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Randomness and chaos in physical systems are ususally ultimately attributed to external noise. 
But it is argued here that even without such random input, the intrinsic behavior of many nonlinear 
systems can be computationally so complicated as to seem random in all practical experiments. 
This effect is suggested as the basic origin of such phenomena as fluid turbulence. 

PACS numbers: 05.45. + b, 02.90. + p, 03.40.Gc 

There are many physical processes that seem ran­
dom or chaotic. They appear to follow no definite 
rules, and to be governed merely by probabilities. But 
all fundamental physical laws, at least outside of quan­
tum mechanics, are thought to be deterministic. So 
how, then, is apparent randomness produced? 

One possibility is that its ultimate source is external 
noise, often from a heat bath. When the evolution of 
a system is unstable, so that perturbations grow, any 
randomness introduced through initial and boundary 
conditions is transmitted or amplified with time, and 
eventually affects many components of the system.) A 
simple example of this "homoplectic" behavior occurs 
in the shift mapping X, = 2x,_) modI. The time se­
quence of bins, say, above and below + visited by X, is 
a direct transcription of the binary-digit sequence of 
the initial real number xo. 2 So if this digit sequence is 
random (as for most Xo uniformly sampled in the unit 
interval) then so will the time sequence be; unpredict­
able behavior arises from a sensitive dependence on 
unknown features of initial conditions.3 But if the ini­
tial condition is "simple," say a rational number with 
a periodic digit sequence, then no randomness appears. 

There are, however, systems which can also gen­
erate apparent randomness internally, without external 
random input. Figure 1 shows an example, in which a 
cellular automaton evolving from a simple initial state 
produces a pattern so complicated that many features 
of it seem random. Like the shift map, this cellular 
automaton is homoplectic, and would yield random 
behavior given random input. But unlike the shift 
map, it can still produce random behavior even with 
simple input. Systems which generate randomness in 
this way will be called "autoplectic." 

In developing a mathematical definition of autoplec­
tic behavior, one must first discuss in what sense it is 
"random." Sequences are commonly considered ran­
dom if no patterns can be discerned in them. But 
whether a pattern is found depends on how it is looked 
for. Different degrees of randomness can be defined 
in terms of the computational complexity of the pro­
cedures used. 

The methods usually embodied in practical physics 
experiments are computationally quite simple.4• S They 
correspond to standard statistical tests for random-

ness,6 such as relative frequencies of blocks of ele­
ments (dimensions and entropies), correlations, and 
power spectra. (The mathematical properties of ergo­
dicity and mixing are related to tests of this kind.) 
One characteristic of these tests is that the computa­
tion time they require increases asymptotically at most 
like polynomial in the sequence length.7 So if in fact 
no polynomial-time procedure can detect patterns in a 
sequence, then the sequence can be considered "effec­
tively random" for practical purposes. 

Any patterns that are identified in a sequence can be 
used to give a compressed specification for it. (Thus, 
for example, Morse coding compresses English text by 
exploiting the unequal frequencies of letters of the al­
phabet.) The length of the shortest specification mea­
sures the "information content" of a sequence with 
respect to a particular class of computations. (Stan­
dard Shannon information content for a stationary pro­
cess8 is associated with simple statistical computations 
of block frequencies.) Sequences are predictable only 
to the extent that they are longer than their shortest 
specification, and so contain information that can be 
recognized as "redundant" or "overdetermined." 

Sequences generated by chaotic physical systems 
often show some redundancy or determinism under 
simple statistical procedures. (This happens whenever 
measurements extract information faster than it can be 
transferred from other parts of the system.) But, typ­
ically, there remain compressed sequences in which no 
patterns are seen. 

A sequence can, in general, be specified by giving an 
algorithm or computer program for constructing it. 
The length of the smallest possible program measures 
the "absolute" information content of the sequence.9 

For an "absolutely random" sequence the program 
must essentially give each element explicitly, and so 
be close in length to the sequence itself. But since no 
computation can increase the absolute information 
content of a closed system [except for 0 (Iogt) from 
input of "clock pulses"1, physical processes presum­
ably cannot generate absolute ra.ndomness. 10 Howev­
er, the numbers of possible sequences and programs . 
both increase exponentially with length, so that all but 
an exponentially small fraction of arbitrarily chosen se­
quences must be absolutely random. Nevertheless, it 
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is usually undecidable what the smallest program for 
any particular sequence is, and thus whether the se­
quence is absolutely random. In general, each pro­
gram of progressively greater length must be tried, and 
anyone of them may run for an arbitrarily long time, 
so that the question of whether it ever generates the 
sequence may be formally undecidable. 

