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Abstract 

Cellular automata are simple mathematical systems that exhibit very 
complicated behaviour. They can be considered as discrete dynamical 
systems or as computational systems. Progress has recently been made in 
studying several aspects of them. Twenty central problems that remain 
unsolved are discussed. 

Many of the complicated systems in nature have been found to 
have quite simple components. Their complex overall behaviour 
seems to arise from the cooperative effect of a very large number 
of parts that each follow rather simple rules. Cellular automata 
are a class of mathematical models that seem to capture the 
essential features of this phenomenon. From their study one 
may hope to abstract some general laws that could extend 
the laws of thermodyamics to encompass complex and self­
organizing systems. 

There has been recent progress in analysing some aspects 
of cellular automata. But many important problems remain. 
This paper discusses some of the ones that have so far been 
identified. The problems are intended to be broad in scope, 
and are probably not easy to solve. To solve anyone of them 
completely will probably require a multitude of subsidiary 
questions to be asked and answered. But when they are solved, 
substantial progress towards a' theory of cellular automata 
and perhaps of complex systems in general should have been 

made. 
The emphasis of the paper is on what is not known : for 

expositions of what is already known about cellular automata, 
see [1-4] . The paper concentrates on theoretical aspects of 
cellular automata. There is little discussion of models for 
actual natural systems. But many of the theoretical issues. 
discussed should have direct consequences for such models. 

Cellular automata consist of a homogeneous lattice of sites, 
with each site taking on one of k possible values. The sites are 
updated according to a definite rule that involves a neighbour­
hood of sites around each one. So in a one-dimensional cellular 
automaton the value a~t) of a site at position i evolves according 
to 

a~t+1) = 1>[a\t]r,a\i!r+l,'" , a~~r] ' 

The local rule 1> has a range of r sites. Its form determines the 
behaviour of the cellular automaton. Some examples of patterns 
generated by cellular automata are shown in Figs. 1 and 2. 
Figure 1 shows examples of the four basic classes of behaviour 
seen in the evolution of cellular automata from disordered 
initial states. Figure 2 shows patterns generated by evolution 
from initial configurations containing a single nonzero site. 

Cellular automata may be considered as discrete dynamical 
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systems. Their global properties are studied by considering 
evolution from the set of all possible initial configurations 
(e.g., [5]). Since most cellular automata are irreversible , the set 
of configurations that is generated typically contracts with time. 
Its limiting form at large times determines the asymptotic 
behaviour of the cellular automaton, and is dominated by the 
attractors for the evolution. Some of the properties of cellular 
automata may be characterized in terms of quantities such as 
entropies and Lyapunov exponents that are used in studies of 
continuous dynamical systems (e .g., [6]). 

An alternative view of cellular automata is as information­
processing systems [7]. Cellular automaton evolution may be 
considered to carry out a computation on data represented by 
the initial sequence of site values. The nature of the evolution 
may then be characterized using methods from the theory of 
computation (e.g., [8]). So for example the sets of configur­
ations generated in the evolution may be described as formal 
languages: a one-dimensional cellular automaton gives a regular 
formal language after any finite number of time steps [7 ] . 
One suspects that in many cases the computations corresponding 
to cellular automaton evolution are sufficiently complicated 
as to be irreducible (cf. [9]). In that case, there can be essentially 
no short-cut to determining the outcome of the cellular auto­
maton evolution by explicit simulation or observation of each 
step. This implies that certain limiting properties of the cellular 
automaton are undecidable , since to find them would require an 
infinite computation. 

The problems discussed here address both dynamical systems 
theory and computation theory aspects of cellular automata. 
But probably the most valuable insights will come from the 
interplay between these two aspects. 

Problem 1 

What overall classification of cellular automaton behaviour can 
be given? 

Experimental mathematics provides a first approach to this 
problem. One performs explicit simulations of cellular auto­
mata , and tries to find empirical rules for their behaviour. 
These may then suggest results that can be investigated by more 
conventional mathematical methods . 

An extensive experimental study [5] suggests that the 
patterns generated in the evolution of cellular automata from 
disordered initial states can be grouped into four general classes, 
illustrated in Fig. 1: 

(1) Evolves to homogeneous state. 
(2) Evolves to simple separated periodic structures. 
(3) Yields chaotic aperiodic patterns. 
(4) Yields complex pattern of localized structures. 

The classification is at first qualitative. But there are several 
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Fig. 1. Examples of the four qUalitative classes of behaviour seen in the 
evolution of one-dimensional cellular automata from disordered initial 
states. Successive time steps are shown on successive lines. Complex and 
varied behaviour is evident. The sites in the cellular automata illustrated 
have three possible values (k = 3); value 0 is shown blank, 1 is grey, and 2 

ways to make it more quantitative, and to formulate precise 
definitions for the four classes. For some cellular automaton 
rules, one expects that all definitions will agree. But there are 
likely to be borderline cases where definitions will disagree. 

Continuous dynamical systems provide analogues for the 
classes of behaviour seen in cellular automata. Class 1 cellular 
automata show limit points, while class 2 cellular automata 
may be considered to evolve to limit cycles. Class 3 cellular 
automata exhibit chaotic behaviour analogous to that found 
with strange attractors. Class 4 cellular automata effectively 
have very long transients, and no direct analogue for them has 
been identified among continuous dynamical systems. 

Dynamical systems theory gives a first approach to the 
quantitative characterization of cellular automaton behaviour. 
Various kinds of entropy may be defined for cellular automata. 
Each counts the number of possible sequences of site values 
corresponding to some spacetime region. For example, the 
spatial entropy gives the dimension of the set of configurations 
that can be generated at some time step in the evolution of the 
cellular automaton, starting from all possible initial states. 
There are in general N(X) ~ e (k is the number of possible 
values for each site) possible sequences of values for a block of 
X sites in this set of configurations. The spatial topological 
entropy d(x) is given by lim (I/x) logk N(X). One may also 

X-a<> () 
define a spatial measure entropy dp.x formed from the prob-
abilities of possible sequences. Temporal entropies d(t) may 
then be defined to count the number of sequences that occur 
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is black. The value of each site at each time step is given by rules that 
. depend on the sum of its own and its nearest neighbours' old values 
(r = 1 totalistic). The cases shown have rules specified by code numbers 
[5] 1302, 1005, 444 and 792, respectively. 

in the time series of values taken on by each site. Topological 
entropies reflect the possible configurations of a system; measure 
entropies reflect those that are probable, and are insensitive 
to phenomena that occur with zero probability . A tentative 
definition of the four classes of cellular automaton behaviour 
may be given in terms of measure entropies. Class 1 has zero 
spatial and temporal measure entropy. Class 2 has zero temporal 
measure entropy, since it almost always yields periodic structures, 
but has positive spatial measure entropy. Class 3 has positive 
spatial and temporal measure entropies. 

Another property of cellular automata is their stability under 
small perturbations in initial conditions. Figure 3 shows dif­
ferences in patterns generated by cellular automata induced by 
changes in a single initial site value. Such differences almost 
always die out in class 1 cellular automata. In class 2 cellular 
automata, they may persist, but remain localized. In class 3 
cellular automata, however, they typically expand at an 
asymptotically constant rate. The rate of this expansion gives 
the Lyapunov exponent for the evolution [5, 10], and 
measures the speed of propagation of information about the 
initial configuration in the cellular automaton. Class 4 cellular 
automata give rise to a pattern of differences that typically 
expands irregularly with time . 

