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Arguments are given that quark and gluon momentum distributions generated by
asymptotic freedom formulae from distributions which are positive at @2 = QS remain
positive for Q% > 03. For Q% < Q3 tiiey inevitably become negative. Momentum distri-
butions at Q2 = Q3 should be chosen so that this occurs only for very small Q2. This
constrains the partition of momentum between the quarks and gluons and the shapes of
their momentum distributions.

1. Introduction

The asymptotic freedom of quantum chromodynamics (QCD) can be used to
predict the behaviour of deep inelastic structure functions for large Q2. These pre-
dictions involve matrix elements of certain local operators, or equivalently, effective
quark and gluon momentum distributions (structure functions) at a fixed “starting”
Q3. We are at present unable to calculate these distributions: some features may be
determined from experiment while others must simply be guessed. It is evident,
however, that physically acceptable structure functions obtained from asymptotic
freedom formulae must remain positive throughout the range of Q2 in which the
formulae should apply. In this paper we investigate the constraints that this places
on the starting momentum distributions.

The asymptotic freedom formulae give directly the Q2 variation of the moments

(_.
G, (Q?) and Q:", (Q?) of the gluon and (anti)quark momentum distributions of each
flavour i, where

1
Fa(@)= [ x"2 F(x, %) dx. (1)

0

In sect. 2 we collect these predictions, and state Hausdorff’s theorem, which pro-
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vides the conditions that the F,,(Q?) must satisfy in order that F(x, 0%) be non-
negative (for 0 <x < 1). Equivalent conditions have previously been used by Nacht-
mann [1] to derive constraints on the # dependence of anomalous dimensions.
Nachtmann considered moments which are controlled by a single local operator in
the operator product expansion. His analysis therefore applies to the singlet opera-
tor with the smallest anomalous dimension, which dominates the singlet structure
functions at infinite 02, but does not address the question of whether the structure
functions remain positive at accessible values of Q? (non-singlet combinations of
structure functions are controlled by a single local operator but can be negative

even at 03).

In sect. 3 we show that the moments predicted from any set of positive starting
distributions are positive for Q% > Q3. We argue that the further conditions which
must be satisfied if the complete momentum distributions are to be positive also
hold. For Q* < 03, however, one of any set of structure functions eventually
becomes negative. This would be irrelevant if it happened only at very small 02,
since asymptotic freedom formulae * should not be expected to hold there, but we
find that unless the starting distributions are chosen carefully it occurs for Q? close
to Q3. Advocates of particular quark and gluon distributions should therefore check
that their distributions remain positive in the region where the use of asymptotic
freedom formulae is not completely unreliable.

In sect. 4 we derive some analytic constraints on the starting distributions.
Assuming that as x = |

E
Z [0/, 09 + 0'tx, 03] ~ (1 =),

G(xt Q%) o (l =2 x)x .
', 0~ -x¥, (s>v), (2)

we show that for n = e the moments become negative at Q? = 0§ — e (where € is
an arbitrarily small positive number) unless

w-DN<E-1)<g<@+1). (3)

In fact, the asymptotic freedom formulae cease to apply as n - o at fixed 02, so
that eq. (3) need not be obeyed exactly. However, the constraints found numeri-
cally for finite n reflect this result. Note that if the formulae of asymptotic free-
dom are used to generate distributions for Q% > Q3, their behaviour as x = 1 will
necessarily satisfy eq. (3).

We also present analytic results for the n = 2 moments (total momenta carried

* The formulae are known in full only to leading order in ag(Q2)/n = 12/(33 - 2F) log(Q?/A?)
(' is the number of quark flavours) and in nA2/Q2. Experiment indicates that A2 =0.25GeV2,
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by each species). We find that the requirement that distributions do not rapidly
become negative for Q% < Q3 places constraints on the division of momentum
between quarks, antiquarks and gluons. For example, unless gluons carry at least
20% of the total momentum at Q% = 4 GeV?, the predicted gluon momentum dis-
tribution will become negative at a Q2 above 1 GeVZ. There is also an upper bound
on the gluon momentum, and a bound on the antiquark momenta.