Even if a sequence can ultimately be obtained from 
a small specification or program, and so is not abso­
lutely random, it may nevertheless be effectively ran­
dom if no feasible computation can recover the pro­
gram.11 The program can always be found by explicitly 
trying each possible one in turn. 12 But the total 
number of possible programs increases exponentially 
with length, and so such an exhaustive search would 
soon become infeasible. And if there is no better 
method the sequence must be effectively random. 

In general, one may define the " effective informa­
tion content" 9 of a sequence to be the length of the 
shortest specification for it that can be found by a 
feasible (say polynomial time) computation. A se­
quence can be considered "simple" if it has small 9 . 
9 (often normalized by sequence length) provides a 
measurue of "complexity," "effective randomness," 
or "computational unpredictability." 

Increasing 9 can be considered the defining charac­
teristic of autoplectic behavior. Examples such as Fig. 
1 suggest that 9 can increase through polynomial-time 
processes. The rule and initial seed have a short speci­
fication, with small 9 . But one suspects that no poly­
nomial time computation can recover this specification 
from the center vertical sequence produced, or can in 
fact detect any pattern in it. 13 The polynomial-time 
process of cellular automaton evolution thus increases 
fl, and generates effective randomness. It is phe­
nomena of this kind that are the basis for cryptogra-

FIG. 1. Pattern generated by cellular automaton evolution 
from a simple initial state. Site values 0 or 1 (represented by 
white or black, respectively) are updated at each step accord­
ing to the rule a/=a/_I EB (a/va/+I)( EB denotes addition 
modulo 2, and V Boolean disjunction) . Despite the simplici­
ty of its specification, many features of the pattern (such as 
the sequence of site values down the center column) appear 
random. 
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phy, in which one strives to produce effectively ran­
dom sequences whose short "keys" cannot be found 
by any practical cryptanalysis. 14 

The simplest mathematical and physical systems 
(such as the shift mapping) can be decomposed into 
essentially uncoupled components, and cannot in­
crease 9 . Such systems are nevertheless often homo­
plectic, so that they transfer information, and with ran­
dom input show random behavior. But when their in­
put is simple (Jow 9) , their behavior is corresponding­
ly simple, and is typically periodic. Of course, any sys­
tem with a fixed finite total number of degrees of free­
dom (such as a finite cellular automaton) must even­
tually become periodic. But the phenomena con­
sidered here occur on time scales much shorter than 
such exponentially long recurrences. 

Another class of systems widely investigated con­
sists of those with linear couplings between com­
ponents [such as a cellular automaton in which 
a/ t + () = (a/!.\ + a/~\ ) mod21. Given random input, 
such systems can again yield random output, and are 
thus homoplectic. But even with simple input, they 
can produce sequences which pass some statistical tests 
of randomness. Examples are the standard linear 
congruence and linear-feedback shift-register (or finite 
additive cellular automaton l5 ) systems used for pseu­
dorandom number generation in practical computer 
programs.6,16 

Characteristic of such systems is the generation of 
self-similar patterns, containing sequences that are in­
variant under blocking or scaling transformations. 
These sequences are almost periodic, but may contain 
all possible blocks of elements with equal frequencies. 
They can be considered as the outputs of finite-state 
machines (generalized Markov processes) given the 
digits of the numerical positions of each element as in­
put. 17 And although the sequences have certain sta­
tistical properties of randomness, their seeds can be 
found by comparatively simply polynomial-time pro­
cedures.18 Such systems are thus not autoplectic (with 
respect to polynomial-time computations). 

Many nonlinear mathematical systems seem, how­
ever, to be autoplectic, since they generate sequences 
in which no patterns have ever been found . An exam­
ple is the sequence of leading digits in the fractional 
part of successive powers of + 19 (which corresponds 
to a vertical column in a particular k = 6, r = 1 cellular 
automaton with a single site seed) . 