The four classes of cellular automaton behaviour identified 
here can be defined to be complete. But there are some cellular 
automata whose behaviour should probably be considered 
intermediate between the classes. In particular, there are many 
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Fig. 2. Examples of patterns generated by the evolution of various 
cellular automata starting from single site seeds. In the second case 
shown, a fractal pattern is generated. The subsequent cases shown 
illustrate the remarkable phenomenon that complicated and in some 

where there is a clear superposition of two classes of behaviour. 
So for example sites with values 0 and I can exhibit class 2 
behaviour, while sites with values 0 and 2 show class 3 behaviour. 
The result is a sequence of chaotic regions separated by rigid 
"walls" . 

Even at a quaHtative level, it is possible that definite sub­
classes of the four classes of cellular automaton behaviour may 
be identified. Some class 3 cellular automata in one dimension 
seem to give patterns with large triangular clearings and low 
but presumably nonzero entropies; others give highly irregular 
patterns with no long-range structure. No clear statistical dif­
ference between these kinds of class 3 cellular automata has 
yet been found. But it is possible that one exists. Among class 
4 cellular automata there seem to be some definite subclasses 
in which persistent or almost persistent structures of rather 
particular kinds occur. 

Problem 2 

What are the exact relations between entropies and Lyapunov 
exponents for cellular automata? 

Using the finite information density of cellular automaton 
configurations, and the finite rate of information propagation 
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cases apparently random patterns can be generated by cellular automaton 
rules even from simple initial states. The cellular au tomata shown have 
k = 3, r = 1 totalistic rules with code numbers 1443, 312, 1554,1617, 
1410 and 600, respectively. 

in cellular automata, a number of inequalities may be derived 
between entropies and Lyapunov exponents (A). An example 
is d(t)jd(X) ~ 2A [5]. Preliminary numerical evidence suggests 
that for some cellular automata these inequalities may in fact 
be equalities. This would imply an important connection 
between the static properties of cellular automata, as embodied 
in entropies, and their dynamic properties, as measured by 
Lyapunov exponents. One is hampered in these studies by the 
lack of an efficient method for computing entropies. The best 
approach so far uses a conditional entropy method [11] . 

Lyapunov exponents can be considered to measure the rate 
of divergence of trajectories in the space of configurations. In 
continuous dynamical systems, a geometry is defined for this 
space, and one can identify Lyapunov exponents for various 
directions. 

Problem 3 

What is the analogue of geometry for the configuration space 
of a cellular automaton? 

Several simple observations may be made. First, if the cellular 
automaton lattice is more than one-dimensional, one may 
consider Lyapunov exponents in different directions on this 



Fig. 3. Patterns of differences generated by changing a single initial 
site value in the cellular automata of figure 1. In the first two cases, the 

lattice. A remarkable empirical observation is that for most 
cellular automata these exponents are approximately equal in all 
directions, even those not along the axes of the lattice, and even 
for cellular automata with asymmetric rules [12]. Second, in a 
one-dimensional cellular automaton one may consider Lyapunov 
exponents for subsets of configurations, or for particular 
components of configurations. For example, for a cellular 
automaton in which a class 1 component involving sites with 
values 0 and 2 is superimposed on class 3 behaviour involving 
sites with values 0 and 1, the Lyapunov exponent is positive in 
the " value 1" direction, and negative in the "value 2" direction. 
In general it seems that the cellular automaton evolution induces 
a form of geometry on the configuration space [13]. But the 
details are unclear; one does not know, for example, the analogue 
of the tangent space considered in continuous dynamical 
systems. 

Problem 4 

What statistical quantities characterize cellular automaton 
behaviour? 

There are several direct statistical measurements that can be 
made on cellular automaton configurations. Very simple 
examples are densities of sites or blocks of sites with particular 
values. Such densities are closely related to block entropies; 
their limit for large block sizes is the spatial entropy of the , 
cellular automaton configurations, equal to the dimension of 
the Cantor set formed by the configurations (e.g. [5]) . Another 
direct statistical measurement that can be made is of correlation 

Twenty Problems in the Theory of Cellular Automata 173 

difference (shown modulo three) is seen to remain localized. In the 
second two cases, it grows progressively with time. 

functions, which describe the interdependence of the values of 
separated sites [2]. For class 1 and 2 cellular automata, one 
expects that the correlation functions vanish beyond some 
critical distance. For class 3 cellular automata there are indi­
cations that the correlations functions typically fall off expo­
nentially with distance . For class 4 cellular automata, the large 

. distance part of the correlation function is dominated by 
propagating persistent structures, and many decrease slowly. 

Power spectra or Fourier transforms provide other statistical 
measures of cellular automaton configurations. (Entirely discrete 
Walsh-Hadamard transforms [14] may be slightly more suitable.) 
Their form is not yet known. But many processes in cellular 
automata occur on a variety of spatial or temporal scales, so 
one expects definite structure in their transforms. 

Beyond entropies and Lyapunov exponents, dynamical 
systems theory suggests that zeta functions may give a charac­
terization of the global behaviour of cellular automata. Zeta 
functions measure the density of periodic sequences in cellular 
automaton configurations, and 'may possibly be related to 
Fourier transforms. The fact that the set of configurations 
generated from all possible initial states at a particular time 
step in the evolution of a cellular automaton forms a regular 
language (or "sofic system") implies that the corresponding 
zeta function is rational [15] . 

Problem 5 

What invariants are there in cellular automaton evolution? 

The existence of invariants or conservation laws in the evolution 
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of a cellular automaton would imply a partitioning of its state 
space, much as energy provides a partitioning of the state space 
for Hamiltonian (energy-conserving) dynamical systems. For 
some class 1 and 2 cellular automata it is straightforward to 
identify invariants. In other cases, one can specifically construct 
cellular automaton rules that exhibit certain conservation laws 
[16-18]. For example, the cellular automata may evolve as 
if on several disjoint spatial lattices. Or it may support a set of 
persistent structures or "particles" that interact in simple ways. 
But in general, the identification of numerical invariants in 
cellular automata will probably be as difficult as it is in other 
non-linear dynamical systems. 

It is nevertheless often possible to find partitionings of the 
state space for a cellular automaton that are left invariant by 
its evolution. The partitionings may be formed for example 
from sets of configurations corresponding to particular regular 
formal languages (cf. [7]). For example, the set of configur­
ations with a particular period under a cellular automaton 
mapping is invariant, and in one dimension forms a finite­
complement regular language (or "subshift of finite type"). 
Different elements in such partitionings may be considered to 
carry different values of what is often an infinite set of conserved 
quantities . 

A particular cellular automaton rule usually evolves to give 
qualitatively similar behaviour from almost all initial states 
(each site is chosen to have each of the k possible values with 
equal probabilities). Often there are sets of initial states that 
occur with probability zero (for example, states in which all 
sites have the same value) that evolve differently from the rest. 
Such states may be distinguished by invariant or conserved 
quantities. But most initial states evolve to configurations with 
the same statistical properties. This suggests that even if the 
possible states could be partitioned according to the value of 
some invariant, they would essentially equivalent. It remains 
conceivable, however, that there exist cellular automata in 
which two sets of initial states that occur with nonzero prob­
abilities could lead to two qualitatively different forms of 
behaviour. 

Problem 6 

How does thermodynamics apply to cellular automata? 

