformation

(3 .8 .3 )

As we saw in 3.6, this is only the case for massless particles, and henc e

the neutrino mass must be precisely zero . On this assumption, we

analyse the neutrino spin along its direction of motion, and thus th e

Dirac equation yieldsl :

(1 + Y5) uv(+)(r)(n„)

	

_

1-
1 -1 (r) 1 (1 - 6z )

	

(r) 1

j -1 1 d 1 (r ) 47f

	

=
- ( 1 - 6Z) y(

r )

4F

L 1 -z

We see that all components of the neutrino spinor vanish for r . 1, and

henc e

( l/[2) (1 + 15)yv

	

=

	

( 1 t y5) ;57n (u(+)(2)(a)ejgx 8 (2) (n )

u(-)(1)(-n)e jqx
bt(1) (n) .

	

(3 .8 .5 )

1. Using the gamma-matrix representation in which Ye is not diagonal .



We are thus forced to conclude that only antineutrinos with positiv e

helicity (r= 2), and only neutrinos with negative helicity (r = 1) may

ever be produced . We may therefore reduce our usual four-component

neutrino spinor to a two-component one . This is known as the 'two-componen t

neutrino hypothesis' .

We now discuss the experimental determination of the neutrin o

helicity (69) . In a decay of the form

A(0) + e	 >B(1 )-+v

	

>C(O') + f ,

	

(3 .8 .6 )

we see that, b

	

1y angular momentum conservation, the nucleus B must have

a spin opposite to that of the emitted neutrino . Furthermore, when th e

excited nuclide B returns to the ground-state C, the circular polarizatio n

of the decay photon will be by cos e), where e is the angle between

the neutrino and photon momentum vectors . In order to select only thos e

gamma rays which are emitted in a direction opposite to their associate d

neutrinos, we may employ the phenomenon of nuclear resonance scattering .

When a photon is emitted or absorbed by a nucleus, the latter recoils wit h

energy n^g/M . Thus, when a photon is absorbed, the energy available fo r

excitation is only E O(l - EO/M) . In order to make resonance possible ,

extra energy, amounting to that lost in the nuclear recoil, must be supplied t o

the photon . This occurs if the decaying nucleus has already recoiled

in a direction opposite to that induced by gamma-ray emission . Such an

extra recoil could be provided by the emission of a neutrino whos e

direction of motion was precisely opposite to that of the photon .

The Doppler shift in the gamma-ray energy caused by the nuclear recoi l

is given b y

L'_\E

	

_

	

(EO Ev cose)/ii ,

	

(3 .8 .7a )

and hence the total energy for excitation transferred by the gamma ray

will be

E EO t (E0 Ev cos e )/M - ED/?i . (3 .8 .7b )

We now deduce that the condition for resonant absorption i s

Ev case =

	

EO •

	

(3 .8 .7c )

1 . Obviously we assume that any electrons captured from the atomic K shel l
will be s-wave .



For cases in which the neutrino has almost the same energy as the photon ,

the resonance condition is fulfilled only for those photons emitted opposit e

to the neutrino . Thus, by measuring the circular polarization of the

gamma rays inducing resonance, we may determine the helicity of th e

neutrino .

In 1958, Goldhaber et al . (70) attempted to measure the neutrin o

helicity using the proces s
1523u(0 - )

+ e	
152

Sz ` (1 ) + v(900 keV )

152s.(0+ )
+ 1(961 keV) .

	

(3 .8 .8 )

The lifetime of the 1 state is (7 ± 2) x 10-14 s, which is short

enough to assume that the nucleus will not lose any recoil energy betwee n

neutrino and photon emission . Gamma rays from the
152E

. source impinged

on a ring scatterer consisting of 1700 g of Sa 20 3. Any photons arising
from resonant scattering were detected by means of an Nal (Ti) scintillation

counter, which was shielded from the primary gamma rays by a lead block .

In order to determine the sense of gamma-ray polarization, the photon s

were made to traverse 3 mean free paths of magnetized iron before hittin g

the ring scatterer. An electron whose spin is antiparallel to that of a

photon may absorb the latter's unit of angular momentum by spin-flip ;

when it is parallel, it may not . By measuring the change in counting rat e

when the direction of the magnetic field was reversed, it was deduce d

that the gamma-rays were (67 ± 15) % left-handed (h = -1), in agreemen t

with the theoretical prediction of 84 % for h v = -1 .

There exists one further method of deriving the two-componen t

theory of the neutrino . This requires a new representation for the gamma

matrices :

Y 5
1

_0 -1- Y4

0 -j 6r
j 6r

	

0

Defining two two-component wave functions v and w, the Dirac equatio n

for zero mass now reads

Yr = (3 .8 .9)



j )r qr u

	

=
((Jg

	

-

	

E) w

=

	

0 ,

	

(3 .8 .10 )
-(6 g

	

-

	

E) v

which may be resolved into two uncoupled relations :

(E

	

+

	

6g) v

	

=

	

0

	

,

	

(3 .8 .11a )

(E

	

-

	

(_ g) w

	

0

	

.

	

(3 .8.11b)

Thus the projection of the spin along the direction of motion i s

-E/1gj for v, and E/Igl for w. Hence, massless particles with positive

energy must have negative helicity if they correspond to the solutio n

v, and positive helicity if to w. Since w is the antiparticle solution

in (3 .8 .10), we now inferr that all neutrinos have negative helicity whil e

all antineutrinos have positive helicity . The equations (3 .8 .11) were

first proposed by Weyl (71), but they were condemned by Pauli because the y

implied parity noninvariance (72) . However, after the experiment of Wu et

al., they were revived by Salam (73), Lee and Yang (74), and Landau (75) .

Finally, we examine a number of useful predictionsmade by the

two-component neutrino theory. We assume that in a Fermi decay (AJ = 0) ,

the recoiling nucleus takes up no momentum . We consider the case in which electron

and antineutrino emerge in opposite directions with equal momenta . Since

the antineutrino has positive helicity, so also must the electron . However,

if we assume that the electron has enough energy to be satisfactoril y

described by a two-component wave function, then we predict that i t

should have negative helicity, and hence that its spin should be paralle l

to that of the antineutrino . This would imply nonconservation of angular

momentum, and consequently we are forced to conclude that the situation

described is impossible . From this we may inferr that the e-v angular

correlation factor should vanish for 0 = r[ , which is consistent wit h

experiment and with (3 .5 .13) .

The two-component neutrino theory may be used (76) to derive th e

correct V - A structure of beta decay . Since the antineutrino has positiv e

helicity, it follows that, in the me

	

0 approximation, the electron

must have negative helicity . By angular momentum conservation, this implie s

that the nucleon spins must both be parallel to the antineutrino spin .



We find (76) that the matrix element for beta decay assuming two-componen t

leptons is given by

Mif

	

=

	

(l/f )
GAM)

un) (Tie (GV + GA 6 3 ) uv ) t

+ (2 GAIJ2) (uP 6_ un) (Tie 6 + uv ) ,

	

(3 .8 .12 )

where 6 + and 6_ are the spin-raising and spin-lowering operators respectively .

Thus the second term of (3 .8.12) represents the nucleon spin-flip

amplitude . In our case, this is zero. By allowing the 'helicity operator '

6 3 to act either on

	

o r or on uv, we obviously obtain

g

	

Gv

	

-

	

GA ,

	

(3 .8 .13)

in agreement with data from polarized neutron decay (3 .7 .12) . Among the

other predictions of the two-component neutrino theory is that th e

magnetic moment of the neutrino should vanish (73), so long as it only

takes part in weak interactions .
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CHAPTER FOUR :

	

WEAK LIPTONIC REACTIONS .

4 .1	 Phenomenology of ,:uon Decay .

In 1936, Anderson and Neddermeyer (1) obtained a number of cosmic ra y

cloud chamber tracks at mountain altitudes which were attributed to a particl e

of approximate mass 100 EeV/ c 2. In 1940, Williams and Roberts (2) obtaine d

cloud chamber photographs showing a negative particle of mass 120rleV/ c2, which

decayed into an electron. By comparing Geiger-counter counting rates a t

different altitudes, the lifetime of the new particle, which was named th e

muon, was established as about 2 .ps. Rasetti made a more direct determination

of the muon lifetime . He placed two Geiger counters above a 10 cm thick iro n

absorber, and two others below . Bhen a muon was stopped in the iron, as indicate d

by the anticoincidence of the second pair of counters, the time before th e

emergence of its charged decay product was measured . However, only about hal f

of all the muons stopped in the iron appeared to decay. This was explained by

assuming that, in cosmic rays, there exist equal numbers of muons, which are

negatively-charged, and positively-charged antimuons . The antimuons are

repelled by the Coulomb fields of the iron nuclei, and are thus free to decay ,

but the muons are captured by atomic nuclei . As captured muons cascade

towards the nucleus, they emit x-rays as they jump from one electron orbit t o

the next. The energies of these x-rays may be measured to within ten o r

twenty electronvolts, and, using the Bohr formul al, we may calculate the muo n

mass a s

105 .66

	

0 .015

	

EeV/c2 .

	

(4 .1 .1 )

The currently acknowledged value for the muon mass is (3 )

105.65948 ± 0.00035

	

NeV/c2 .

	

(4 .1 .2 )

The muon lifetime was initially measured by track length in nuclear emulsions ,

and then by accelerator time-of-flight measurements . The current value is (4 )

(2.1994 ± 0.0006)

	

X 10-6 6 .

	

(4.1 .3 )

Since the electron in muon decay is not monoenergetic, we may deduce tha t

there are

	

two unobserved neutral particles present in the decay, and thus



the simplest possible muon decay scheme, taking into account conservatio n

laws, is

e

	

+ v i.. v .

	

(4 .1 .4 )

However, we must be careful not to make the assumption that the neutrino an d

antineutrino on the right—hand side of the decay (4 .1.4) are similar to thos e

which we studied in chapter 3 . As we shall see, they are, in fact, not similar .

A number of other muon decay modes have been suggested to date (5) :

Deca Branching ratio

eyy <1.6 x 10 - 5

3eif <6 x10-9

eY <2.2 x 10—8

A few other modes are also consistent with conservation laws, but they hav e

not been observed . These includ e

	 e v v y
/A 	 >e v v e e .

4 .2	 The Theory of ruon Decay .

Since we are once again concerned with four fermion fields, which we

assume to interact at a point, we imitate our neutron decay Hamiltonian (3 .3 .5) ,

and, writing the neutrino and antineutrino in (4 .1 .4) as vi and v2 respectively ,

we have

HI
	 	 i

	

e (x)o T v (x) ry (x) Fi yfr(x)

	

(4 .2 .1 )
1

	

2
where

Fi = (1/ sI— ) o f ( Ci t Ciy5 ) .

	

(4 .2 .2 )

Using the Fierz reordering relations (3 .3 .39) and (3 .3 .40), we may prove that

this HAmiltonian is unique . From (4 .2 .1), we may write immediately the matri x

element for muon decay a s

hif = 7 ue(+)(ae) of ur(+)(2.)
V(+)(~1) F1 uV2(—)(—~2)

x

J d 3x ejx (P l' —Pe — Pv 2 — Pvl )J

	

(4 .2 .3 )

From (4 .2.3) we may deduce the relation for the transition probability pe r

unit time for the emission of an electron with a momentum in the region d ap
e

,

independent of the momenta of the two neutrinos :



(~ w/ St)

	

(d3Pe)/(2n )5
J J

d 3pv d3
P
v

	

(p~ – pe – p v – pv )
1

	

2

	

1

	

2

X
I>

1 ue(-F) ()Ol u~(+) uv (+)(~ ) Fl uv( –)(_, ) I 2
2,1

2

	

2

(4 .2 .4 )

Since the two neutrinos in the decay (4.1.4) are not observed, we sum over thei r

polarization directions, obtaining

>	 ry v
~. 1 ue(+) (Pe ) Ol

u(+)(Pp) v(-')(~1) Fl v2– )(_~ 2 ) 2

1 2

(l/(4Ev1Ev2)

	

i .j
u e(+)

(P
e ) of ur(+) (P) a,,' ) (27) 0. ue({) ( )

	

x

X Tr ( j r v Pi j Ypv2 rJ+ )

1
where

0 j = Y4 0~ y4 = y4 0 j y 4 .