Despite extensive empirical evidence, almost noth­
ing has, however, been proved about the randomness 
of such sequences. It is nevertheless possible to con­
struct sequences that are strongly expected to be effec­
tively random. 2o An example is the lowest-order bits 
of Xt=X/_I mod(pq), where p and q are large 
primes.2o The problem of deducing the initial seed Xo, 

or of substantially compressing this sequence, is 
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equivalent to the problem of factoring large integers, 
which is widely conjectured to require more than poly­
nomial time. 21 

Standard statistical tests have also revealed no pat­
terns in the digit sequences of transcendental numbers 
such as22 .J2, e, and 7T 22 (or continued-fraction expan­
sions of 7T or of most cubic irrational numbers). But 
the polynomial-time procedure of squaring and com­
paring with an integer does reveal the digits of, say,.J2 
as nonrandom.23 Without knowing how the sequence 
was generated, however, such a very special "statisti­
cal test" (or program) can probably only be found by 
explicit enumeration of all exponentially many possi­
ble ones. And if a sequence passes all but perhaps ex­
ponentially few polynomial-time batteries of statistical 
tests , it should probably be considered effectively ran­
dom in practice. 

Within a set of homoplectic dynamical systems 
(such as class 3 or 4 cellular automata) capable of 
transmitting information, all but the simplest seem to 
support sophisticated information processing, and are 
thus expected to be autoplectic. In some cases (quite 
probably including Fig. 124) the evolution of the sys­
tem represents a "complete" or "universal" computa­
tion, which, with appropriate initial conditions, can 
mimic any other (polynomial-time) computation. 21 If 
short specifications for sequences generated by any 
one such computation could in general be found in 
polynomial time, it would imply that all could, which is 
widely conjectured to be impossible. (Such problems 
are called NP-complete.21 ) 

Many systems are expected to be computationally ir­
reducible, so that the outcome of their evolution can 
be found essentially only by direct simulation, and no 
computational short cuts are possible. 25 To predict the 
future of these systems requires an almost complete 
knowledge of their current state. And it seems likely 
that this can be deduced from partial measurements 
only by essentially testing all exponentially many pos­
sibilities. The evolution of computationally irreducible 
systems should thus generically be autoplectic. 

Autoplectic behavior is most clearly identified in 
discrete systems such as cellular automata. Continu­
ous dynamical systems involve the idealization of real 
numbers on which infinite-precision arithmetic opera­
tions are performed. For systems such as iterated 
mappings of the interval there seems to be no robust 
notion of "simple" initial conditions. (The number of 
binary digits in images of, say, a dyadic rational grows 
like pI, where p is the highest power of x in the map.) 
But in systems with many degrees of freedom, 
described for example by partial differential equations, 
autoplectism may be identified through discrete ap­
proximations. 

Autoplectism is expected to be responsible for ap­
parent randomness in many physical systems. Some 

features of turbulent flu id flow, 26 say in a jet ejected 
from a nozzle, are undoubtedly determined by details 
of initial or boundary conditions. But when the flow 
continues to appear random far from the nozzle, one 
suspects that other sources of effective information are 
present. One possibility might be thermal fluctuations 
or external noise, amplified by homoplectic processes. 1 

But viscous damping probably allows only sufficiently 
large-scale perturbations to affect large-scale features 
of the flow. (Apparently random behavior is found to 
be almost exactly repeatable in some carefully con­
trolled experiments. 27) Thus, it seems more likely 
that the true origin of turbulence is an internal auto­
plectic process, somewhat like Fig. 1, operating on 
large-scale features of the flow. Numerical experi­
ments certainly suggest that the Navier-Stokes equa­
tions can yield complicated behavior even with simple 
initial conditions.28 Autoplectic processes may also be 
responsible for the widespread applicability of the 
second law of thermodynamics. 

Many discussions have contributed to the material 
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D. Hillis, P. Hohenberg, E. Jen, R. Kraichnan, 
L. Levin, D. Lind, A. Meyer, S. Micali, J. Milnor, 
D. Mitchell, A. Odlyzko, N . Packard, I. Procaccia, 
H. Rose, and R. Shaw. This work was s4Pported in 
part by the U. S. Office of Naval Research under Con­
tract No. N00014-80-C-0657. 
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