Thermodynamics is supposed to describe the average overall 
behaviour of physical systems with many components. The 
microscopic dynamics of these systems is assumed to be 
reversible , so that the mapping from one state to another with 
time is invertible . Most cellular automata are irreversible, so that 
a particular configuration may arise from several distinct 
predecessors. However, a small subset of cellular automaton 
rules are bijective or invertible . Complete tables of invertible 
rules exist for k = 2, r:< 2 [19,20] and for k = 3, r = 1 [20], 
but in general no efficient procedure for finding such rules is 
known. Nevertheless, it is possible to construct particular 
classes of invertible rules [16, 21]. 

To apply thermodynamics one must also "coarse-grain" 
the system, grouping together many microscopically-different 
states to mimic the effect of imprecise measurements. Coarse­
graining in cellular automata may be achieved by applying an 
irreversible transformation, perhaps a cellular automaton rule, 
to the cellular automaton configurations. A simple example 
would be to map the value of every other site to zero. 
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Coarse-grained entropy in reversible cellular automata should 
follow the second law of thermodynamics, and be on average 
non-decreasing with time. One may start from a set or ensemble 
of configurations with non-maximal coarse-grained entropy. 
The degrees of freedom that do not affect the coarse-grained 
entropy are undetermined, and are assumed to have maximal 
(fine-grained) entropy. In reversible class 2 cellular automata, 
the determined and undetermined degrees of freedom do not 
mix Significantly with time, and the coarse-grained entropy 
remains essentially constant. But for class 3 and 4 cellular 
automata, the degrees of freedom mix, and the coarse-grained 
entropy increases towards its maximum possible value. 

As in all applications of thermodynamics, the question arises 
of what coarse-graining prescriptions and ensembles of initial 
states are permissible. The initial states could for example be 
specially chosen so as to be the predecessors of a low coarse­
grained entropy ensemble. The coarse-grained entropy would 
then decrease . Such examples do not seem physically reasonable . 
But it has never been clear exactly what mathematical criteria 
should be imposed to exclude them. One possibility is that one 
could require the coarse-graining procedure and the initial 
ensemble to be computationally simple (cf. [22]). If the cellular 
automaton evolution were computationally irreducible, then 
such a criterion could exclude ensembles obtained by reversing 
the evolution for many steps. 

For the usual case of irreversible cellular automata, coarse­
graining is usually of little consequence: the progressive con­
traction in the number of states generated by the cellular 
automaton evolution soon far outweighs the reduction associated 
with coarse-graining. 

Problem 7 

How is different behaviour distributed in the space of cellular 
automaton rules? 

Random sampling yields some empirical indications of the 
frequencies of different classes of behaviour among cellular 
automaton rules of various kinds. For symmetric one-dimensional 
cellular automata, class 1 and 2 cellular automata appear to 
become progressively less common as k and r increase; class 3 
becomes more common, and class 4 slowly becomes less 
common. In two-dimensional cellular automata, class 3 is over­
whelmingly the most common; class 4 is very rare [12]. It 
seems that class 3 behaviour in any "direction" in the cellular 
automaton state space leads to overall class 3 behaviour. And as 
the number of degrees of freedom in the rules increases, the 
chance that this happens for one of the directions increases. 
For very large k and r a direct statistical treatment of the set of 
cellular automaton rules may well be possible . 

There are many common features in the behaviour of cellular 
automata with apparently very different rules. It is not clear to 
what extent a direct equivalence exists between rules with 
qualitatively similar behaviour. In some cases, different rules 
may be related through invertible cellular automaton mappings. 
The nature of the equivalence classes of cellular automata 
generated in this way is presumably determined largely by the 
structure of the group of invertible cellular automaton mappings. 

There are various ways to define distances in the space of 
cellular automaton rules. There are often cellular automata 
whose rules differ only slightly, but whose behaviour is very 
different. Nevertheless, it should be possible to find families 



of cellular automaton rules with closely related behaviour. 
For example, one may consider totalistic rules [5] in which 
the function that gives the new value of a site in terms of the 
sum of the old values in its neighbourhood is a discrete approxi­
mation to a function that involves a continuous parameter [23] . 
The behaviour of different cellular automaton rules obtained 
by changing this parameter may be compared with the behaviour 
found in iterated mappings of an interval of the real line (e.g. 
[24]) according to the same function. There are indications of 
a significant correspondence [23] . As the parameter is increased, 
regular periodic (class 2) cellular automaton behaviour can 
exhibit period doubling. Then as the parameter is further 
increased, chaotic (class 3) behaviour can occur. Class 4 seems 
to appear as an intermediate phenomenon. 

Problem 8 

What are the scaling properties of cellular automata? 

Scaling transformations change the number of sites in a cellular 
automaton. Under such transformations, one cellular automaton 
rule may simulate another one. For example, if each site with 
value 0 is replaced by a pair of sites 00, and each 1 is replaced 
by 01, a new cellular automaton rule is obtained [2]. In some 
cases, this rule may have the same k and r as the original rule; 
in other cases it may not. The inverse transformation, in which 
00 is replaced by 0, and 01 by 1, may be considered as a 
"blocking transformation" analogous to a block spin transform­
ation (e.g. [25]), and yields a cellular automaton with fewer 
degrees of freedom. However, the transformation may be 
applied only to those special configurations in which just 00 
and 01 site value pairs occur. 

One may develop a network that shows the results of blocking 
transformations on rules of a particular kind, say with k = 2 
and r = 1 [4, 26] . Some rules are found to be invariant under 
blocking transformations. Examples are the additive rules 
numbers 90 and 150 with k = 2 and r = 1. Patterns generated 
by these rules are thus scale invariant, so that they have the 
same form when viewed with different magnifications. If the 
initial configuration consists of a simple seed, say a single 
nonzero site, then regular scale-invariant patterns are obtained. 
These fractal patterns [27] have the property that pieces of 
them, when magnified, are indistinguishable from the whole 
pattern. (The fractal dimensions of the patterns are related to 
the parameters of the blocking transformations.) When the 
initial state is disordered, the patterns generated are instead 
statistically scale invariant, in the sense that their statistical 
properties are invariant under blocking transformations. So, 
for example, the pattern obtained by considering every site 
in the cellular automaton may have the same statistical 
properties as the pattern obtained by considering only every 
other site on every other time step. 

Blocking transformations typically apply only to configur­
ations that contain specific blocks in a given cellular automaton. 
So for example, different simple initial seeds in a cellular 
automaton may lead to rather different behaviour if they 
contain blocks that allow for different blocking transformations. 
Under certain blocking transformations, many of the k = 2, 
r = 1 cellular automata simulate the additive rules 90 or 150, 
which are invariant under blocking transformations. An initial 
state containing a single nonzero site is often one for which this 
simulation occurs, so that the pattern to which it leads is 
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self-similar, just as for rule 90 or rule 150. With more compli­
cated initial states, however, patterns with different forms may 
be obtained. 

Starting from a disordered initial state, in which all possible 
sequences of site values occur with equal probabilities, the 
irreversible evolution of many cellular automata leads to states . 
in which only particular sequences actually occur. If these 
sequences correspond to those for which some blocking trans­
formation applies, then the overall behaviour of the cellular 
automaton will be given by the result of this blocking trans­
formation. In a typical case, a cellular automaton rule supports 
a number of "phases". Each phase consists of sequences to 
which some blocking transformation applies, and under which 
the cellular automaton beahves just like one with a different 
rule. So for example [2S], in the k = 2, r = 1 rule number IS, 
sequences containing only 00 and 01, or only 00 and 10, con­
stitute two phases with behaviour just like the additive rule 90. 
An arbitrary disordered state consists of a series of small 
domains, each in one of these phases, separated by "domain 
walls", consisting of 11 blocks. These domain walls execute 
approximately random walks with time, and annihilate in pairs, 
leaving larger and larger domains in a pure phase [2S]. In two 
and higher dimensional cellular automata, the domains may 
have complicated geometrical structures [12]. The domain 
walls often behave as if they have a surface tension. When the 
surface tension is positive, the domains tend to become 
spherical. When the surface tension is negative, the domains 
take on a highly-convoluted labyrinthine form. 