	

(4 .2 .6 )

Using the fact that 0 i and 0it differ only by a sign, and substituting wit h

(4.2.5) in (4 .2.4) we have

(Ew/fit)

	

= (d 0)/(2)5

	

i ,J e(+)(Pe) 0 i u` (}) ( u ) u (+) (Pr) 0

	

X

X

	

0-)
(

	

(C
dp
v
2

dpv1 ~(Pv2) (2,
2
2 ) e(2

1
) e(Pv )

	

2_

	

X

X S(p1. – pe – pv – pv ) Tr (J Ypv oi ( C i + Ci Y5 ) j

	

X
1

	

2

	

1

X pv2(C
0
. – C 'j Y 5 ) 0j )

	

(4 .2 .7 )

We now take the special case of (4 .2.7) for unpolarized decaying muons, and ,

using the techniques outlined in :Callen : Elementary Particle Physics, Addison–

'Wesley 1964, pp . 380-386, we have

( T,9/ .t)

	

_

	

( d3pe)/(38 4 '-v 4 E e Et )

	

(3( ICSI2+ I OSI2+ I CPI 2+ I CPI 2)

	

X

X Q2(pe p1) + 2( (c I2t IC',)2 + ! CA I 2 +ICAI 2)(Q2 (pe Pr)

	

1'

t 2(PeQ)(PpQ) )+ 2( I Cp 12+ ) C1 I 2 )(4(PeQ)(p,„Q) – Q 2( P epr, )) )

(4 .2 .8 )

where Q is the difference between the muon and the electron momenta . We define

the intensity of outgoing electrons, I(x), b y

(

	

w/ 3-t)

	

=

	

1(x) dx,

	

(4 .2 .9 )

where

(4 .2 .5)



x

	

=

	

(2Ee )/mt „

	

(4 .2 .10 )

Thus we find tha t

I(x)

	

_

	

(mt„ 5 )/(16n 3)

	

C 2 x2 (1 - x +(2/3)

	

((4/3) x - 1)) (4 .2 .11 )

where C 2 is the average coupling constant, defined

C2

	

=

	

(1/16) ( Ics12+IcS12+1cp12+lcPi2+ 4( Icvl2+Icv12+ICAl2+IcAl2) +

4- 6(
CT1 2+ Ic,12) )

	

(4 .2 .12 )

and where the Michel parameter (6) is defined b y

ec 2 = (3/16 ) (
Icv

1
2 +I cv1

2
+Ici1+ IcAl2+ 2( I cT 1 2 +I CTI 2 ) )

	

(4 .2 .13 )

However,
e

and C are the only quantities which are experimentally measurable ,

and we need nineteen equations to solve for our ten complex coupling constants .

Evidently, these cannot be produced with only two parameters .

We may obtain a value for C using the equation

1 /Tr = S 10 1(x ) dx = (mr5 c2 )/( 1 92 3 ) ,

	

(4 .2 .14 )

where T,, is the muon lifetime . Substituting the values (4 .1 .2) and (4 .1 .3) fo r

the muon mass and lifetime repectively, we obtain, from (4 .2 .14 )
C = 1.431 x 10-" J m 3 ,

	

(4 .2 .15 )

in near agreement with our previous value in neutron decay (3 .4 .47) . The

difference is probably caused by the need for radiative corrections to both

values (7) . Sze now define (8) the following combinations of coupling constants :

a

	

csl2t Icsl2 t IC2I 2+1%i 2

	

(4 .2 .16 )

b

	

=

	

cv l 2 +Ic .o 2 +IcAl 2+
IC`' 1 2

	

(4 .2 .17 )
O

	

=

	

ICT I 2
+ICTI 2

	

(4 .2 .18 )

=

	

IC S 1 2 i I C SI 2 — I c i 2 -1CPI 2

	

(4 .2 .19 )

=

	

cvt2- NI2 —ICAI2 -Ick! 2

	

(4 .2 .20 )

a' = C SCP

	

CSCP + CSC? t
CS CP

	

(4 .2 .21 )

b' cvcoo` + Cvc* + CvA t Cv 0

	

(4,2.2 )

c' = CTC,r + CTCi

	

(4 .2_ .23 )
°`' = cJc? + c , cP — cs*cP — cak c2

	

(4 .2 .24 )
= CvCA + CvC~ — °v cA — cV cA

	

(4 .2 .25 )
and in terms of these, we redefine the Michel paramete r

(3b + 6c)/(a + 4b + 6c)

	

(4 .2 .26 )

and also define four other asymmetry parameter s

t) _

	

(a - 2e/(a + 4b t 6c)

	

(4 .2 .27)



_ (-3a ' - 4b' + 14c')/(a t 4b + 6c) (4 .2 .28 )

= ( 3b' - 6c')/( 3a' + 4b' - 14c') (4 .2 .7.9 )

A

	

= ( a+ 4b + 6c) (4 .2 .30)

We have used these parameters because they are the commonest in experimental

work. For antimuon decay, we change the sign of . The equality between th e

average coupling constants for neutron and muon decay (4 .2.15), (3 .4.47) justify

the assumption of a V - A model of muon decay . However, there is little o r

no justification for the assumption that no pseudoscalar interaction occur s

in muon decay, since this was simply rendered undetectable in neutron decay ,

and was never shown to be zero . In muon decay, velocities are sometimes grea t

enough for the P interaction to become important, but as we shall see, it turn s

out that it is, in fact, absent . Using the V - A theory, we immediately hav e

e =

	

_

	

(4 .2 .31 )

9 _

	

- ( 1 /2) ( lcvl -I cAl 2 )/(

	

2+ I CA I 2 )

	

(4 .2 .32 )

= -
(cVA - Cv CA )/(ICV 1 2 +l CAl 2 )

	

(4 .2 .33 )

A

	

8 (ICV l 2+1CA J 2)

	

(4.2 .34 )

and E have been measured by analysing muon decay electron spectra, and th e

best results are (9 )

0 .752 t 0.003

	

, (4 .2 .35 )

0 .755 ± 0 .009

	

. (4 .2 .36 )

(4 .2 .35) and (4 .2.36) agree excellently with our theoretical prediction

(4 .2 .31), indicating that our assumption of zero P interaction was indee d

correct . If we now make the assumptio n

CV

	

= - CA

	

, (4 .2 .37 )

which is effectively correct, then we predict

(4.2 .38 )= 1

	

,

*~

	

= 0

	

. (4 .2 .39 )

The experimental results for_F contain relatively little error, and give

= 0.972 t 0 .013 , (4 .2 .40 )

in agreement with (4 .2 .38) . The results for rare less accurate, since they

rely on the use of very low-energy muons . They give

	

- 0.12 ± 0.2.1 ,

	

(4 .2 .41 )

and thus our predictions still lie within the limits of experimental error.



4.3	 The Two Neutrinos .

If the two neutrinos in the muon decay (4.1.4) are each other's

antiparticles, then we might expect them to annihilate each other, making

the branching ratio for the decay mod e

/-

	

> e '(

	

(4 .3 .1 )

much higher than its experimental value of under

2 .2

	

x

	

10
—8

	

(4 .3 .2 )

Initially, there are a number of possible reasons for this behaviour. First ,

the two particles could be identical . However, Gell—Mann (10) and Feinberg (11 )

showed that this implied zero vector interaction in muon decay, which i s

obviously unreal . Second, the two neutrinos could be distinct particles . Th e

feasibility of an experiment to demonstrate this hypothesis was increased by

the suggestion of Lee and Yang (12) in 1960 that one of the neutrinos in muon

decay was associated with the electron, while the other was associated wit h

the muon. The first problem encountered in setting up an experiment to tes t

this theory was the production of neutrinos of the desired energy . This was

overcome by Pontecorvo (13) who suggested the use of neutrinos in pi decay. The

pions would be produced by the interaction of a high—energy proton beam with a

suitable target . In 1960, Schwartz, Steiberger and Lederman showed that th e

alternating gradient proton synchrotron2 at Brookhaven could provide a

sufficiently high—energy beam to produce the necessary energy and intensity o f

neutrinos . Thus, in 1962, Danby, Gaillard, Goulianos, Lederman, Mistry ,

Schwartz and Steiberger (14) began to search for evidence of two distinct type s

of neutrino . The principle of their experiment was to determine whethe r

neutrinos produced in the decay

> t"* t v

	

(4 .3.3)

would, when absorbed by protons and neutrons, produce only muons, or bot h

muons and electrons according to the reaction s

v + p

	

— n { et ,

	

(4 .3 .4 )

V + p

	

n + ~* .

	

(4 .3 .5 )
The cross—sectio n 3 for the reactions (4 .3 .4) and (4.3.5) was estimated t o

be about 1G mm2 for neutrinos with an energy of 2000 PieV . Hence, it was



necessary to have a high flux of high-energy neutrinos . Danby et al . decided to us e

half their available beam energy : 15 GeV. The 15 GeV proton beam, which ha d

an intensity of 2 x 1011 particles per second, was made to strike a berylliu m

target. The pions and other particles produced which were within a 14 cone

were allowed to decay in a 21m straight decay tube, At the end of this, whe n

about 10 5 of the pions had decayed, the beam was filtered through 13 m of iron ,

thus stopping all particles except neutrinos . The latter were unaffected

by the iron, and continued in their original straight trajectories . They then

encountered a number of spark chambers with dimensions 1(1/3) m X 1(1/3) m X

(1/3) m, each containing nine 25 mm-thick aluminium plates . The total mass o f

material in the spark chambers was about 10 i•:g . Since the number of true

neutrino events was expected to be very small, it was essential that all possible

spurious events should be avoided . This was done in two ways . First, th e

spark chambers were surrounded by scintillation counters which were in anti -

coincidence with those placed between the spar's chambers . The neutrinos entering

the spark chambers would not interact with the external scintillation counters ,

but when they materialized into muons or electrons, they would trigger the

internal ones . The requirement for triggering the spark chamber was no coun t

in the external scintillation counters, and counts in two of the internal ones .

This eliminated a considerable number of cosmic ray events. The second method

for avoiding spurious events was to activate the spark chambers only for a

very short time while the neutrinos were actually in their vicinity. This wa s

achieved by pulsing the main synchrotron beam every 25 'As . Within each pulse ,

, there were twelve smaller 20 ns pulses, each separated by 220 ns from the next .

The spark chambers were switched on by a signal from a Cerenkov counter pointing

at the proton beam target . Over 1 700 000 beam pulses had been accepted fro m

the synchrotron, but only a few hundred photographs had been taken by the en d

of the experiment, demonstrating that the methods for selecting desired event s

were very efficient .

The next problem was to distinguish which photographs showed the effect s

of neutrino absorption, and which were simply spurious cosmic ray and main beam

events. By running the spark chamber apparatus on its own, it was establishe d

that the muons in cosmic rays had momenta of about 300 MeV/c, and hence produced



much longer tracks than any of the particles from the accelerator . Thirty,-fou r

photographs were eliminated because they contained tracks of this type . It wa s

possible that a number of neutrons might have triggered the anticoincidenc e

circuit, and a number of short-track events were discounted because of thi s

possibility . Finally, twenty-two photographs showing a vertex as expected ,

remained. The evidence against the fact that these might have been caused b y

neutrons was firstly that there was no attenuation in the number of event s

along the length of the spark chamber array, and secondly, that the remova l

of 1 .2 m of iron shielding, which would have been expected to cause a significan t

increase in the number of neutron events, caused no difference in the numbe r

of one-vertex events . By placing a lead block in front of the beam target ,

it was established that the spark chamber one-vertex photographs were th e

result of pion or kaon decay products, since this reduced the event rate fro m

1 .46 to 0 .3 events per 1016 protons, since the pions and kaons were then no t

allowed to decay .