In sect. 5, we analyse the numerical consequences of our bounds for various

forms of the starting distributions. A typical result is that if the S)‘(x, Q%=4 GeV?)
are those deduced from studies of present deep inelastic scattering data, then
G (x, Q3) must fall less steeply with x than about (1 — x)°.

2. Basic formulae

QCD predicts that in the asymptotically free limit (Q? = oo, n fixed), if there are
F flavours of quarks,

— =] NS NS
B0n=Bhod 7 + S TR - 1)

+ My @IXTYT — T}, @
Q%) = ESMLQ3) T + Ex M7 (03) T )
where
M3Q%) = ——— (@S - di) 0u(@%) + d$°G @},
M7(Q) = ——— {(d} - dlYS) 0n(0?) - dRCG, ()},

dt—dn
F
0a(Q%) = E' (QL(Q%) + Qi(Q?) = My(QY) + M7 (Q)

Gu(Q%) = EL M Q) + Ex Mz (QF)

log(Q3/A%)

@)= log(@?/A?)’

n
4 2 1
QQ = ¢NS = £ - _]'
an =dn 33-2F[ n+1) jo )
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n
2F 9 1 4 4 1
dJC = + [—— - +4Z;'],
" O 33-2F 33-2F 3 n(n-1) (n+t1Xn+2) j=2J

(33 -2 n(n? - 1)
496 = 6F(n*+n+2)

T(33-=-2nm+)(n+2)’

23 = d@%+dFC £ AR - dFO) +44R0dSFQ,

_dy—d@R
fﬁ-—"‘@é—- (6)

To derive (4) recall that the non-singlet combinations of structure functions are
(@+2-1Z e+ o). @-0.
Writing
@+09=[@'+0)- ;T @+ 09|+ ;T @+ 2.
k k
one obtains

- — NS
(04 + BH(@M) = @4(@D + h(@B) - F 0 eh + M @B 7%
+ = (@Y T + M @Y T,

[04(0%) - B4(0M)] = [Q4(@)) - B4R T,
from which (4) follows.
If we define

fn Ef x" f(x) dx

0

then the necessary and sufficient conditions on the f;, for f(x) to be non-negative on
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[0.1] are

‘me;: = Eﬂ ("1)" (n;)fn+k

1
=fx"(1 —-X)"f(x)dx>0, n,m=0,1,2,.., (7)
0

which is Hausdorff’s theorem [3]. The necessity of these conditions is obvious since
(1 -x)*>200<x<1).

For f(x) 2 0 (0 < x < 1) it is necessary and sufficient that [J R (x) f(x) dx =0
for all polynomials R (x) =0 (0 <x < 1). We can use the fact that

1 a\»
x"= lim [(— —) + N]
N__w[ NP3 (P+q) L
q=(1-x)

(G2 B |

q=(1—x)

o [ 2 (0N a0

to write

R(x)= N]im E: (g)x (‘i‘) o d R

—o k=0

from which the sufficiency of (7) follows.

3. Features of the positivity constraints

(=)
We now consider the constraints which arise from demanding that Q'(x, Q’) and
G (x, Q%) be non-negative *. We begin with the necessary condition that their mo-

ments 53’, (Q?) and G ,,(Q?) be non-negative. If the starting distributions are positive

* [t is easy to construct cross scctions involving hypothctical but conccivable currents which are
proportional to the quark and antiquark distributions of each fluvour, and to the glue distribu-
tion. These quantitics, and the corresponding local operator matrix elements, cannot therelore
be negative.
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it is easy to show that M, (Q3) > 0 (eqgs. (5), (6)), but one must consider two possi-
bilities for M3 (Q3).

(i) Ma(Q3) <0 -

In this case G, (Q?) is positive for all Q2 since £}, <0 and £5 > 0. Q}‘, (Q?) is pos-
itive for 0? > Q3 (T < 1) since dj, > dNS > dj;. As T = =, however, 5’,’,@2) inevi-
tably becomes negative and we must choose the starting distributions so that this
does not occur in a region where the asymptotic freedom formulae apply.