It seems that one may in general define a quantity analogous 
to free energy, or essentially pressure, for each possible phase 
in a cellular automaton. Domains containing phases with higher 
pressures typically expand linearly with time through domains 
with lower pressures, sometimes following biased random walks. 
The walls between domains with equal pressures typically 
execute unbiased random walks. After a long time, the phases 
with the highest pressure (or lowest free energy) dominate the 
behaviour of the cellular automaton, and thus determine the 
form of the limiting set of configurations. One may speculate 
that the phases that survive in this limit should be fixed points 
of the blocking transformation, and thus should exhibit some 
form of scale invariance. This is evident in some cases, where 
there are phases that behave say like rule 90. It is not clear how 
general the phenomenon is. If, however, it were widespread, 
then the overall large time behaviour of cellular automata would 
be dominated by fixed points of the blocking transformations, 
much as critical phenomena in spin systems are dominated by 
fixed points of the renormalization group or block spin trans­
formation. Then there would be a universality in the properties 
of the many different cellular automata attracted to a particular 
fixed point rule. (So far the only fixed points of the blocking 
transformation that have been found are additive rules, but 
one suspects that not all fixed point rules need in fact be 
additive.) The spatial measure entropies for the different cellular 
automata would for example presumably then be related by 
simple rational factors. 

One rule whose scaling properties remain unclear is the 
k = 2, r = 1 rule number 22. This rule simulates rule 90 under 
the blocking transformation 0000""* 0, 0001""* 1, and its 
rotated equivalents. But the simulation is not an attractive 
one: starting from a disordered initial state, domains of these 
phases do not grow. It may be possible to describe the con­
figurations obtained as domains of phases corresponding to 
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some other blocking transformation. A generalization of blocking 
transformations may be required. One may consider a blocking 
transformation as a translation from one formal language to 
another. In simple cases, such a translation may be achieved 
with a finite automaton that reads symbols sequentially from 
the "input" configuration, and writes symbols into the "output" 
configuration according to the internal state that it reaches. 
Blocking transformations that consist of simple substitutions 
correspond to very simple finite automata of this kind . More 
complicated finite automata may be necessary to describe 
phases in cellular automata such as rule number 22. In general, 
the irreversible nature of most cellular automata implies that 
only a subset of possible configurations are generated with time. 
As a consequence, only certain neighbourhoods of site values 
may appear, so that some of the elements of the cellular 
automaton rule are never used, and a different rule would give 
identical results. 

The description of cellular automaton configurations in 
terms of domains of different phases is related to a description 
in terms of "elementary excitations". Just as for a spin system, 
one may consider decomposing a cellular automaton con­
figuration into a "ground state" part, together with "phonons" 
or excitations. The excitations may for example correspond to 
domain walls. Or they could be persistent structures in class 4 
cellular automata. But if their interactions are comparatively 
simple, then they can be used to provide an overall description 
of the cellular automaton behaviour, and can perhaps allow for 
example a computation of entropies. 

Problem 9 

What is the correspondence between cellular automata and · 
continuous systems? 

Cellular automata are discrete in several respects. First , they 
consist of a discrete spatial lattice of sites. Second, they evolve 
in discrete time steps. And finally, each site has only a finite 
discrete set of possible values. 

The first two forms of discreteness are addressed in the 
numerical analysis of approximate solutions to, say, differential 
equations. It is known that so long as a "stable" discretization is 
used, the exact continuum results are approximated more and 
more closely as the number of sites and the number of time 
steps is increased. It is possible to devise cellular automaton 
rules that provide approximations to partial differential 
equations in this way. In the simplest cases, however, the 
approximations are of the Jacobi, rather than the Gauss-Seidel 
kind, in that the algorithm for calculating new site values uses 
the old values of all the neighbours, rather than the new values 
of some of them. This can lead to slow convergence and 
instabilities in some cases. 

The third form of discreteness in cellular automata is not so 
familiar from numerical analysis. It is an extreme form of 
round-off, in which each "number" can have only a few possible 
values (rather than the usual say 2 16 or 232). It is not clear 
what aspects of, say, differential equations are preserved in 
such an approximation. However, preliminary studies in a few 
cases suggest that the overall structure of solutions to the 
equations are remarkably insensitive to such approximations. 
If the cellular automaton approximates for example a con­
tinuous field, then the value of the field at a particular point 
could correspond roughly to the density of say nonzero sites 
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around that point: the values of individual field points would 
be represented in a distributed manner, just as they often are 
in actual physical systems. Explicit examples of cellular auto­
maton approximations to partial differential equations of 
physical importance would be valuable. 

There are some aspects of nonlinear differential equations 
that may well have rather direct analogues in cellular automata. 
For example, the persistent propagating structures found in 
class 4 cellular automata may well be related to solitons in 
nonlinear differential equations, at least in their solitary persist­
ence, if not in their interactions. Similarly, the overall topo­
logical forms of some of the patterns generated by two and 
higher dimensional cellular automata [29] may correspond to 
those generated say be reaction-diffusion equations [30]. 
Moreover, many highly-nonlinear partial differential equations 
give solutions that exhibit discrete or cellular structure on some 
characteristic length scale (e.g., [31]). The interactions between 
components in the cellular structure cannot readily be described 
by a direct discretization of the original differential equation, 
but a cellular automaton model for them can be constructed. 

Continuum descriptions may be given of many of the large­
scale structures that occur in cellular automata. For example, 
the motion of domain walls between phases may be described 
by diffusion-like differential equations. A very direct con­
tinuum approximation to a cellular automaton is provided 
by a mean field theory, in which only the average density of 
sites, and not their individual values, is considered [2]. 
Presumably in the limit of large spatial dimensionality , this 
approximation should become accurate. But in one or two 
dimensions, it is usually quite inadequate , and gives largely 
misleading results. Large-scale phenomena in cellular automata 
occur as collective effects involving many individual sites, and 
the particular rules that relate the values of these sites are 
Significant. 

Problem 10 

What is the correspondence between cellular automata and 
stochastic systems? 

Cellular automata satisfy deterministic rules. But their initial 
states can have a random form. And the patterns they generate 
can have many of the properties of statistical randomness. 
As a consequence, the behaviour of cellular automata may have 
a close correspondence with the behaviour of systems usually 
described by basic rules that involve noise or probabilities. So 
for example domain walls in cellular automata execute essen­
tially random walks, even though the evolution of the cellular 
automaton as a whole is entirely deterministic . Similarly, one 
can construct a cellular automaton that mimics sayan Ising spin 
system with a fixed total energy (microcanonical ensemble) 
[32] . Apparently random behaviour occurs as a consequence of 
randomly-chosen initial conditions, just as in many systems 
governed by the deterministic laws of classical physics. 