Finally, it was necessary to identify the secondary tracks produced b y

neutrino absorption . It was found that single tracks traversed about 8 .2 m of

aluminium, no case of nuclear interaction being observed . Had the particle s

been electrons or pions, a number of nuclear interactions would have bee n

expected, and these did not, in fact, occur. Furthermore, electron track s

tend to be erratic, but the tracks photographed were straight . In all, 5 1

photographs contained muon tracks, whereas only 6 photographs showed electron

showers . The latter were probably due to neutrinos produced in kaon decay .

Thus it was concluded that there exist two distinct types of neutrinos : on e

associated with the electron and one with the muon . On the basis of th e

'two neutrino experiment' it was suggested that an electron and a muon numbe r

should be attributed to every particle . The electron and e - neutrino ar e

assigned electron numbers of +1, while the positron and anti-e - neutrin o

are assigned electron numbers of -1 . All other particles are thought to hav e

zero electron number . Muon number is allotted analogously. Electron and muon

number appear to be conserved in all reactions, explaining why the deca y

> e + y

	

(4 .3 .6 )

has never been observed .



4 .4	 Currents in Leptonic Reactions .

Recalling our Hamiltonian for muon decay (4 .2.1), it seems possible

that this might initially be constructed from simpler units such a s

~fe rr(1 + )r5)1v e

	

(4 .4 .1 )

an
d

t,, 1 r (1 + Y5)1J .

	

(4 .4 .2 )

(4 .4.1) and (4 .4 .2) are strongly reminiscent of the electromagnetic curren t

Sr (x) _ e'~j
e (x) o e(x) . (4

.4.3)

This is known as a local operator, since it is dependent on a single point x

in space—time . The current (4 .4.3) obeys the causality commutation relation

LSr(x), S s(x') I

	

— 0

	

(4 .4 .4 )

where x and x' are two epacelike separated points (see 2 .6) . Bohr and Rosenfel d

(15) showed that when a system of elementary charges in a state A may b e

treated macrocosmically by the classical approximation, the matrix element

<A 1 S r (x) L A>

	

(4 .4 .5 )

is simply the classical current density . The electromagnetic interaction

Hamiltonian has the form

HL

	

=

	

Sr (x) Ar( x ) .

	

(4 .4 .6 )

This is identical to the Hamiltonian in classical electrodynamics . From

(4 .4.3), we should be able to obtain the electromagnetic charge density b y

integrating over all space :

PA(t) = J <A I S0 (x, t) I A> d3x

	

. (4 .4 .7 )

(4 .4 .7) is turned into a conserved quantity by the classical equation

(4 .4 .8 )(a/

	

x r) Sr(x)

	

=

	

0 .

Returning to muon decay, we see that this could be considered as th e

interaction of the two currents (4 .4 .1) and (4 .4 .2), represented a s

e e ) (4 .4 .9 )

an d

(irk.) (4 .4 .10)

We may now ask whether the complete weak interaction Hamiltonian for leptoni c

reactions written in current form contains any other leptonic current—curren t



interactions. The currents (4 .4 .1) and (4.4.2) are both charged, and we now

consider the possibility that neutral currents also exist . First, there are

terms of the typ e

(e e)

	

(e e)

	

, (4 .4 .11 )

(}^ r)

	

(t" /'')

	

, (4 .4 .12 )

(e e)

	

(

	

M) . (4 .4 .13)

If these have coupling constants of the same order as that for muon decay, the n

it is obvious that their effects will be almost unobservable, because of th e

fact that all the reactions (4 .4.11), (4 .4.12) and (4 .4 .13) can occur via

second—order electromagnetic processes with a much higher transition probability .

For example, (4 .4 .11) would occur electromagnetically a s

e- e	 >r-	 e- e

	

(4 .4 .14 )

Thus, at present, there is no experimental evidence concerning the neutral

current terms (4 .4 .11) , (4 .4 .12) and (4 .4 .13) . However, if the same current —

current interaction occurs in semileptonic as well as pure leptonic processes ,

then the failure to observe decays such as

K°

	

1-A +

	

(4 .4 .15 )

might indicate that these neutral current terms were not in fact present.

The term

(j e) (e e)

	

(4 .4 .16 )

appears to be absent, if it is of the same strength as the muon decay tern ,

since decays such as

r

	

e l

	

e r

	

e (4 .4 .17 )N

	

>
have a branching ratio of less than (16 )

1 .5

	

x

	

10-7

	

. (4 .4.18 )

The coupling

(e r) (f^ H (4.4.19 )

which would cause such decays as

—fie y (4.4 .20 )

if it is present, must have a very small amplitude, since the branching rati o

for (4.4.20) is less than (4 .3 .2) . The similar term

(/a e ) (f" e) ,

	

(4 .4 .2.1 )

because of the failure to observe such processes a s



e t e	 > )-k- +

	

,

	

(4 .4 .22 )

which cannot occur electromagnetically, is assumed to be non-existent . In fact ,

all the terms (4 .4.16), (4 .4 .19), (4 .4 .21) may be discounted since they al l

violate the conservation of muon and electron number mentioned in 4 .3 .

We now consider the so-called charged 'self-current' terms, which may

be present in the weak interaction leptonic Hamiltonian :

(e v e) (ve e)

	

, (4 .4 .23 )

(F vr) (°r Y') (4 .4 .24)

These consist of the self-coupling of the electron current and of the muon

current respectively . The term (4 .4 .23) might be detectable by the reaction

v e + Z + e + e t ve, (4.4.25 )

but, to date, this has not been observed . If the elastic scattering proces s

ve + e	 > v e + e

	

(4 .4 .26 )

could be shown to occur, then this would demonstrate the existence of (4 .4 .23) .

However, at an energy of 10 ZeV, the cross-section for (4 .4 .26) is onl y

1.7 x 10-44 cm 2. (4.4 .27 )

At higher energies, it is greater, but the neutrino flux tends to be smaller.

The matrix element for the scattering process (4 .4 .26) is given by

'rif

	

(g/ f (-Tr. r r 7v ) (''P;

	

)

	

(4 .4 .28 )

where

Fr

	

=

	

Yr ( 1 -+ Y 5 ) .

	

(4 .4 .29 )

'Using the Piers reordering relation (3 .3.40), we may interchange J an d
e

711'v , obtainin

g mif = - (g/.5- ) (_e F r ye) (_v Fry;)

	

(4 .4 .30 )

Similarly, we may obtain the matrix element for electron-antineutrin o

scattering by replacing the neutrino bracket by its complex conjugate :

e) ('1"-V )'
r (I - Y5) ri') •

	

(4 .4 .31 )

Since, by definition ,

=

	

W/9 ,

	

(4 .4 .32 )

where cl? is the particle flux per m2 per second, and W is the transitio n

rate, we obtain, using (3 .4 .5) :

6Ve = o (2E2)/(1 + 2E) ,

	

(4 .4 .33 )

Eve =
(60

E)/3 .

	

( 1 – 1/( 1 + 2E) 3 )

	

(4 .4 .34 )

Mif = - (g/ J- ) (T. F r



where

'CC

	

=

	

2 g2 m2 /vc

	

8 .3 x 10—45 cm'

	

(4 .4 .35 )
0

and where E is the incident neutrino energy in eV . The results (4 .4 .33) an d

(4 .4 .34) could also have been obtained by an elementary consideration of units ,

and this method is outlined in Okun' : Woo:a Interactions of Elementary Particles ,

Pergamon 1965, p . 66 .

The best evidence for self—current terms in the leptonic wea k

interaction Hamiltonian comes from astrophysics . Since neutrinos are extremely

unreactive, their mean interaction—free path in stellar material is such greater

than that for photons, and thus, once produced, most neutrinos will carry of f

energy into space without interaction . There appear to be three major possibl e

reactions leading to neutrino pair production in stars :

	

{ e	 e { ve + ve

	

(4 .4 .36 )

e++ e	 >v t

	

(4 .4 .37 )e

	

e
	 v e t ve

	

(4 .4 .38)

where r is a so—called 'plasmon' . We find that the photoproduction proces s

(4 .4 .36), which is a form of Compton scattering (17), dominates the neutrin o

pair production for stellar objects with densities of between 10 and 1 0 4 g cm-3
for temperatures ranging from 5 x 10 7 to 5 x 108 K. Beyond about 5 x 1 0 8 K ,

an increasing density of electron—positron pairs exist in equilibrium with th e

thermal electromagnetic radiation, and hence the pair annihilation proces s

(4 .4 .37) takes over the neutrino pair production at this point . The total

cross—section for the reaction (4 .4 .37) is given by (18 )

	

=

	

G 2 m2 (E/m)2 —1
3n

	

v

	

(4 .4 .39 )

where E is the c .m .s . energy 4 of the electron—positron pair, and v is th e

relative velocity of its component particles, m is the electron macs . We assum e

that all the processes (4 .4.36), (4 .4 .37), and (4 .4 .38) have the same strength

as muon decay, and hence we introduce a factor of G 2 , where G is the muon decay

coupling constant (4 .2 .15) . It may be found (19) that the total neutrino

emissivity resulting from (4 .4 .37) is given by

(37) =	 4 .3	 x	 1024

	

T

	

9Kv

	

(10 10)

	

,

	

(4 .4 .40 )

whereas that for (4 .4 .36) is given by



K(36)

	

=

	

(1/Y) (T/108 ) 8

	

(4 .4 .41 )

where Y is the reciprocal of the mean number of electrons per nucleon in the

star. We note that (4 .4.37) is even more temperature-dependent than (4 .4 .36) .

The last method of neutrino pair production which we shall discuss is that o f

'plasmon' decay . A 'plasmon' is a quantum of excitation of stellar plasma whic h

resonance accelerate s5 electrons, which radiate neutrino pairs . A plasmon with

wave number k has an energy E given by

= 3 rP 2

	

k?

	

(4 .4 .42)

The expression (4 .4.42) implies that the plasmon is a particle of finite res t

mass G decaying into a neutrino pair. In fact, plasmons are boson s 6 , and decay
P

via the electromagnetic current (4.4 .3), which, in turn, interacts with th e

weak current (4 .4 .23) . At temperatures of higher than 5 x 1 08 K, the plamon

decay process is thought to dominate neutrino pair production .

We have discussed the possible cause and nature of stellar neutrin o

pair emission above, and we now consider its results and hence the evidence i n

favour of it . For stars of about 1000 solar luminosities, and with radii o f

about 1/10 of the solar radius, it is thought that their central density i s

about 1 0 5 g cm-3 and their temperature is about 3 .5 x 10 8 K. At this temperature

and pressure, the plasmon decay process (4 .4 .38) should have a significant

effect on the evolution of a star, provided that the self-current term (4 .4 .23 )

is present in the weak P,am,ltonian . The star will, at this point, tend t o

contract, finally becoming a white dwarf . At the stage when its luminosity i s

about 100 solar luminosities, the star should remain at the same radius fo r

10 4 yr if neutrino pair emission does not occur, and 4 x 10 yr if it noes happen .