(ii) M7(Q3) > 0

The condition G, (Q?) = 0 now becomes

—E M (O3 V)
[ E:;Mr,(Q%)] ks ®

If the starting distributions are positive, this holds for T = 1, and since d; — d; >0
it continues to hold for T <1 (Q% > Q3). For T> 1 (Q* < @3), however, it will
eventually fail. .

-aNS¢: . ) o

Eq. (3) shows that T~ " b}‘,(Qz) is non-negative as T —+ 0 or T — o= since it is
— N NS

dominated by the positive terms M;; (Q3) T ~%n % or M (Q3) T~ i
these limits, but it has one minimum at

T=T= [—(a"n — d'S) My, (QF)] 1/~
(d7 —aNS) M;(03)

=[—£:’.M(Q%) 1/(dy —dp)
ExM; (0§

v : - _aNSG=
The validity of eq. (8) at T=1 implies that T > 1. Hence T " (Q%,(Qz) decreases

between 0 and | but (éi(Qz) is positive throughout this region. For 7> 1, however,

(Qi (Q?) may become negative, depending on the starting distributions.

We have now shown that the moments of the (anti)quark and gluon distributions
remain positive for Q% > Q3 if they are positive at Q% = Q3. In order that the distri-
butions themselves remain positive, their moments must satisfy eq. (7) for all m.
For the large class of starting distributions whose moments behave like inverse pow-
ers of n for large n, the asymptotic freedom formulae predict that their moments
continue to behave like inverse powers of n for 0 > Q3 (apart from log n factors

9)

’ =)
which will not affect our argument). In this case A" Q,, and A™ G, will be positive
for large n since A™(1/n”) >0 for p = 0 (where A™ is the mth-order finite differ-

ence operator defined in eq. (7)). A detailed numerical investigation of A”‘S?f,(gz)
and A™G,(Q?) with a wide variety of positive starting distributions suggests that in
all cases they indeed remain positive for Q% > Q3 for all n.
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We showed above that for Q2 < Q3 some of the moments inevitably become
negative. This is also true of their finite differences. For “reasonable” starting dis-
tributions, however, we find (sect. 5) that the m # 0 conditions only very rarely
fail before the m = 0 conditions as Q2 is decreased below Q3. This is to be expected
since for a large class of distributions (including all those which decrease monotoni-
cally with x) the finite differences of the moments cannot be negative unless the
moments themselves are negative.

4. Analytic results

It is expected [4] that the effects of operators occurring in the operator product
expansion with twists greater than two become very important for n 2 9%/A?, cor-
responding to x 2 1 — O(A2/Q?) (terms of higher order in a(Q?) also diverge in the
limit # = e= at fixed Q3, but this is only significant at much larger values of 7). Start-
ing distributions need only be rejected, therefore, if they lead to negative distribu-
tions for n S 4Q? (GeV?). Nevertheless, as explained in sect. 1, it is interesting to
consider the limit n = o, where we find

- ) 3FC(QR) ray _ pahy

(5n log n)? 101 log n

04(0?) ~ 0.(Q) (T‘J"T +

Gn(Q?) = Gn(Q%)(ﬁ + (s:zim?f?)?) + if’;—o(fi) T - T"ﬂ) ; (10a)

where

d,~3ﬁlogn _ . 16logn
"T33-2F" "T33-2F

For Q® < Q3 (T > 1), the factor (% Td:') is negative. The distributions there-
fore become negative unless the first terms in eq. (10a) dominate as n = °o. Making
the assumption of eq. (2) for the behaviour of the starting distributions as x = 1,
0,,(03) and G,,(Q3) behave like n~®*!) and n~&*"), respectively, for large n. Eq. (3)
is then the condition that Q,(Q?) and G,,(Q?) remain positive for T=1+8§ (Q* =
Q3 — €). If the inequalities of eq. (3) are satisfied, G,,(Q?) remains positive for all
Q* < Q3 but Q,,(Q?) still becomes negative for Q2 sufficiently small. For n ==

this occurs at

(10b)

-2
T=exp(3320j [g-v+ 1]) -

As stated in sect. 1, it is clear that distributions for Q% > Q3 generated from any
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starting distributions must obey eq. (3). When Q% = <o at fixed n,