Even models that involve explicit randomness are in practice 
simulated in computer experiments using pseudorandom 
sequences generated by some definite algorithm. These sequences 
are not unlike the sequences of site values produced by many 
cellular automata. In fact, the linear feedback shift registers often 
used in practice to produce pseudorandom sequences are exactly 
equivalent to certain additive cellular automata (cf. [33]). Empiri­
cal evidence suggests that the properties of many supposedly 
stochastic models are quite insensitive to the detailed form of 



the randomness used in their simulation. It should be possible 
to find entirely deterministic forms for such models, based say 
on cellular automata. One expects in general that just as with 
algorithms say for primality testing the fundamental capabilities 
of stochastic and deterministic models should be equivalent. 

Problem 11 

How are cellular automata affected by noise and other imper­
fections? 

Many mathematical approaches to the analysis of cellular auto­
mata make essential use of their simple deterministic structure. 
One must find out to what extent results for the overall behaviour 
of cellular automata are changed when imperfections are intro­
duced into them. The imperfections can be of several kinds. 
First, the cellular automaton rules can have a probabilistic 
element (e.g., [17, 34, 35]). Then for example each site may be 
updated at each time step according to one rule with probability 
p , and according to another rule with probability 1 - p. A 
second class of imperfections modifies the homogeneous cellular 
automaton lattice. One may for example take different sites 
to follow different rules. Or one may take the connections that 
specify the rules on the lattice to be different at different sites. 
In an ordinary cellular automaton, the values of all the sites are 
updated simultaneously, using the previous values of the sites 
in their neighbourhoods. One may consider the effect of 
deviations from this synchronization, allowing different sites to 
be updated at different times [36]. Finally, each site is usually 
taken to have a discrete set of possible values. One could instead 
allow the sites to have a continuum of values, but take the rules 
to be continuous functions with sharp thresholds. 

Several classes of models can be considered as imperfect 
cellular automata. Directed percolation is directly analogous 
to certain cellular automata in the presence of noise [35]. The 
patterns generated with time by noisy cellular automata also 
correspond to the equilibrium configurations of spin systems at 
finite temperature [35]. And if inhomogeneities are introduced 
into the cellular automata, they give spin glass configurations. 
When nonlocal connections and asynchronous updates are 
introduced, models analogous to Boolean or neural networks 
are obtained (e.g., [37]). 

Even an arbitrarily small imperfection in a cellular au tomaton 
can have a large effect at arbitrarily large times. However, small 
imperfections very often do not affect the overall behaviour 
of a cellular automaton. There is often a critical magnitude of 
imperfection at which essentially a phase transition occurs, and 
the behaviour of the cellular automaton changes suddenly. One 
can presumably find such transitions as a function of noise and 
other imperfections in many different cellular automata (cf. 
[34, 35]). Often the transitions should be associated with 
critical exponents; one expects that several universality classes 
may be identified. Note that even one-dimensional cellular 
automata can exhibit phase transitions at nonzero values of 
imperfection parameters if imperfections are introduced in such 
a way that for example certain initial states still evolve as they 
would without the imperfections. 

Given a pattern generated by a cellular automaton with 
imperfections, as might be obtained in a physical experiment, 
one may consider how the basic cellular automaton rule could 
be deduced . One could lay down a definite grid, and then 
accumulate histograms of the new site values obtained with all 
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neighbourhoods, and thereby deduce the cellular automaton 
rule (it will not necessarily be unique, since certain neighbour­
hoods may never appear) [13]. This procedure accounts for 
imperfections due to noise, but not for imperfections such as 
deformations of the lattice. It appears that an iterative opti­
mization approach must be used to treat such imperfections. 

Problem 12 

Is regular language complexity generically non-decreasing with 
time in one-dimensional cellular automata? 

The sets of configurations generated by cellular automaton 
evolution, starting say from all pOSSible initial states, can be 
considered as formal languages. Each configuration corresponds 
to a word in the language, formed from a sequence of symbols 
representing site values, according to a definite set of gram­
matical rules. For one-dimensional cellular automata, it can be 
shown that the set of configurations generated after any finite 
number of time steps forms a regular formal language [7]. 
Thus the configurations correspond to the possible paths through 
a finite directed graph, whose arcs are labelled by the values 
that occur at each site. There is an algorithm to find the graph 
with the minimal number of nodes that represents a particular 
regular language [8, 38] , in such a way that each word in the 
language corresponds to a unique path through the graph 
(deterministic finite automaton). This minimal graph provides 
a complete canonical description of the set generated by the 
cellular automaton evolution. From it properties such as topo­
logical entropy may be deduced. The entropy is in fact given by 
the logarithm of the largest eigenvalue of the adjacency matrix 
for the graph, which is an algebraic integer. 

One characteristic of a regular language is the total size or 
number of nodes Z in its minimal graph. This quantity can be 
considered as a measure of the complexity of the regular 
language. The larger it is, the more complicated a subset of the 
space of possible symbol sequences the language corresponds to. 
Z gives in a sense the size of the shortest description of this 
subset, at least in terms of regular languages. The value of Z 

k'rt is in general bounded above by 2 - 1. The empirical studies 
done so far suggest that for class 1 and 2 cellular automata, Z 
in fact becomes constant after a few time steps, or increases 
at most as a polynomial with t. For most class 3 and 4 cellular 
automata, however, Z appears to increase rapidly with time, 
though it usually stays far below the upper bound. There are 
a few cases where Z decreases slightly at a particular time step, 
but in general it seems that Z is usually non-decreasing with 
time. If this is indeed a general result, it gives a quantitative 
form to the qualitative statement that complexity seems to 
increase with time. It could be a principle for self-organizing 
systems analogous in generality but complementary in content 
to the law of entropy increase in thermodynamic systems. 

If the non-decrease of Z is indeed a general result, then it 
should have a simple proof that depends on few of the properties 
of the system considered. A crucial property of cellular automata 
may be irreversibility, which leads to a progressive contraction 
in the set of configurations generated. As a consequence of this 
contraction, the set generated at each time step must correspond 
to a different regular language. But there are only a limited 
number of regular languages with complexities less than any 
particular value, and so the complexity of the language generated 
must increase, albeit slowly, with time. To find a complete 
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bound, one must study the structure of the space of possible 
regular languages. It is clear that the number of regularlanguages 
of complexity Z is less than the number of labelled directed 

k-' graphs with Z nodes, 2 .:. . The minimal graph for a regular 
language must have a trivial automorphism group; but the 
number of graphs with a given automorphism group does not 
appear to be known (e.g., [39]). Beyond the total number of 
regular languages, one may consider the network that represents 
the containment of regular languages, divided into zones of 
different Z. One suspects that this network is close to a tree, 
with a number of nodes increasing perhaps exponentially with 
depthZ. 

Problem 13 

What limit sets can cellular automata produce? 

Not all possible sets of configurations can be produced as limit 
sets of cellular automata. For the number of distinct cellular 
automaton rules, while infinite, is countable. Yet the number 
of possible sets of configurations is uncountable. 

At each step in the evolution of an irreversible cellular auto­
maton, a new set of configurations is excluded. The limit 
set consists of those configurations that are never excluded. The 
set of all excluded configurations is recursively enumerable, 
since each of its elements is found by a finite computation. Thus 
the limit sets for cellular automata are always the complements 
of recursively enumerable (co-r.e.) sets, and are therefore 
countable in number. Nevertheless, not every co-r.e. set is the 
limit set for a cellular automaton: one additional condition is 
that they must be translationally invariant. Thus for example, 
cellular automaton limit sets must contain either one con­
figuration, or an infinite number of distinct configurations, 
and cannot consist of some other finite number of configurations 
[40]. Not every possible real number value of dimension or 
entropy can be realized by cellular automata; but the set that 
is realized presumably includes some values that are non­
computable. 