When the star is at 10 solar luminosities, its lifetime would be 3 x 1 0 5 yr

without neutrino emission, and 4 x 1 0 3 with neutrino emission . Similarly, when

the star has reduced its magnitude to 1 solar luminosity, it should remain i n

this stage for 2 x 106 yr if neutrino emission does not occur, and 2 x 105 yr

if it does occur . When the star evolves finally into a white dwarf, its interna l

temperature will be too low for neutrino emission to occur . Thus, neutrino

emission would reduce the number of stars with a luminosity of between 100 an d

1 solar luminosity by a factor of about 10 . A search for these so-called 'gap '

stars has set an upper limit on their lifetime of 6 x 1 0 5 yr, tending to favou r

the existence of neutrino emission from stars and hence the self- current terms .



4 .5	 The Conservation of Leptons .

In 1955, Davis (20) suggested the assignment of a quantum number know n

as leptonic charge or lepton number to all particles . The electron, muon, and

neutrinos would have a lepton number of +1, while their antiparticles woul d

have L = -1 . All other particles would have L =0 . Thus, for any particl e

L

	

=

	

e 4- y ,

	

(4 .5 .1 )

where e and)). are its electron and muon number respectively (see 4 .3) .

The analogue of lepton number in the strong interactio n7 is baryon number .

The latter is carried by all particles subject to the strong interaction .

If baryon number is conserved, then the proton must be stable, since it i s

the lightest baryon . Stuckleberg and Wigner have studied the stability of th e

proton, and have thus deduced that baryon number is conserved to better than

one part in 1 043. From studying leptonic and semileptonic reactions, it i s

easy to see that lepton number is also conserved . Thus the electron must be

stable, since it is the lightest charged lepton . The neutrinos cannot decay ,

since they are the lightest leptons .

We now consider some of the evidence for lepton conservation . If this

conservation law holds good, then the nuclear deca y

(Z, A)	 >(Z+ 2, A) t 2e ,

	

(4 .5 .2 )

known as double beta decay, should never occur, since it violates the law of

the conservation of lepton number . The decay

(Z, A)•	 :. (Z+ 2, A) + 2e + 2ve

	

(4 .5 .3 )

is, however, permitted . The decay (4 .5 .3) may be distinguished from (4 .5 .2)

in experiments by observing the electron energy distribution . In (4 .5 .2) ,

the electrons share the full decay energy, whereas in (4.5 .3), some of thi s

is removed by the antineutrinos . If (4 .5 .2) were allowed, then it shoul d

have a rate about 10 5 times greater than that of the permitted decay (4 .5 .3) .

Recently, it has been suggested that double beta decay occurs in nature (21) :

Te
130	 @F	 > Xe130 ( 4 .5 .4 )

and there is convincing geological evidence to support this view. The measured

half—life for the process (4 .5 .4) is 10
21 .34 t0.12 yr

. The theoretical

prediction for a neutrinoless decay is 101.3 '' 2 yr and that for a decay with



neutrinos is 10
22.5 * 2

.5 (22) . The latter agrees better with experimenta l

evidence than the former, but since it is impossible to observe the two

electrons in (4 .5 .4) experimentally, this experiment does not rule out lepto n

number violation . However, the figures quoted above set an upper limit on

the lepton number violating amplitude in double beta decay of 3 x 1 0-3 .

More direct evidence for lepton conservation comes from a study o f

antineutrino capture . The antineutrino in beta decay has a lepton number of -1 ,

and hence the proces s

ve + (z, A)	 >(z+1, A) + e

	

(4 .5 .5 )

cannot occur . However ,

ve + (Z, A)	 (Z - 1, A) + e t

	

(4 .5 .6 )

does not violate lepton number conservation . Antineutrinos from atomic pile s

have been observed to produce positrons according to (4 .5.6) (23), and

no electrons have been found due to the interaction of antineutrinos an d

0137 .

We now consider a possible alternative assignment of lepton numbe r

than that discussed above . The electron, positron, e-neutrino and anti-e-neutrin o

retain the same lepton number as before, but the lepton number of the muon

and associated particles change sign, according to the suggestion o f

Konopinski and Mahmoud (24) . Thus the
t~

is now a lepton, while the e-
becomes an antilepton . The four types of neutrinos still remain, but, sinc e

both the ve and the ve are left-handed (i .e . they have a helicity of -1), the

ve is now a left-handed lepton state, while the y r is a left-handed antilepton .

Thus we have dispensed with the need for an electron and muon number . Thi s

means that we may use a single 4-component field to describe the neutrino s

instead of the usual two 2-component ones. The latter are separated purel y

because of the existence of muon and electron number . Let
r
(x) and (1)y, (x )

be the field operators for the muon and electron neutrinos respectively.

Since we know the helicity or chirality of the states yr and ve , we may write

(1),,r, (x)

	

_

	

'-( l - Y5)Jv1 (x )

	

(4 .5 .7 )

and

q,, (x)

	

+(l + 15 )-t

	

(x ) . (4 .5 .8)

Since the only distinction between 1 J,~~(x) and 2~f, ,r(x) now lies in their



helicities, it is unnecessary to distinguish between them. Setting

-V/„r,(x ) = r,,(x) _ -.r(x)

	

(4 .5 .9 )

we obtain

~vr (x)

	

+( 1 — Y 5 ) 2Jf (x) ,

	

(4 .5 .10 )

Ova (x)

	

=

	

+(1 + )(5)"141',(x) .

	

(4 .5 .11 )

Thus the muon decay Hamiltonian becomes

= (G/12) ( t, ( x ) Yr(1 - Y 5)v (x)) (1re(x) v! r (1 + Y 5 ) 7,(x) )

} Herm. conj .,

	

(4 .5 .12)

where 'let, denotes the complex conjugate of the muon field . This Hamiltonian

is invariant under two gauge transformations : the lepton gauge

e(x) -~i e6A e(x) , (4 .5 .13 )

jA (4 .5 .14 )r(x )

	

e

	

}^( x ) .

v(x) -> e°A v(x) , (4 .5 .15)

the symbol for the particles standing for their wave functions ; and th e

so-called 'second gauge group' :

e(x)--> ejB e(x) , (4 .5 .16 )

p,(x)

	

e jB }n (x)

	

, (4 .5 .17 )

v(x)

	

> e°B1s

	

v(x) . (4 .5 .18)

Thus we have two conserved quantum numbers in our new formulation, and these ,

in fact, are equivalent to our original quantum numbers e and fA
•

At this point, we briefly consider the status of the muon with

respect to the electron. These two particles appear to be identical, excep t

for their large mass difference . Ross suggests (25) the possibility that th e

muon consists of an electron with a zero mass particle, which he calls th e

'wavon',in orbit around it . He points out that if the 'wavon' has neutrino-like

properties, then it would be unaffected by strong or electromagnetic force s

from the central electron, and the weak interaction between the two particle s

would be negligablo, since they would be spatially separated . Thus the onl y

significant force within the Ross model of the muon would be gravitation .

Using special relativity, Ross claims to be able to justify the comparative

stability of the muon, and to predict a muon-electron mass ratio of 206 .55 ,

which is close to the measured value of 206 .77 . Further, he suggests that

the wavon, which must have a spin of one or zero to justify the muon spin ,



might be composed of a bound state v e — vr , which is attractive, since it

would explain the muon decay. However, Ross' model fails to explain the

existence of the mu—neutrino, and could only be verified by very high—energy

electron—muon scattering experiments .



CHAPTER FIVE :

	

THE HADRONIC STRUCTURE OF THE WEAK INTERACTION .

5 .1	 The Quantum Numbers of the Strong Interaction .

The strongly-interacting particles or hadrons are grouped togethe r

in isotopic multiplets, according to their mass . Nultiplets consist of betwee n

one and four particles, each carrying a different electric charge . Thus, i f

the electromagnetic interaction could be damped, then particles in the same

multiplet would appear identical, since they would cease to have any charge ,

and the slight mass-splitting between them would dissappear . As regards the

strong interaction, however, the proton and neutron are identical, and th e

equality of p - p, n - n, and p - n couplings has been verified to great accurac y

(1) . This property of the strong interaction is known as charge independence .

In 1936, Cassen and Condon (2), following an earlier suggestion by Heisenberg ,

postulated that the proton and neutron were simply different facets of th e

same particle, their difference in charge being caused by the fact that thei r

'isospin' 1 was differently projected in charge space . We may write the wav e

function of the nucleon as

'rnucleon>

	

'=

	

/f(x) spin
n
l charge ' (5

.1.1 )

where the first factor on the right-hand side is the ordinary nonrelativisti c

wave function for the nucleon, the second factor is a state vector describin g

its spin, and the third is a similar state vector describing its charge . Ther e

are two basic states for the spin vector :

	

and q, the two possible projections

for a spin of +. Similarly, there are two basic states for the charge vector :

p and n, which we denote as q . and r)_ respectively . We may specify whether

a given nucleon is a proton or a neutron by stating its eigenvalue under the

matrix operator T3 . The latter is defined, for a multiplet containing tw o

particles :

T3 q+

	

_

	

r~ + ,

	

(5 .1 .2 )

T 3 q_

	

?I_
.

	

(5 .1 .3 )

In analogy with the real spin component d(
z

, we choose as our representation



T 3

of T 3 the Pauli spin matrix (1 .7 .18) :

(5 .1 .4 )

0 -1

Often it is useful to have an operator which transforms the proton into th e

neutron and vice-versa. Thus we defin e

T1 9,

	

1_

	

(5 .1 .5 )
Tl 9-

	

_

	

9+ .

	

(5 .1 .6 )
Once again, we use the Pauli matrix representation, so that

T1

	

T0

	

1

	

(5 .1 .7 )

L1 0

We also introduce, in complete analogy to real spin ,

T 2

	

=

	

-j T3 Tl

	

=

	

LO -j

Li 0

A further two useful operators are defined

T'

	

T 2 )

so that

T+
0

	

11

0

	

0J
(5 .1 .10 )

0 0
T (5 .1 .11 )1

	

0

Thu s

T I- n

	

= p (5 .1 .12 )

T+p

	

= 0 (5 .1 .13 )

T -n

	

= 0 (5 .1 .14 )

T +p

	

= n

	

. (5 .1 .15)

Since our representation and formalism for isospin is identical to that fo r

real spin, we may now define a vector I such that

I

	

=

	

-{ T 1 , T 2 , T3 ) ,

	

(5 .1 .16 )

so that (see Appendix B )

[Tk , l' ll

	

jTm .

	

(k, 1, m cyclic)

	

(5 .1 .17 )

The total isotopic spin I defined by (5 .1.16) must be a conserved quantity .

However, since it was based only upon the characteristics of the strong interaction ,

there is no reason to suppose that it is conserved in anything except the stron g

[1 0

(5.1 .8 )

(5 .1 .9 )



interaction, and, in fact, we find that it is not . The third component o f

isospin, 1 3 , is nevertheless also conserved in the electromagnetic interaction ,

since it is charge-dependent . From (5 .1 .16) we see that isospin is given by

I

	

=

	

(id - 1) / 2 ,

	

(5 .1 .18 )

where M is the multiplicity of a particular particle, i .e . the number of

particles in its multiplet . Thus, for the nucleons ,

	

I =

	

.

	

(5 .1 .19 )

We now consider field quantization using isospin . We may introduce a

single eight-component field for the nucleon, to replace our original tw o

spinor ones . We distinguish between different components of this field by th e

two indices z and T, which denote the spin and isospin, respectively, of eac h

component . z may assume values between 1 and 4 inclusive, and T either + . or -1 .