51 nsz:
3Fren 0

so that eq. (10a) shows that g = v + 1: but in general this will only become true at
extremely high Q% when the structure functions will all be infinitesimal for x close
to one. To make more useful statements about the form of the structure functions
for Q2 > Qﬁ, we must assume a particular form for the starting distributions. If, for
example, following ref. [S], we take G,(Q3) = 0 (Q3) = 0 for Q3 = A?, then, ignor-
ing log n terms, eqs. (10) and (4) giveg=v+ 1,s=v + 2 for Q* > Q3.

Next we consider the n =2 moments. The energy-momentum sum rule implies
G,(Q*) + Q,(Q%) =1, so that for the singlet structure functions

g o 3 ( 16 2) at
Q,(Q%) F+1et 3F+16_GI(Q°) T?,

S | _( 16 )d;
G20 =37 16 \3Fr 16~ G2 @) T an

Hence G, (Q?) will inevitably become negative as Q% = 0 (T - =), unless G, (Q3) >
16/(3F + 16), in which case Q,(Q?) will become negative. In fig. 1 we have plotted
the value of Q? below which G, (Q?) or Q, (Q?) becomes negative (which we call
Q%) as a function of G, (Q% = 4 GeV?) for A2 =0.25 GeV? and F = 3 (the results
are very insensitive to the number of flavours). The very reasonable demand that
Q% S 1 GeV? requires 0.87 2 G,(Q% =4 GeV?) 2 0.2, (experimentally G, (Q =

G,(Q%: aGeV?)
10

Q,>0

o-8r
06

04

>0
02r &

0 1 ) 3 4 Q(Gevd)
FFig. 1. The value Q% of Q2 below which the predicted total momenta carried by the gluons

(lower line) or quarks (upper line) becomes negative, as a function of the momentum carried by

the gluons at Q2 = Q3 = 4 GeV? (A% =0.25 GeV? and F = 3).

b vemlecm wl FALE Lol aces sedal ol &  FIAVEN A FNTI
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Qial: 4 Gev?)

—G,(0%:4Gev?) : 0.6

.02k

o} Q4Gev?)

1 g 2 3 4
Fig. 2. The value Q2 of Q? below which the predicted total momentum carried by one flavour

of antiquark (ﬁé(szj becomes negative, as a function of the momentum it carried at Q2= Q% -
4 GeV?2 for various starting gluon momenta, G2(Q3 = 4 GeV?) (A% = 0.25 GeV2 and F = 3).

4 GeV?) ~ 0.5) and if Q% < 0.5 GeV? (by which point higher-twist operators should
be becoming significant for n = 2), 0.79 2 G, (Q3 =4 GeV?) 2 0.37.

The value of Q2 at which 0% (Q?) becomes negative is easily calculated from eq.

(4) as a function of G, (Q3) and Eﬁ(Q%) using the fact that M5 (Q?) = 3F/(3F + 16)
and M3(Q3) + M5(Q3) = 02(Q3) = 1 — G,(Q3) (which has already been used in
deriving eq. (11)). The results are shown in fig. 2 for A> =0.25 GeV? and F =3
(they are insensitive to F). The reasonable demand that Q% < 1 GeV? gives
04(0% =4 GeV?) 2 0.01 for G, (0% = 4 GeV?) = 0.5 and Q% < 0.5 GeV? implies
04(0%=4 GeV?) 2 0.017. Neutrino data suggest that 0%(4 GeV?) + 03(4 GeV?) ~
0.04 not greatly in excess of this bound. For strange quarks the bound probably
fails with Q2 =~ =1 GeV? but larger Q2 is needed for it to be credible in this case.
However, our bounds show that the distributions of new flavours must be non-zero
in regions of Q2 where the application of asymptotic freedom formulae to them is
at all reasonable.

Figs. 1 and 2 show that the observed values of G,(4) and 0%(4 GeV?) +
09(4 GeV?) are obtained if G, and 0% vanish at 0% = Q2 = 0.4 GeV2. This was
originally pointed out in ref. [5].