After any finite number of time steps, the set of configurations 
generated by a one-dimensional cellular automaton forms a 
regular formal language. For some cellular automata (essentially 
those in classes 1 and 2), the limit set is also a regular language. 
But in other cases, the limit set probably corresponds to a more 
complicated formal language. Explicit examples are known in 
which context-free and context-sensitive languages are obtained 
as limit sets [40]. In addition, cellular automata that are capable 
of universal computation can generate limit sets that are not 
recursive [40]. The generic behaviour is however not known: 
some more examples would be valuable. 

When the limit set forms a regular language, the simplest 
description of it, in terms of a regular grammar or graph, can be 
found by a finite algorithm. The size Z of this description can 
be used as a measure of the complexity of the set. However, for 

.languages more complicated than regular ones, there is in 
general no finite algorithm to find the simplest grammar (e.g., 
[8]). The size of such a minimal grammar is thus formally non­
computable. One may test a sequence of grammars, but the 
languages to which they lead cannot in general be enumerated 
by a computation of any bounded length. 

Minimum grammar size is thus not a useful measure of 
complexity for complicated cellular automaton limit sets. Some 
other measure must be found. And in terms of this measure, 
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one should be able to determine how the complexity of the 
behaviour of a cellular automaton, as revealed by the structure 
of its limit set, depends on the complexity of its local rule, or 
the values of k and r. 

One may wonder what features of the local rule for a cellular 
automaton determine its global properties, and the structure of 
its limit set. Some simple observations may be made. For 
example, unless the local rule contains elements that give value 

·1 with neighbourhoods such as 001, no information can propagate 
in the cellular automaton, and class 1 or 2 behaviour must 
occur. But in general one expects that the problem is unde­
cidable: the only way to determine many of the limiting 
properties of a cellular automaton is probably by explicit 
simulation of its evolution, for an infinite time. 

As a practical matter, one may ask whether cellular auto­
maton rules may be constructed to yield particular limit sets 
(cf. [41]), so that their evolution serves to filter out the 
components that appear in these limit sets. It is probably possible 
to construct cellular automata that yield any of some class of 
regular languages as limit sets. But one suspects that a con­
struction for more complicated limit sets can be carried out 
only in very special cases. 

Problem 14 

What are the connections between the computational and 
statistical characteristics of cellular automata? 

The rate of information transmission is one attribute of cellular 
automata that potentially affects both computational and 
statistical properties. On the statistical side, the rate of infor­
mation transmission gives the Lyapunov exponent for the 
cellular automaton evolution. Class 1 and 2 cellular automata 
have zero Lyapunov exponents, so that information almost 
always remains localized, and the value of a particular site 
at any time can almost always be determined from the initial 
values of a bounded neighbourhood of initial sites. As a con­
sequence, the limit sets for one-dimensional such cellular 
automata correspond to regular languages. The configurations 
can thus be generated by an essentially Markovian process, in 
which there are no long-range correlations between different 
parts. 

Class 3 and 4 cellular automata have positive Lyapunov 
exponents, so that a small initial change expands with time. The 
value of a particular site after many time steps thus depends in 
general on an ever-increasing region in the initial state. The limit 
sets for such cellular automata can thus involve long-range 
correlations, and need not correspond to regular languages. If 
class 4 cellular automata are generically capable of universal 
computation, then their limit sets should be unrestricted, in 
general non-recursive, formal languages. Some arguments can 
be given that class 3 cellular automata should yield limit sets 
that correspond to context-sensitive languages. In general, one 
suspects that dynamical systems that exhibit chaotic behaviour 
characterized by positive Lyapunov exponents should yield 
limit sets that are more complicated than regular languages. 

When the limit set for a cellular automaton is a regular 
language, its spatial entropy can be computed, and is given by 
the logarithm of an algebraic integer. If the limit set is a context­
free language, then it seems that the entropy is always the 
logarithm of some algebraic number. But for context-sensitive 
and more complicated languages, the entropy is in general non-



computable. It may thus be common to find class 3 and 4 
cellular automata for which the entropy of their limit sets is 
non-computable. 

The computational structure of sets generated in the evolution 
of two and higher dimensional cellular automata can be very 
complicated even after a finite number of time steps. In particular, 
while in one-dimensional cellular automata the set of configur­
ations that can be generated at any finite time forms a regular 
formal language , this set can be non-recursive in two-dimensional 
cellular automata [12, 42] . The essential origin of this difference 
is that there is an iterative procedure to find the possible 
predecessors of arbitrarily long sequences in one-dimensional 
cellular automata, but no such procedure exists for two­
dimensional cellular automata. In fact, even the problem of 
finding configurations that evolve periodically in time in a 
two-dimensional cellular automaton appears to be equivalent 
to the domino tiling problem, which is known to be formally 
undecidable [43]. Nevertheless, it seems likely that only two­
dimensional cellular automata in which information transmission 
can occur throughout the plane, as revealed by positive Lyapunov 
exponents in all directions, exhibit such complications, and give 
non-recursive sets at fmite times. 

The grammar for a formal language specifies which sequences 
occur in the language, bu t not how often they occur. It does not 
for example distinguish sequences that occur with zero prob­
ability from those that occur with positive probability. However, 
it is the probable, rather than the possible , behaviour of cellular 
automata that is most significant in determining their statistical 
properties, such as Lyapunov exponents and measure entropies. 
There are class 1 and 2 cellular automata in which a set of states 
of measure zero yields class 3 behaviour: this is irrelevant in 
the Lyapunov exponent or the measure entropy, but affects the 
topological entropy, and the structure of the grammar for the 
limit set. One should construct formal languages that include 
probabilities for configurations. A suitable approach may be to 
consider stochastic automata , closely related to standard Markov 
chains. 

Problem 15 

How random are the sequences generated by cellular automata? 

The spatial sequences obtained after a finite number of steps 
in the evolution of a one-dimensional cellular automaton starting 
from all possible initial states are known to form a regular 
formal language . But no such characterization is known for the 
temporal sequences generated by cellular automata. At least for 
cellular automata capable of universal computation, these 
sequences can be non-recursive . But the generic behaviour is not 
known, and no non-trivial examples have yet been given. 

One question is to what extent the initial state of a cellular 
automaton can be reconstructed from a knowledge of the time 
series of values of a few sites. An essentially equivalent question 
is how wide a patch of sites need to be considered to compute 
the invariant entropy of the cellular automaton mapping. When 
the mapping is surjective and expansive (so that roughly 
information transmission occurs at a posivie rate), only a finite 
width is required (e.g., [44]) . Nevertheless, the transformation 
necessary to find the initial state from the temporal sequence 
may be very complicated. In particular, there may be effectively 
no better method than to try all exponentially many possible 
initial states. Temporal sequences in cellular automata are thus 
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candidates for use in pseudorandom number generation and in 
cryptography [20] . 

The patterns generated by some cellular automata evolving 
from initial states consisting of simple seeds have a simple form. 
They may be asymptotically homogeneous, or may correspond 
to regular fractals. But many cellular automata yield complicated 
patterns even starting from an initial state as simple as a single 
nonzero site. Some examples are shown in Fig. 2. It is remark­
able that such complicated and intricate patterns can be 
generated in such a simple system. 