Hence our field become s

z,T (x) _	 p > r =l (ejPx uz(+)(r)(p) a„(r) ( )

+ e Jpx uz(-)(r)(-2) bT
(r)(PI/,

	

(5 .1 .20 )

where uz(1)(r)(p) are, as usual, plane wave solutions to the Dirac equation ,

of the form (1.8.5), with positive and negative energies respectively, polarizatio n

state r, and momentum p. The operator aT (r) is the destruction operator fo r

both protons and neutrons with polarization r, and similarly, bt (r) is th e
i

creation operator for antiprotons and antineutrons with polarization r. For

the pions, we must introduce three separate fields : a Hermitian one for the T ` 0 ,

and complex ones for the "TN'' Since the pions have zero spin, they may b e

described by scalar fields of the form (2 .2 .3) :

	

4)0(x)

	

=

	

( 1 / 2 ) ( e kx a0(k) t eJkx a0 (k) ) ,

	

(5 .1 .21 )

	

(x)

	

_

	

/

	

( l / 2W ) (eJkx a+(k ) - e
jkx

a t ( k ) ) ,

	

(5 .1 .22 )

	

q) t (x)

	

( 1A5W)(- ei

	

a_(k ) + e
jfix

at (K) ) ,

	

(5 . 1 . .23 )

in obvious notation . The minus sign in front of the creation and destruction

operators of the - v 11 in (5 .1 .22) and (5 .1 .23) originates from the phase convention2 .

The charge of the pions is given by

=

	

e	
k (a*(Y) a+( 'k) - a t (k) a _Q=2) ) ,

	

(5 .1 .24 )

which is equivalent to (2 .2 .23) . The operator (5 .1 .24) is, in fact, identical

to T3 except for the factor of e . We might continue to consider interacting



isospin—formulated fields, but this study has little or no application i n ,

weak interaction theory. A simple treatment of the subject may be found in

Kallen : Elementary Particle Physics, Addison—Wesley 1964, pp. 67—144 .

We now mention two other quantum numbers which are commonly used i n

both strong and weak interaction theory . The first of these is hypercharge, Y ,

which is defined by

Y

	

2

	

(5 .1 .25 )

where Q is the average charge of the particles in a particular multiplet .

We know that

Q/e

	

=

	

T 3 — i .

	

(5 .1 .26 )

Following the suggestion of Pais (3), Gell—Kann (4) and Nishijima (5) postulatep ,

in 1953 and 1955 respectively, that (5 .1.26) could be expressed more elegantl y

by introducing a new quantum number called strangenes s3, S, according to th e

formul a

Q/e = (B +. 8)/2 + 13 .

	

(5 .1 .2.7 )

Alternatively, we may say that strangeness is twice the distance by which a give n

multiplet is displaced from the standard multiplet . For baryons, this is taken

as the nucleons, and for mesons, the pions . The displacement of a particula r

multiplet is found by taking the difference between its centre of charge o r

average charge, Q, and the centre of charge of the standard multiplet . Thus ,

empirically, we find tha t

S

	

=

	

Y — B

	

.

	

(5 .1 .28 )

5 .2	 The Conserved Vector Current Hypothesis .

We recall that the vector coupling constants for neutron beta deca y

and for muon decay are almost equal, whereas the axial vector coupling

constants for these two processes differ by a factor of about 20 ,: . A posaibl e

explanation for this fact is that,initially,both the vector and the axia l

vector coupling constants for the two processes are equal, but that then ,

strong interaction effects occur in the neutron decay, and much weaker electro -

magnetic effects occur in the muon decay . The process affecting the couplin g

constant is 'renormalization ' 4. ire know that the vector current in neutron

decay may be written :



Jr(x)

	

—

	

g 't1
-

p (x) Ir 7rn(x)
.

	

(5 .2 .1 )

Using isospin, (5.2.1) become s

— (€/ 2) ( ( x ) Yr. T *~J(x) ) (5.2.2 )

or

- ( g/2 ,1r2 ) [l1'(x), ( rT + l(x)] . (5 .2 .3 )

The electromagnetic current (4 .4.3) of the nucleon system i s

Jel (x )

	

= J e ( ' p ( x ) Yr p ( x ) ) ,

	

(5 .2 .4 )

or, in isospin formalism :

(je/4) DTI(x), Y r (1 + T3 ) V ( x )] .

	

(5 .2 .5 )

From (5 .2 .5) we see that (5 .2 .4) may be decomposed into an isospin scalar an d

an isospin vector (an isoscalar and isovector) :

Jel ( x )
JS

T
(x)

	

+

	

J
r

(x) , (5 .2 .6 )

where

Jr (x)

	

_ (5 .2 .7 )(J e/4)

	

[(x), Yr W(x)]

and

JJr ( x )

	

= (j e /4)

	

[ r (x), Yr T 3 1p (x)7 . (5 .2 .8)

Obviously the current (5 .2.1) may be considered as another component of (5 .2 .8) ,

so tha t

J

r
(x) = J 2 g/e

	

(+) (x) .

	

(5 .2 .9 )

Unfortunately the electromagnetic nucleon current (5 .2 .4) does not obey a

continuity equation of the form (1 .4 .12) . Howeve r

a Jel

	

'D
t

J being define d

J r (x)

	

= je
Caa(X)

~(x) —

	

t(x)2'ah))

	

(5 .2 .11 )

where cp is the compler

	

J
x pion field in (5 .1.22) and (5 .1 .23) . By decomposing

the latter field into real and imaginary components, we may write

( O J

r

(x)/2xr ) + ( 2/d xr )(JJ (x) +

	

, (x) ) =

	

0 .

	

(5 .2 .12)

Thus each term in (5 .2.12) is conserved . We assume that the interaction which w e

are considering is invariant under rotations in isospin space, and hence othe r

components of the second term in (5 .2.12) will also be conserved :

(a fix) (JRV (+) ( x ) + ,2j (4) (x) ) = 0 .

0 (5 .2 .10 )

(5 .2 .13 )



We see that the first term in (5.2.13) is simply the weak vector nucleon ,

current (5 .2 .9) . However, we have not yet proved that the latter is conserve d

on its own . Setting

J W' ( x )

	

_

	

(J g/ e ) J 2 ( JJ (+) (x)

	

(+) (x) ) ,

	

(5 .2 .14 )

we find that

JW' (x)

	

=

	

-Tip(x) Y r 7r ( x) -

	

g,. 2(, o(x) (a4t(x)/ xr ) -

q{ (x ) (a 0 ( x )/3 xr) )

	

(5 .2 .15 )

where ce p , ( and

40-

are defined in (5 .1 .21), (5 .1 .22) and (5 .1 .23) respectively .

From (5 .2.15), it is easy to deduce that

(

	

JW' (x)/ 2 xr) = 0

	

(5 .2 .16 )

so tha t

('� JW ( x )/ xr ) = 0

	

(5 .2 .17)

Thus the weak vector current in neutron decay is unaffected by the stron g

pion current, which explains the near equality of the true vector coupling

constants in muon and neutron decay . (5 .2 .17) is known as the conserved vecto r

current or CVC hypothesis . It is natural to ask whether a similar relation t o

(5 .2 .17) might hold for the axial vector current in neutron decay . However ,

as we saw above, the axial vector coupling constant in muon decay is abou t

20 5 more than that in neutron decay, and thus it seems likely that axial

vector current is not conserved . In fact, by similar reasoning as that

employed above for the vector current, we may show tha t

( a Jr ( x)/a xr)

	

= f0 m2,, ep( x ) ,

	

(5 .2 .18 )

where

JA

is the axial vector current, 0 (x) was defined in (5 .1 .22)

end f

n

is a constant dependent on the strength of the strong interaction . (5 .2 .18 )

is known as the partial conservation of axial vector current or PCAC .

5 .3	 The Structure of the Weak Hadronic Current .

There exist in nature three different types of weak reaction . Th e

first type are termed leptonic, and contain only leptons . The second type, th e

so—called semileptonic reactions, involve both leptons and hadrons, and th e

third type, which are called hadronic reactions, consist purely of hadrons, whic h

also react via the strong interaction . We denote the weak hadronic current



by J r , and the weak leptonic current, containing such terms as (4 .4 .9) and

(4 .4 .10), and also possibly neutral and self-charged current terms, by ah~ .

Since in semileptonic processes, such as the neutron decay (3 .1 .1), the

hadronic current couples with the leptonic one, the former must be a charged

current, since at least the leptonic current terms (4 .4 .9) and (4 .4 .10) are

charged . This is expressed by saying that, for the hadronic current

	

,

A Q = 1
A

	

(5 .3 .1 )

so that when .J acts on a system, it raises the total charge of the hadron s

present by one unit of charms Since the current

	

also raises the charge o f

all leptons in a system by le, the Hamiltonian for semileptonic processe s

must be of the form

HI

	

=

	

(G4-2) ( . (x) Jr (x)) + HHerm. conj .

	

(5 .3.2 )

in order to obey charge conservation . As J r is evidently a

= — 1

	

(5 .3 .3)
current, the hadronic current may couple with itself to produce a Hamiltonia n

HI

	

s

	

(G/12) ( . _ (x) ? (x)) + Heim . conj .

	

(5 .3 .4 )

(5 .3.4) is thought to be responsible the pure hadron decays of strange particles ,

such as

	 pr

	

(5 .3 .5 )
We note that the total weak Hamiltonian is probably of the current-current

form :

HI

	

( G/ J-2) (Tr (x) + r (x) ) . ( ~, (x) + J
T

(x) )

	

(5 .3 .6 )

A useful method of summarizing our present knowledge of weak interaction coupling s

is the Puppi tetrahedron, which has, at its vertices,the currents :

pn

	

(5 .3 .7 )

e+ v

	

(5 .3.8 )e

P

	

( 5 .3 .9 )

r yr

	

(5 .3 .10 )
There exists also a charge-conjugate Puppi tetrahedron (6), and the questio n

of whether vertices of this are coupled to those of the normal tetrahedron

was discussed in 4 .4 .

We now consider the assignments of the three important quantum numbers ,

Y, I and G. to the current i . Since both hypercharge-conserving and hypercharge-



changing semileptonic reactions occur in nature, terms of each type must b e

included in JH . Let LAY be the difference between the hypercharges of th e
r

initial and final states in a reaction . Theoretically ,

,l = a0 ar + al Jr + a2 Jr + a-1 Jr + a 2 Jr2 . . . .(5 .3 .11 )

where the numbers 0, 1, 2, -1, -2, . . . . associated with each term correspon d

to the value of ,AY for those terms. a is a parameter which allows the various

terms in the current .1t
r
` to be coupled with different strengths to the leptonic

current . Thus the semileptonic interaction Hamiltonian become s
0

	

1
Hl

	

22
J Or Jr

	

+

	

G2 Jr
,T-L

(5 .3 .12 )

Without a selection rule for aY, the hadronic current could contai n

all the terms on the right-hand side of (5 .3.11), including an infinite numbe r

of coupling constants . However, it is found that the partial conservation la w

IA Yl < 1

	

(5 .3 .13 )

is obeyed in all reactions, so that only the terms corresponding to n ,y =
0, 1 and -1 remain on the right-hand side of (5 .3 .11) . There is little evidence

fir ( Yi

	

2 reactions, although the decay

—) p e v ,

	

(5 .3 .14 )

which has 411=2, has only been shown to have a branching ratio of under (7 )
1 .3 x 10- 3 ,

	

(5 .3 .15 )
which nevertheless sets a small maximum 4 .1''t'e.2 amplitude for the hadroni c

current . We usually assume that no 'AY\ .. 2 transitions occur . Another selectio n

rule which appears to apply to all I Yl= 1 semileptonic processes i s

L1Y

	

= AQ

	

(5 .3 .16 )
implying that the change in hypercharge in an interacting system of hadrons

is equal in sign to the change in their total charge . Processes of the form

dY/LiQ = -1

	

(5 .3 .17 )
almost certainly do not occur, although the upper limit on the branching rati o

for decays of the typ e

KO 	 >17+ 1-1-TT + r 1 + vl

where 1 is either an electron or a muon, is (8) onl y

10 2, (5 .3 .19 )

however, on the assumption that (5 .3 .16) always holds true, our

hadronic current becomes :

(5 .3 .18)



3r

	

=

	

a o J

r

+ a, Jr .