5. Numerical results

It is necessary to resort to numerical techniques to make a complete investigation
of the positivity of distributions for Q* < Q3. As an example, we consider first the
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following simple parametrization of the starting distributions for the case of four
flavours:

Fk(x, 03) =P+ 1)1 —x)*FEQ}),
k=V,§,G,

Gx, 08 =FS(x,0),
Q(x, Q%) =FY(x,08) + F3(x, 03) ,

Q'(x, 03) = §FS(x, 03) . (12)
We take
F$Q%) =02, FY@Q3)=03, F$(Q3=05, Py=3,

but will allow Pg and Pg to vary. The moments of these F*(x, Q3) are given by

FX@%) = (Px+1)B(n - 1, P+ 1) F5(03),
where B is the Beta function.

We consider the a’,@?) and G,(Q?) generated from the starting distributions of
eq. (12) at T = 1.2, which corresponds to Q2 = 2.5 GeV? for Q3 = 4 GeV? and
A?=0.25 GeV2. We know that these quantities are positive for n = 2 (see figs. 1 and
2) but they become negative for large n unless Pg and Pg satisfy eq. (3). Table 1
gives the minimum n (which we call n_) at which this occurs for various Pg and Pg.
The contributions of higher-twist operators probably invalidate the use of the asymp-
totic freedom formulae for n 2 40? (GeV?), or n 2 10 in this case. We can therefore
only exclude values of Pg and Pg which give n_ < 10. The outlined central area in
table 1 (in which n_ > 10) corresponds to the allowed values of Pg and Pg; it is
considerably larger than the region allowed by the n = o= bound of eq. (3) but has
similar features. For Pg 2 0.6 P, it is G,,(Q?) which becomes negative for n =>n_
while for 0.6 P < Pg it is 0}, (0?).

In this case, it turns out that the m = 0 positivity constraints are at least as strong
as the m # 0 ones for a given n. If we consider values of T = T_ larger than 1.2, the
maximum allowed value of Pg tends to grow very slowly with T_, and the m #0
constraints begin to become stricter than the m = 0 ones for small P and Pg
(although this never happens in a region which is not seriously hampered by higher-
twist effects). An increase (decrease) of G, (Q3) increases (decreases) n_ throughout
the domain in which G,(Q?) becomes negative for n > n_ (this domain, which was
originally Pg 2 0.6 Pg is itself decreased (increased)). Likewise, an increase (decrease)
of 04 (Q3) increases (decreases) n_ in the region where 0}, (0?) becomes negative.

Of course, actual quark and gluon momentum distributions will not be of the
simple form (12). Some idea of the results of using more complicated forms may be
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obtained by admixing a small (1 — x)? component into the G (x, Q3) and F5(x, 03)
of eq. (12). Very small contamination of F3(x, Q3) is sufficient to prevent it from
becoming negative for values of x and Q% at which asymptotic freedom formulae
should apply (ignoring higher-twist operators). It would also, however, ruin the
agreement between theory and experiment for the Drell-Yan process. On the other
hand, even 10% admixtures into G (x, 03) (changing it drastically for large x) do not
appreciably change the point at which it becomes negative (although for small Pg
this occurs at larger x (n)).

If we use the phenomenological fits of Field and Feynman [6] or Barger and
Phillips [7] as the starting quark distributions, then we find that positivity is only
respected for Q2 a small distance below Q3 if G (x, Q3) falls less rapidly with x than
about (1 — x)°. Steeper starting gluon distributions (e.g. [8]) should therefore prob-
ably be abandoned.

Note added in proof

Table 1 gives the values of # = n_ for which the predicted moments become
negative. The finite differences formed from the moments with n < n_ do not in
this case yield stronger information. However, M.R. Pennington has pointed out to
us that if one considers all moments but eliminates those with n > which are not
determined by the theory, then the constraints obtained are stronger than those
resulting from the positivity of the first ;¥ moments and their finite differences
alone [9]. The additional conditions hardly affect the lower boundary of the
allowed region in table 1 but the upper boundary is reduced to Pg <9 for all
Pg [10].
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