Often the temporal sequences that appear in these patterns 
have a seemingly random form, and satisfy many statistical 
tests for randomness. There is empirical evidence that in many 
cases the sequence of values taken on say by the centre site in 
the pattern contains all possible subsequences with equal fre­
quences, so that the whole sequence effectively has maximal 
measure entropy. A simple example of this phenomenon occurs in 
the k = 2 r = 1 rule number 30 (a~t+ 1) = a~t) Ell max (a~t) , I ,-1 I , 

a~~ 1))' 
Systems that exhibit chaotic behaviour usually start from 

initial conditions that contain an infinite amount of information, 
either in the form of an infinite sequence of cellular automaton 
site values, or the infinite sequence of digits in a real number. 
Their irregular behaviour with time can then be viewed as a 
progressive excavation of the initial conditions. The chaotic 
behaviour seen in Fig. 2 is however of another kind : it occurs 
as a consequence of the dynamics of the system, even though 
the initial conditions are simple. It may well be that this kind of 
chaos is central to physical phenomena such as fluid turbulence. 

It is important to investigate the mathematical bases for such 
behaviour. The closest analogies seem to lie in number theory. 
The integers generated for example by repeated application of 
a linear congruence transformation form a pseudorandom 
sequence (e.g., [45]), often used in practical applications. The 
linearity of this system makes it amenable to a rather complete 
number theoretical analysis , which provides formulae for 
computing the nth integer in the sequence directly from the 
original seed, with working out all the intermediates. It seems 
likely that such analyses, and the resulting short cuts, are not 
possible in most nonlinear cellular automata. The randomness 
produced in these systems may be more like the randomness say 
of the digits of 7r. In some cases it is in fact possible to cast 
essentially number theoretical problems in terms of questions 
about patterns generated by cellular automata. One example 
concerns the sequence of leading binary digits in the fractional 
parts of successive powers of 3/2 [46] . There is empirical 
evidence that all pOSSible blocks of digits occur in this sequence, 
so that in a sense it has maximal entropy. The sequence corre­
sponds to the time series of values of the central site in the 
pattern generated by a particular cellular automaton from a 
simple initial state. 

Problem 16 

How common are computational universality and undecidability 
in cellular automata? 

If a system is capable of universal computation, then with 
appropriate initial conditions, its evolution can carry out any 
finite computational process. A computationally universal 
system can thus mimic the behaviour of any other system, 
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and so can in a sense exhibit the most complicated possible 
behaviour. 

Several specific cellular automata are known to be capable of 
universal computation. The two-dimensional nearest-neighbour 
cellular automaton with two possible values at each site known 
as the "Game of Life" has been proved computation universal 
[47]. The proof was carried out by showing that the cellular 
automaton could support structures that correspond to all the 
components of an idealized digital electronic computer, and 
that these components could be connected so to implement 
any algorithm. Some one-dimensional nearest-neighbour cellular 
automata with k = 18 have been shown to be computationally 
equivalent to the simplest known universal Turing machines, 
and are thus capable of universal computation [48] . 

One speculates that cellular automata identified on statistical 
grounds as class 4 are in fact generically capable of universal 
computation. This would imply that there exist one-dimensional 
computationally universal cellular automata in cases as simple 
as k = 2, r = 2 or k = 3, r = 1. But it remains to prove the 
computational universality of any particular such rule. Several 
methods could be used for such a proof. One is to identify a set 
of persistent structures in the cellular automaton that could 
act as the components of digital computer, or like combinations 
of symbols and internal states for a Turing machine. Structures 
that remain fixed, propagate, and interact in various ways have 
been found. A structure that can act as a "clock" , producing an 
infinite sequence of "signals", has not yet been found in such 
cellular automata. Another method of proving universality 
would be a direct demonstration that this cellular automaton 
rule could simulate any other cellular automaton rule with an 
appropriate encoding of initial states. Blocking transformations 
may provide the necessary encodings: so one must fmd out 
whether a particular cellular automaton rule is connected to all 
others in the simulation networks constructed from blocking 
transformations. 

If class 4 cellular automata are indeed capable of universal 
computation, then the capability for universal computation is 
quite common among one-dimensional cellular automata. Class 
4 behaviour is however much rarer in two dimensional cellular 
automata-the "Game of Life" is almost the only known example 
(cf. [12]). 

There may well be cellular automata whose behaviour is 
usually computationally simple, but which with very special 
initial states can perform arbitrary computations. It is certainly 
possible to construct cellular automata in which universal 
computation occurs only with initial states in which say every 
other site has value zero (cf. [49]), a condition that occurs in 
disordered states with probability zero. Such phenomena may 
be common in class 3 cellular automata. 

Any predictions about the behaviour of a cellular automaton 
must be made by performing some computation. But if the 
cellular automaton is capable of universal computation, then 
this computation must in general reduce to a direct simulation 
of the cellular automaton evolution. So questions about the 
infinite time limiting behaviour of cellular automata may require 
infinite computations, and therefore be formally undecidable. 

For example, one may consider the question of whether the 
patterns generated from particular finite initial seeds ever die 
out in the evolution of the cellular automaton. One may simulate 
the evolution explicitly to find out whether a pattern dies out 
after say a thousand time steps; but to determine its ultimate 
fate in general requires a computation of unbounded length. 
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The question is therefore formally undecidable. 
The set of finite configurations that evolve to the null con­

figuration after a fixed finite time can be specified by a regular 
. formal language (cf. [50]) . But there is no such finite specifi­
cation for the set of finite configurations that evolve after any 
time to the null configuration. Even the fraction of configurations 
in this set is in general a non-computable number. 

A similar problem is to determine whether a particular finite 
sequence of site values occurs in any configurations in the limit 
set for a cellular automaton. Again this problem is in general 
undecidable [40] . An explicit finite calculation can show that 
a sequence is forbidden after say three time steps. But a particular 
sequence may only be forbidden after some arbitrarily large 
number of time steps. In a one-dimensional cellular automaton, 
the length L (t) of the shortest sequence newly excluded at a given 
time step in the evolution is bounded by L(t)~L(t-I) -2r. 
In most actual examples L (t) seems to increase monotonically 
with time, so that the exclusion of a particular fmite sequence 
must occur before some predictable fmite time. But in some 
cases L(t) is not monotonic, and the occurrence of particular 
sequences may be undecidable. 

The capability for universal computation can be used to 
establish the undecidability of questions about the behaviour 
of a system. But undecidability can occur even in systems 
not capable of full universal computation. For example, one 
may arrange to disable all computations that give results of a 
certain form. In this way, the system fails to be able to perform 
arbitrary computations. Nevertheless, there may be undecidable 
questions about the class of computations that it still can 
perform. These may well occur in cellular automata. Proofs of 
undecidability usually use a diagonal argument based essentially 
on universal computation. To establish undecidabi~ity in a system 
not itself capable of universal computation, one must usually 
find another system that is capable of universal computation, 
and show that a reduction of its capabilities does not affect 
undecidability. 

Rice's theorem states that almost all questions about an 
arbitrary recursively-enumerable set are undecidable (e.g., 
[8]) . However, it may be that natural or simple questions, 
which can be stated in say a few logical symbols, are usually 
decidable. So for example the halting of all simple initial seeds 
in a particular cellular automaton might be easy to determine, 
and it might only be very large and specially-chosen initial seeds 
whose halting was difficult to determine . There are certainly 
examples in which the halting problem appears to be difficult 
to answer even for simple seeds. One must establish in general 
not only whether there are any undecidable propositions about 
the behaviour of a particular cellular automaton, but whether 
simple propositions about it are in fact undecidable . 