	

(5 .3 .20 )

There exist two further important selection rules for semileptonic reactions :

the p I = 3 and L I . 1 rules . The

	

= 1 rule states that in any

pY = G semileptonic process, the change in total isospin must satisf y

LSI = 1

	

.

	

(5 .3 .21 )

In hypercharge-changing reactions, total isospin cannot be conserved becaus e

of the Gell-Hann - Nishijima - Nakano (9) (GNN) relatio n

Q

	

=

	

1 3

	

t

	

Y/2

	

.

	

(5 .3 .22 )

In fact, in g = 1 processes, it is found that

pI =

	

.

	

(5 .3 .23)

Both (5 .3 .21) and (5 .3 .23) appear to be obeyed to a high degree of accuracy

in the weak interaction .

We now consider the symmetry properties of the AY = 0 hadroni c

current . Since the latter has AQ = 1, (5 .3 .22) implies

tiI 3 =1 .

	

(5 .3 .24 )

Similarly, the current
z corresponds to PY = 0, pQ = -1, so tha t

A.1 3 = -1 .

	

(5 .3 .25 )

In terms of isospin, the C operator may be considered as an operator which

reverses the sign of the third component of isospin of a particle, i .e. i t

reflects it in the plane 1 3 — 0. Alternatively, we may say that

C = e j'7 12

	

,
(5 .3 .26 )

where 12 is the generator of rotations about the I2 axis in isospace . Using th e

perator (5 .3 .26) we may decompose the currents Jr and
T

with AY = 0 :

+

	

L( JF.(0)

	

-

	

ejn12 J :(0) ej't12) ~
(5 .3 .27 )

-E(o )
r

i(J'ri(0)

	

-}-

	

ej'cI 2 JI~'.(o) ei,71 2)

	

+

+

	

(

	

(0)

	

-

	

e j'rtI2 J;3(o) e j7s'1 2
)r

	

r

	

' (5 .3 .28 )

so that
ej-rcl 2 JH(0) e-J,,12

	

=

	

(Jii(0) +

	

-j'TI 2 Jii(o) ej-r I 2
)r

	

r

- 1 (JH(0) - e '2 Jh(o) e3,cI2 )

From (5 .3 .29) we see that, in general, JJ(0) need not necessarily be the charge

conjugate of Js-(0) . However, if either term on the right-hand side of (5 .3.27 )

Jr (0)

	

i(Jd(0)

	

ej'cI 2 JH(0) e
jr12)

	

+

(5 .3 .29 )



vanishes, the n
ejn I 2 JH(o)

e O"I2 = ± aii(o)

	

(5.3 .30 )

(5 .3.30) is known as the charge symmetry condition (10) . Those terms in th e

hadronic current which yield a positive right-hand side of (5 .3 .30) are sai d

to be first-class terms, and those which make it negative are called second -

class (11) . We find that if both T invariance and (5 .3 .30) hold, then second-

class terms must be absent . However, if both first- and second-class, terms ar e

present in the hadronic current, then this implies T violation . If CPT holds ,

then T violation implies C? violation . If T invariance does hold, then th e

current must not obey (5 .3 .30) . An operator related to the charge symmetry on e

(5.3.26) is the G parity operator defined

G = C ej7'12 , (5.3.31 )

where C is the standard charge conjugation operator, which, unlike (5 .3 .26) ,

reverses the sense of a figure in isospace . A possible G parity scheme fo r

the JH0) current i s

= V

	

, (5 .3 .32 )

= - A

	

, (5 .3 .33)

r
G V r

-
G 1

G Ar G I

where V and A are the vector and axial vector terms in the current Jn(0 )
r

respectively. We shall not enter into a verification of (5 .3.32) here, bu t

this may be found inharshak, Piazuddin, Ryan : Theory of Weak Interaction i n

Particle Physics, Fraley-Interscience, 1969, pp . 108-109 . (5 .3 .32) and (5 .3 .33 )

may be shown to imply that only first-class terms appear in the matri x

elements of JH(0) .
r

We now consider the current JK(1) with
r

PQ = Y = 1 •

	

(5 .3 .34 )

From (5 .3 .34) and (5 .3 .22), we see immediately that

AI3

	

(5 .3 .35 )

(5 .3 .35) is not the only possible 1 3 assignment for J
T

(1) , but it has ber n

found to be the only one occuling in nature . We find that, unlike the
Jx(0 )
r

current, the vector component of the Jr(1 ~ current is not precisely conserve d

under the effect of the strong interaction, unless two particles can have th e

same spin, parity and mass while having charges and hypercharges differing b y

one unit . This situation is not found in nature, and hence we are forced to conclud e

that the vector term in 4(1) is not conserved .



5 .4	 Form Factors .

Before we may consider form factors in the weak interaction, we mus t

first discuss them with reference to the electromagnetic interaction, in term s

of which they were originally formulated . For a proton, for example, unaffected

by strong interactions , the probability or cross-section for elastic electro n

scattering is given by the Dirac formula, which assumes the proton to be a

point with spin + and magnetic moment eV2Mp o
	 e4 coc2 (A /2)	 	 2

d6 -

	

2

	

4 0 r,

	

2n

	

2

	

(1+

	

.2 tan 2 -2)

	

( . 4 .1 )
dS1

	

4p o sin

	

-2

	

`o sin

	

2i
.p

where MP is the proton mass, po is its initial three-momentum, and q is th e

four-momentum transfer between the electron and the proton during the scatterin g

process . The second term in (5.4.1) is due to magnetic scattering, and i s

absent from the Mott scattering cross-section from atomic nuclei . For a real

proton, we must take into account the virtual pairs of hadrons surrounding i t

due to the fact that it takes part in strong interactions, and also th e

anomalous magnetic moment over and above the Dirac prediction of 2 . Thus w e

define two form factors, the electric or charge form factor F, and the magneti c

form factor G . These two form factors are real functions of the four-momentu m

transfer squared, q2. Thus, for the proto n

F(0) =

	

1 ,

	

(5 .4 .2 )

G(o) = jAp -v 2 .79 n .m .

	

(5 .4 .3 )

where r p denotes the magnetic moment of the proton, and n .m. stands fo r

the units nuclear magnetons 5. For the neutro n

F(0) =

	

0 ,

	

(5 .4 .4 )
G(o)

	

-1 .91 n .m .

	

(5 .4 .5 )

We find that the corrected cross-section has the form

dd

	

_

	

dG

	

r'p2+(o2/41„2)G2

	

2

	

2

	

2(( l

	

+ a2 x tan (A/2) 1 (5 .4 .6 )dSL

	

\d~/Mott L1 1 + (q2/4M - ) /

	

4r.

(5 .4 .6) is known as the Rosenbluth formula (12) . The important feature of it i s

that



A(q 2) +

	

B (q 2 ) tan g (O /2)

	

(5 .4 .7 )

Thus, if we were to plot, the cross-section per element solid angle agains t

tan2 ( A/2) for differing values of the incident momentum p o and the four-momentu m

transfer square q2 , we should obtain a straight line . This is a direc t

consequence of the fact that we have made use of the Born approximation (13) .

This assumes that in any electromagnetic interaction, only one virtual6 photo n

is ever exchanged . The best test to demonstrate that only one-photon exchange

ever takes place in e - p elastic collisions is to make a Rosenbluth plot, a s

described above, for the processes

el- p (5 .4 .8 )

e - p ---~ e p (5 .4 .9)

and then to compare the curves obtained . If two or more photons are exchanged ,

then the curves will be different and will be non-linear . However, at least a t

energies below 10 GeV in the c .m .s ., the curves remain linear, so that we ar e

justified in making use of the Born approximation .

We now briefly discuss the usual interpretation and significance of the

nucleon form factors . Following the experiments of Hofstadter et al . (14) i n

1961, it was established that the nucleon consisted of a hard spinning pointlik e

core, surrounded by a virtual meson cloud which spent about 3/10 of its time

outside the central nucleon core . It was found that the charge-density

distribution corresponded very closely to a normal distribution, and that i t

fell away to zero about 1 .4 fm from the centre of the particle. The mean radiu s
, of the nucleon was thus calculated to be about 0 .74 fm . The form factor i s

basically a measure of the probability that the nucleon will not disintegrat e

and shake off one or more pions during the collision . For large q 2 , thi s
probability becomes very small indeed . Attempts were made a first (15) t o

analyse the situation assuming that the pion was the only mediator of th e

strong interaction, as Yukawa had originally suggested (16) . However, thes e
met with little success, and Nambu (17) postulated that there existed one o r

more hadrons in the nucleon cloud which coupled directly with the photon .

These mesons must have the same quantum numbers as the photon, i .e . they must
have zero charge, spin-parity of 1- and odd C parity . We now define two new



form factors: an isoscalar fora factor:

GS - -}(Gp + Gn) ,

	

(5 .4 .10 )

and an isovector one :

Gv =

	

i- ( Gp -

	

Gn ) .

	

(5 .4 .11 )

From (5 .4.10) and (5 .4.11), we may deduce that

G
P

= GS + Gv ,

	

(5 .4 .12 )

G n = GS - Gv ,

	

(5.4 .13 )

and similarly for the electric form factors . We see that GS has the same sign

for the proton and the neutron, whereas Gv has opposite signs for the two

particles . Thus the meson responsible for GS will have zero isospin, and tha t

responsible for Gv will have I = 1 . The mesons which fit these requirements

are the 6J (783) and the e°(770) respectively .

In the weak interaction, we may also define form factors . We use two

form factors, the vector one : Gv ( q2), and the axial vector one : GA ( q 2 ) .

In the matrix elements for hadronic weak processes, wo must include six for m

factors : fv(g2 ), gv( g2 ), hv( g2 ), fA (g2), gA(g 2 ), hA(g2), all of 'which are

scalar functions of q 2. These contain all possible information concerning
the modifications to the basic weak interaction caused by the existence o f

virtual strong interactions . In order to produce a complete model for th e

weak interaction, we mast determine the nature and structure of these form

factors . The best method of so doing is to employ dispersion theory. However ,

this is beyond the scope of this book . A good introduction to dispersio n

theory is S .Landelstam : Dispersion Nelations in Strong-Coupling Physics ,

Rep. Frog. Phys., , pp. 99-162 (1962), which is reproduced in ed. Fronsdnl :

Lecture Notes on Posh Interactions and Topics in Dispersion Physics from th e

Second Bergen International School of Physics - 1962, Benjamin 1963, pp . 26 9

et . seq. Using arguments in dispersion theory, we find tha t

gv(g 2) ,

	

(5 .4 .14 )

fv(g2 )

	

(5 .4 .15 )

receive contributions from states with r G of 1 +, of which the resonant

pion states 2r and 4-T are the lowest mass examples . The former correspond s

to the

	

(770) meson .

(gv(g 2 )( mA - m ) + q2 hv(g 2 ))

	

(5.4.16)



where A and B are the initial and final hadrons in the reaction respectively,

receives contributions from JPG = 0 + states, of the form 5,r, 7-a- . The 5„

resonance with the lowest mass is probably S(970), although this may in fac t

be a bound state of the I = 1 KC system and not the pion system (18) .

gA(g2 )

	

(5 .4 .17 )

receives contributions from JPG = 1 + states, such as 3-rr and 5 rc , or, in

terms of particles, AI (1100) .

(gA(g 2 ) (mA + mB) + q2 fA(4 2 ) )

	

(5 .4 .18 )

is dependent upon 0-- states such as the pion .

(h A(g2 ) )

	

(5 .4 .19 )

receives contributions from 1 1-1- states of the form 41 , 6ry , such a s

B (1235) . For the 13Y( . 1, the situation is similar, except that the contributin g

resonant states are all of the form K n77, and thus have a strangeness of 1 .

For (5 .4 .14) and (5 .4 .15) the corresponding strange resonance is

	

(1420) ;

for (5 .4 .16) probably K(725) ; for (5 .4 .17) K1 (1320) ; for (5 .4 .18) the kaon ;

and for (5 .4 .19) probablyKA ' (1230) . Weak form factors may roughly b e

interpreted as measures of the spatial distribution of the 'weak charge' of

particles, or of the characteristics leading them to behave in certain way s

in weak interactions .

5 .5

	

Weak Kagnetism .

We know that, when free from strong interaction effects, the vecto r

current term in the beta decay matrix element i s

V

	

=

	

u Y

	

u (5 .5 .1 )r

	

p

	

r

	

n
and the axial vector current term i s

Ar

	

=

	

up Y r Y 5

	

un (5 .5 .2 )

If, however, we reintroduce strong effects, we hav e

V r

	

=

	

up (fV Yr – gV d
rs q s – hv qr ) un

	

, (5 .5 .3 )

and

Ar

	

=

	

up (fA r — gA rs q s — hA qr ) Y5 un .

	

(5 .5 .4 )
where



and where q is the four-momentum of the particles . By analogy with electro-

dynamics, we may deduce that in (5 .5 .3) and (5 .5 .4) both hv and hA are zero .

Tests of this hypothesis are rendered difficult because the terms containin g

h are momentum-dependent, and hence are very small in most weak processes .

In (5 .2.9) we considered the weak current of the form (5 .5 .1) as another

component of the vector electromagnetic current . Using this approach, we may

evaluate the vector form factors occuring in the matrix element for a transitio n

between the nucleon states (i .e. neutron decay and crossed equivalent s7 ) i n

terms of the nucleon isovector electromagnetic form factors defined in (5 .4 .11) :

gv ( g2 )

	

Fy(g2) ,

	

(5 .5 .6 )

fV ( g2)

	

}An)/(2 mN)

	

G'V(g 2) •

	

(5 .5 .7 )
We may also write down the boundary conditions for the cas e

q = 0

	

(5 .5 .8 )

gV(G)

	

=

	

1 ,

	

(5 .5 .9 )

by the CVC hypothesis, and

fV ( 0 )

	

( N p

	

r n )/(2 DIN )

	

(3 .7)(2 mN ) .

	

(5 .5 .10 )
By analogy with electromagnetism, the term (5 .5 .7) is known as the weak magneti c

form factor, and its effects are known as weak magnetism (19) .

There are basically three types of reactions in which weak magnetis m

may be detected : favourable beta decays, muon capture in atoms and high-energ y

neutrino reactions . Since the term containing gV in (5 .5 .3) is momentum-

dependent, we wish to maximize this momentum in order to detect weak magneti c

effects . Thus, in order to detect weak magnetism in beta decay, we consider ,

as was suggested by Gell-hann (20), the A e 12 triad : B5 2 , G62 ,
N7- 2 , an d

assume perfect charge independence . All three members of the triad, `which have

I = 1, JP

	

1* in their excited level, are connected to the I = 0, JP = 0 t

C12 ground-state by allowed transitions :
B12

	

> C 12 t
e + ve (5 .5 .11 )

12"--> Cl?N

	

+ e + ve (5 .5 .12 )
C12''_>C12 + (5 .5 .13)
(5 .5 .11) and (5 .5 .12) are allowed Gamow-Teller transitions with large energy

releases, and (5 .5 .13) is a magnetic dipole transition . The presence of weak



magnetic effects in these decays would cause first-order forbidden transitio n

effects, which we mentioned in 3 .5 . In the absence of all forbidden transition

effects, we should obtain pure Fermi spectra F(E, E O ) , where E is the energy

of the electron or positron, and EO is the endpoint energy (see 3 .4), for the

B12 and N12 decays . EO is slightly different for B12 and for N12 . Experimentally ,

the decay spectra are of the form

N ( E , E0 ) =

	

F(E, Eo) (1 ± (8/3) aE) ,

	

(5 .5 .14)

or, dividing through by F(E, EO ) ,

S(E, EO )

	

=

	

N(E, E0 ) /F ( E , E0 )

	

_

	

(1-1. ( 8 /3) a E ) .

	

(5 .5 .15 )

The term linear in E in (5 .5 .15) arises from interference between the axial

vector interaction, which causes the allowed Gamow-Teller transition, an d

the vector interaction, which is responsible for first forbidden effects, if

these are indeed present . For the decay (5 .5 .11) the last term in (5 .5 .15 )

become s

(1 - (8/3) a E) ,

	

(5 .5 .16 )

and for (5 .5 .12) :

(1 + (8/3) a E) .

	

(5 .5 .17 )

Weak magnetism should produce a nonzero coefficient a, which is connected t o

the bandwidth or uncertainty in the energy of the photon emitted in C12 '' deca y

(5 .5 .13) . By comparing the spectra in (5 .5 .11) and (5 .5 .12) we may obtai n

a value for a . The ratio of the departures from the allowed transition spectr a

for these decays is given b y

S(E, B12)/S(E, N12)

	

k . (1 -+ A(1 + 7A ) E ) f(E) ,

	

(5 .5 .18 )

where f(E) is a correction for the inner Bremsstrahlung8 which unavoidably

accompanies beta decay . f(E) is dependent upon the endpoint energy EO .

Weak magnetism predicts the gradient of the line in (5 .5 .18) to b e

A

	

=

	

(1 .33

	

0 .15) % NeV 1

	

(5 .5 .19 )

The experimental value of A obtained by Xayer-Kuckuck and Michel (21) was

A

	

--

	

(1 .13

	

0 .2.5) %

	

;eV l .

	

(5 .5 .20 )
Thus the prediction of weak magnetism is within experimental error limits .
Similar experiments have also been conducted on the A = 8 triad . Here again ,

the results favoured weak magnetism, but were not accurate enough to verify it .

The second method for detecting weak magnetic effects is to study high-energy



muon absorption :

p ___ vt, + n .

	

(5 .5 .21 )

We write a symmetric four-fermion Hamiltonian for the process (5 .5 .21) :

( g/ f ) "~ n( x) Yr. ( 1 + T 5 ) 4p ( X)Vv( x ) ( 1 - 1 5 ) T r `i'r( X ) fi

-}- Herm . conj .,

	

(5 .5 .22 )

and thus the matrix element become s

Mif

	

u

	

(2n ) Y ( 1 t` Y) u ()( )

	

(+'( ) ( 1 - Y ) Xif

	

nr

	

5 p

	

p.„,

	

5

X

	

' u (})

	

)

	

d3x ei(Ep+gr

	

Pv) x
r

	

r
(5 .5 .23 )

assuming that all the particles taking part in (5 .5 .21) may be described by

plane waves . The matrix element (5 .5 .23) must be modified, since the muon

in (5 .5 .21) is already bound to the proton . We assume that all particles in

both the initial and final states are nonrelativistic, and, applying th e

transition rate formula (3 .4 .10) to our new matrix element, the lifetime

for the capture process, Tc , is given by

T

	

T °CDC

	

(l

	

3x 2 )

	

1 + 4x 1 + 2- (J(J + 1) - (3/2) )
c

	

3x
(5 .5 .24 )

where v is a kinematical factor defined
1

	

.

	

_ T

	

2

	

2

	

- 3
=

	

1- n8 m
	 ll

	

1 t

	

r--'lyiz

	

1+

	

(5 .5 .25 )
'~

	

-

	

P

	

m

	

p 1
and where J is the total spin of the muon and the capturing atom, T . is the

lifetime of the free muon (4 .1 .3), ,( is the fine structure constant, the

universal coupling constant for the electromagnetic interaction, with valu e

x

	

e2/ c =

	

1/137 .03604(11) ,

	

(5 .5 .2.6 )

and

x =

	

(gA/gy ) •

	

(5 .5 .27 )
If we had been able to assume that the proton and neutron masses were equal ,

and that the muon mass was negligable compared with the nucleon, then the valu e
of

	

would have been near to unity . Using experimental masses and substitutin g

in (5 .5 .25) we find that

r)

	

=

	

0 .5786 ,

	

(5 .5 .28 )

so that we are not justified in making this assumption . Substituting experimental



values for the constants in (5 .5 .24), we obtai n

1/Tc

	

=

	

123 (4 — 2J(J + 1) )

	

s 1 .

	

(5 .5 .29 )

Since the possible J assignments are 0 and 1, we have, for J = 0 ,

1/T c

	

=

	

492

	

8—1 ,

	

(5 .5 .30 )

and for J = 1 :

1/Tc

	

=

	

0

	

s—1 ,

	

(5 .5 .31 )

assuming tha t

x = -1 ,

	

(5 .5 .32 )

as in ordinary muon decay . With (5 .5 .32), we predict (5 .5 .31) that no muo n

capture will occur from a J = 1 state . However, capture of this type doe s

occur, and so we must consider in what way (5 .5 .24) should be modified . Sinc e

axial vector current is not conserved under the influence of the strong

interaction, we might expect our assumption (5 .5 .32) to be slightly incorrect .

If we now set x equal to the ratio of axial vector to vector coupling constant s

observed in neutron decay, (5 .5 .29) becomes

1/T c

	

=

	

159 (1 — 0 .994 (2J(J + 1 ) — 3) )

	

s—1 ,

	

(5 .5 .33 )

and thus for J =0 ,

1/T c

	

=

	

633

	

s—1 ,

	

(5 .5 .34 )

and for J =1 ,

1/Tc

	

=

	

1

	

s 1

	

(5 .5 .35 )

However, (5 .5 .33) is still not correct, since other strong interaction effects ,

which do not occur in neutron decay, affect the lifetime of muon capture .

Taking account of these effects, we obtain (22 )

1/T c

	

=

	

169 (1 — 0.945 (2J(J +I) — 3) )

	

s 1 ,

	

(5 .5 .36 )
so that

1/T c

	

=

	

636

	

s 1

	

(J = 0) ,

	

(5 .5 .37 )

1 /T c

	

=

	

13

	

s 1

	

( J = 1 ) .

	

(5 .5 .38 )
We have assumed throughout that the muon is initially in a Bohr type orbi t

around the proton, However, theoretical (23) and experimental (24) investigation s

have shown that the ionic bonding (p).xp) t is, in fact, more common than th e

simple muonic atom . Taking this possibility into account, Weinberg calculate s

(25), expressing the lifetimes for the two spin states together, tha t

300 6—1 .

	

1/T c

	

565 s—1 .

	

(5 .5 .39)



Experiments give (26 )

1/Tc

	

=

	

480 ± 70

	

s 1 ,

	

(5 .5 .40 )

which is within the limits of Weinberg's prediction, once again favourin g

weak magnetism, which was used to determine coupling constants, but not producin g

conclusive evidence for it .

Finally, we consider the evidence for weak magnetism from high-energy

neutrino scattering :

v + p ----> antilepton t n ,

	

(5 .5 .41 )

v + n	 > lepton

	

+ p .

	

(5 .5 .42 )

We may predict the differential cross-sections9 for the processes (5 .5 .41 )

and (5 .5 .42) using the isovector electromagnetic form factors FV( g 2 ) and

GV (g2) and the weak form factors fA ( g2), fV( g 2 ), gA(g2), and g V ( g 2) . High-energy

electron-nucleon scattering experiments (26) have shown tha t

FV(g2 ) (GV(12))/(GV(0)) =

	

1/(1 +

	

(g 2/
mv

2 ) 2 )

==

	

gV (g2 )

	

= (ff(g2))/(fV(0))

	

, (5 .5 .43 )

where

mV 0.84 GeV . (5 .5 .44)

The equation (5 .5 .43) has been verified up to a momentum transfer, q, of

5 GeV/c . From similar experiments, and from the so-called 'double-pole' mode l

in dispersion theory, we hav e

(gA(g2))/(gA(0))

	

=

	

1/(1+
q2/6A2 ) 2 ,

	

(5 .5 .45 )

where mA is a mass parameter which must be determined by experiment . By

graphing inferred neutrino spectra, the best value for mA is (27 )

mA = 0.8 ± 0.15 GeV. (5.5.46 )

Within the limits of experimental error, mV (5 .5 .44) and mA (5 .5 .46) appear

to be equal, demonstrating that, up to about 4 GeV, vector and axial vecto r

form factors have a similar q 2 dependence . Thus we see that the weak magneti c

form factor is nonzero, in accordance with the hypothesis of weak magnetism .

This constitutes the best experimental evidence in favour of weak magnetis m

obtained to date .



5.6	 The Current-Current Approach .

In 4.4 we saw that the charged lepton current may be define d

r

	

oeYr(1 + Y 5 )'l[ e +

	

,r vr ' r (1 + Y 5)fir. +

	

+ Herm. conj .

	

(5 .6 .1 )

By electron-moon universality, we now write the semileptonic weak curren t

as

J
r

	

j (Vr + Ar )

	

JL +

	

Heim. conj .,

	

(5 .6 .2 )

where V and A are the vector and axial vector pure hadron current s
r

	

r
respectively . From (5 .6 .1) and (5 .6 .2), we deduce tha t

HL + HS

	

=

	

- (G/41) (Jr + JR) Jr

	

4 Heim. conj . ,

(5 .6 .3 )

where JH is the total o Q - 1 hadron current :

JH

	

a J0

	

+

	

b Jr ,

	

(5 .6 .4 )

a and b being real constants, and Jr and Jr the hypercharge-conserving and

hypercharge-changing currents used in 5 .3 . As we shall see in chapter 8 ,

both J
r

and J

r

are members of the same SU(3) octet, and this fact le d

Cabibbo to postulate (28) that

a2 + b2

	

=

	

1 , (5 .6 .5 )

o r

a

	

= cos 9

	

, (5 .6 .6 )

b

	

= sin

	

, (5 .6 .7 )

where A is the so-called 'Cabibbo angle' . The condition (5 .6 .5) is

equivalent to the assumption that the sum of the squares of both vecto r

and axial vector 0,Y = 0 and AY = 1 coupling constants are equal t o

the square of the total pure hadron coupling constant . A number of argument s

involving SU(3) may be used to justify (5 .6 .5), and these are discussed

in chapter 8 . (5 .6 .6) and (5 .6 .7) allow us to write for the total weak

current :

J

	

=

	

JL

	

cos a JO + sine Jl
r

	

r

	

r

	

r '

	

(5 .6 .8 )



so that the total weak Hamiltonian (5 .3 .6) become s

HI

	

- (G/ 2) (Jr J r ) .

	

(5 .6 .9 )

One consequence of (5 .6 .9) is that, by choosing a suitable value for 0 :

e 0.2 , (5.6.10 )

we predict the 2% reduction of V0 compared to JT mentioned in 5.2, and

with the same choice (5 .6.10) for 0, as demanded by the Cabibbo model ,

we may account for the reduction by a factor of 20 in semileptonic 10 Yl -' 1

decays rates compared to hypercharge-conserving ones .

We now examine the possibility that the Hamiltonian (5 .6 .9) may

explain pure hadronic as well as semileptonic weak interactions . Reaction s

between baryons and mesons, for example, would be described by the term s

JO J 1

	

+

	

J O J l

	

(5 .6 .11 )
r r

	

r r
as well as by the self-current hadron interactions

J0 rJ J

	

(5 .6 .12 )

and

J
r

J
r

.

	

(5 .6 .13 )

An interesting feature of the Cabibbo model is that it automaticall y

predicts parity violation in hadronic processes, since Ji and Jr contain

both vector and axial vector parts . If (5 .6 .9) is indeed precisely true ,

then it is evident that, if semileptonic processes are CP-violating, the n

so also must pure hadronic ones, and vice-versa . Similarly, CP conservation

in one type of interaction implies the same effect in the other type .

The attempted confirmation of this prediction is discussed in 7 .4 . I f

hadron interactions do occur through the term (5 .6 .11), then we migh t

expect their coupling constant to be reduced by a factor of sine cos 0 ,

which is almost certainly not observed . Writing

Jr (I = 1, 13 = 1)

	

-

	

V0 (1, 1)

	

+

	

A~ (1, 1) ,

	

(5 .6 .14 )

Jr (1, j)

	

=

	

Vr (a, 4-)

	

+

	

Air (4-, 4-) ,

	

(5 .6 .15 )

we are forced to conclude that hadronic weak interactions involv e

LII

	

=

	

3/2

	

(5 .6 .15 )

if they may be described by (5 .6 .11) . Thus, unless the component (5 .6 .15 )

is significantly suppressed by strong interaction dynamics, a possibility

considered below, the Hamiltonian (5 .6 .9) must be generalized so that it



includes also neutral hadron current terms . If this is the case, then the

AI- 4
rule may be built into HI by the replacement

J
0r(1, 1) J

1
r(4, 4) —=• Jr( l, 1) Jr(-, 4) - J

r
~ O (1,

	

O0) J'

	

(1, -) ,

(5 .6 .17 )

7
r
( 1 , - 1 ) Jr(', 4.)

	

J,( 1 , -1) Jr(-4-, 4) – Jr,O(l, 0) J r,O ( ', 4) ,

(5 .6 .18 )

where Jr O(1, 0) and J
1
r,0 (4-, 4) are AY ° 0 and AY 1 neutral currents .

We see that the currents Jr(1, 1), J0r,0(1, 0) and Jr(1, -1) constitute an

isovector (isospin vector), and Jl (4,4) and Jr,0(}, -4) form two component s

of an isospinor . Another method of ensuring the obeyence of the rule (5 .6 .16 )

ie to postulate that the combination s

JT° 0 (0. 0) Jr,O (,)

	

(5 .6 .19 )

Jr° 0 (0, 0) Jr,o (4, 4) ,

	

(5 .6 .20 )

where

JT°O (0, 0)

	

(5 .6 .21 )

is an I e 0, &Y = 0, L1Q .0 current, are responsible for hadronic reactions .

There is no experimental evidence at present in favour of neutral hadro n

currents, but SU(3) symmetry does indicate that they should exist (see chapte r

8). It is now possible to write a weak Hamiltonian whose 1DY) = 1

component obeys (5 .6 .16) :

HT

	

= - (0/

	

2) (Jr J r

	

-

	

jr J r,O )

	

,,0 (5 .6 .22 )

where

Jr

	

= , (5.623 )J
T

	

+

	

a J
r
(1, 1)

	

+

	

b Jr(, 4 )

Jr JT

	

+

	

a J=(1, -1) +

	

b J

1
(-4, -}) , (5 .6 ..24 )

Jr,O a J1.° 0(0, 0)

	

+

	

a Jr ,0 (1, 0)

	

+ b Jl

rO

(4, -F)

(5 .6 .25 )

Jr,0

	

=
a Jr° O (0, 0)

	

+

	

a Jr 0(1, 0)

	

+ b JT ,o (4

	

4£)

(5 .6 .26 )

However, until the neutral current strength has been accurately determined

(see 6.8), the neutral lepton currents which could be added to (5 .6 .25 )

(5 .6 .16 )



and (5 .6 .26) might still be absent from the total Hamiltonian . Thus there

exist two separate possibilities : first, the Hamiltonian contains onl y

charged-current terms, and its Al = 3/2 is suppressed by the strong

interaction ; and second, the Hamiltonian does, in fact, involve neutral

lepton currents with a strength comparable to that of the charged lepto n

currents. We now examine the predictions of these two models . Both indicat e

weak .AY = 0 hadron interactions . Assuming the Cabibbo form of universality

(5 .6 .5), (5 .6 .9) become s

HI (QY = 0)

	

=

	

-( G/ .!2") (cos2e(Jr(l,l) J0(1,—1)) -

+

	

sin2 6 (Jr (+, ) 5 .(+,—) ) ) ,

	

(5 .6 .27 )
whereas (5 .6 .22) yields

-(G/4Q) (cos20 (Jr(l , l ) a'Dr(l,-.1) - ( J0 ,0 ( 1 , 0 ) J0r,0(1,0)

J° 0 (0,0) JT0 0 (1,0) +
r

	

,

sin2 e (Jr(+,+) Jr(-,- )

J
r

~O ( r"~) Jr ,O (+4) ) )

	

(5 .6 .28 )
AY = 0 weak interactions are usually difficult to study experimentally

because they are masked by strong interactions with a much larger amplitude .

However, weak effects do give rise to parity-violating nuclear transitions,

so that a nuclear state K no longer possesses a well-defined parity, bu t

consists of a mixture of parities :

1K> = IK + > + f (5 .6 .29 )
where f is the parity-violating amplitude . From (5 .6 .27) or (5 .6 .28) we
may predict (29 )
f

	

10 7 .

	

(5 .6 .30 )
Experiments use, for example, the fact that for the a' ray connecting the

excited state of Ta
181

(482 keV, 5/2 1- ) to the 7/2 + ground state, th e

normal M1 transition matrix is suppressed by nuclear structure effect s 1° (30) ,
so that the parity-violating II transition matrix produces an observabl e

effect. Recent studies of the circular polarization in the gamma rays from

Tal8l and L.175
indicate that (31 )

fTa

	

°

	

(0 .4 - 4) x 10-7
fLu

	

=

	

( 2 - 8) x 10-7

HI (AY = 0)

, J° 0(1,0) J°0(0,0) +
r,

	

r,

JT°° (°, 0 ) Jr°° (°, 0 )) )+

(5 .6 .31 )
(5 .6 .32)



in good agreement with the theoretical predictions for f . It has bee n

suggested that experiments on the isospin properties of H I (AY = 0) migh t

provide some basis for a discrimination between the models (5 .6 .9) an d

(5 .6 .22) . In the 'charged-current' theory, we note the cost A term contain s

only AI = 0 and AI 2 components, while the sin 2e term involves only

the AI = 1 component . Thus this model predicts the ratio of the AI , 1

amplitude to the AI - 0 one to be in the order of tan2e . However, i n

the 'neutral-current' hypothesis (5 .6 .28), both the 41 = 0 and the AI = 1

amplitudes are proportional to cos2e, and hence are of the same order of

magnitude . Sinc e

sine

	

0 .21 ,

	

(5 .6 .33 )

the strength of the AI = 1 component is about 20 times greater in the

'neutral-current' model than in the 'charged-current' or 'AI = '-enhancement '

model . Thus, if isospin dependence in weak nuclear interactions could b e

detected, then we could decide between (5 .6 .27) and (5 .6 .28) . No accurate

measurements of the type necessary have yet been made, although a number

of candidates, such a s

016 (8 .8 MeV, 2- , I - 0) --~ 012 (of , 1=0) ,

	

(5 .6 .34 )

have been put forward as suitable reactions in which to observe significan t

isospin dependence .


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66
	page 67
	page 68
	page 69
	page 70
	page 71
	page 72
	page 73
	page 74
	page 75
	page 76
	page 77
	page 78
	page 79
	page 80
	page 81
	page 82
	page 83
	page 84
	page 85
	page 86
	page 87
	page 88
	page 89
	page 90
	page 91
	page 92
	page 93
	page 94
	page 95
	page 96
	page 97
	page 98
	page 99
	page 100
	page 101
	page 102
	page 103
	page 104
	page 105
	page 106
	page 107
	page 108
	page 109
	page 110
	page 111
	page 112
	page 113
	page 114
	page 115
	page 116
	page 117
	page 118
	page 119
	page 120
	page 121
	page 122
	page 123