Problem 17 

What is the nature of the infinite size limit for cellular automata? 

Statistical averages in many systems converge to definite values 
when the infmite size or thermodynamic limit is taken. Several 
complications can however arise in cellular automata. 

Different seeds can lead to very different behaviour in class 
4 cellular automata. Some may die out; others may yield 
periodic patterns; still others may produce propagating struc­
tures. Propagating structures usually involve at least five or ten 
sites, and appear only with seeds of such a size. One expects 



that when larger seeds are used, new kinds of structures can 
begin to occur. For example, there may be structures that 
periodically generate propagating patterns, giving an asymp­
totically infinite number of nonzero sites. If the cellular 
automaton is capable of universal computation, then it should 
support structures with arbitrarily complicated behaviour. 
So for example there may be self-reproducing structures, which 
replicate even in the presence of a disordered background. 
Any such structure present in an initial state would yield 
offspring that could eventually dominate the behaviour of 
the system. In a given class 4 cellular automaton, the simplest 
self-reproducing structure may have a size of say 100 sites. The 
density at which the structure would occur in a disordered state 
is then k-1OO • So in practical simulations, there is an overwhelming 
probability that no such structure would ever been seen. But if 
configurations of size much larger than k 100 were considered 
such a structure would occur in almost every case. And after a 
long time, the behaviour of the system would almost always be 
dominated by the self-reproducing structures. Statistical results 
obtained with smaller configurations would then be misleading. 
And as the idealized limit of infinite size is taken, more and 
more complicated phenomena may occur, and statistical 
quantities have no simple limits. 

Since a finite description in terms of regular formal languages 
can be given for the set of configurations generated at any 
finite time in the evolution of a one-dimensional cellular auto­
maton, definite infinite size limits for statistical quantities 
presumably exist in this case. With time the limits may however 
become more complicated, and be reached more slowly. One 
expects that most statistical quantities will continue to show 
simple behaviour for class 3 cellular automata. But for class 4 
cellular automata, in which different structure appears to be 
manifest on every different scale, the limits may become 
progressively more complicated, and may not exist at infinite 
times. 

Two-dimensional cellular automata exhibit complicated 
infinite size limits even after a finite number of time steps. The 
sets of configurations that they generate can be non-recursive 
in the infinite size limit [12,42], and some statistical quantities 
may have no limits as a consequence. 

I t is in general undecidable how large the smallest structure 
with some property such as self-reproduction can be in a 
particular cellular automaton. In some cases, the cellular auto­
maton rule may be specially constructed to allow such struc­
tures. But for simple rules, one is reduced to an essentially 
experimental search for the structures. In several class 4 one­
dimensional clelular automata with k = 2, all configurations of 
less than 21 sites have been tested, and all those up to about 
30 sites are probably accessible with special-purpose computer 
hardware [51]. In the Game of Life, a number of complex 
structures were found through extensive experimentation. 
Further examples, particularly in one-dimensional cellular 
automata , would be valuable. One may imagine that each 
capability such as self-reproduction has a logical description 
of some length. Then the size of the smallest configuration 
that has the capability may be related in some way to this 
length. Obviously particular cellular automata may have special 
properties with respect to particular capabilities, but the result 
may hold as some average over all possible capabilities. If so, the 
very large number of particles in the universe could be essential 
for very complex physical and biological phenomena to occur. 

For direct .. simulation and other practical purposes one is 
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often concerned with cellular automata of finite size. When an 
infinite size limit exists, the local properties deduced from 
studies of finite cellular automata are likely to correspond 
directly with the infinite size case. But for global properties the 
correspondence is less clear. For the rather special case of finite 
cellular automata with additive rules, algebraic methods provide 
a complete description of the state transition diagram [33]. 
There are typically about kN/2 cycles, each of length about 
kN/2 steps. The cycles are reached after transients of length 
less than N. In the limit N -+ 00, the system exhibits chaotic 
behaviour, but the mapping is surjective, so that all configur­
ations are generated. Presumably in this limit there are an 
infinite number of infinite cycles, perhaps each characterized 
by a particular form of some invariant algebraic function. In 
general , some cellular automata that show chaotic behaviour 
in the infinite size limit exhibit exponentially long cycles at 
small finite sizes. Others exhibit exponentially long transients. 
Some show neither. The general connections between the 
structure of finite state transition diagrams, and the behaviour 
of cellular automata in the infinite size limit remain to be 
established. 

Problem 18 

How common is computational irreducibility in cellular 
automata? 

One way to find out the behaviour of a cellular automaton is to 
simulate each step in its evolution explicitly. The question is 
how often there are better ways. 

Cellular automaton evolution can be considered as a compu­
tation. A procedure can short cut this evolution only if it 
involves a more sophisticated computation. But there are 
cellular automata capable of universal computation that can 
perform arbitrarily sophisticated ·computations. So at least in 
these cases no short cut procedure can in general be found. The 
cellular automaton evolution corresponds to an irreducible 
computation, whose outcome can be found effectively only by 
carrying it out explicitly. 

A number of complications arise in giving a precise definition 
of such computational irreducibility. In general one should 
compare the number of steps in the evolution of a system such 
a cellular automaton with the number of steps required to 
reproduce the evolution using another computational system. 
However, by making the computational system more com­
plicated, it is always possible to reduce the number of steps 
required by an arbitrary constant factor, or even an arbitrary 
function. For example, if a computer can apply the square of a 
cellular automaton mapping at each step , then it can always 
simulate T steps of cellular automaton evolution in TI2 steps. 

Nevertheless, no amount of additional complication in the 
computer can allow it to find in a finite time the outcome of 
an infinite number of steps in the evolution of a cellular auto­
mata that is for example capable of universal computation. As 
a consequence, there are undecidable propositions about the 
ultimate behaviour of the cellular automaton. The occurrence of 
such undecidable propositions may be viewed as a consequence 
of computational irreducibility. But to give a complete definition 
of computational irreducibility for finite time processes, one 
must in some way exclude arbitrary complication in the com­
puter used for predictions. 

One approach is to consider finite cellular automata and to 
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use methods from computational complexity theory. A cellular 
automaton with N sites can evolve for a time up to kN before 
retracing its steps. The computation corresponding to this 
evolution is performed in a bounded space, and is therefore in 
the class PSPACE (e.g., [8]), but it can take a time exponential 
in N. However if the computation were reducible, then it could 
be possible to find the outcome of the evolution in a time 
polynomial in N, or in other words to reduce the problem to 
one in the class P. It is believed thatPSPACE=I=P, so that there 
exist problems that can be solved in polynomial space that 
cannot be solved in polynomial time. Determining the outcome 
of the evolution of some cellular automata may be a problem of 
this kind (cf. [52]). 

Conventional computational complexity theory concerns 
computations in finite systems. It may well be that the definition 
of computational irreducibility for cellular automata can be 
sharpened in the infinite size limit. 

The evolution of class 1 and 2 cellular automata yielding 
periodic configurations is computationally reducible. But one 
suspects that the evolution of most class 3 and 4 cellular auto­
mata is computationally irreducible. In fact, it may well be 
in general that most systems that show apparently complex or 
chaotic behaviour are computationally irreducible. 

Even if the detailed behaviour of a system can effectively be 
found only by direct simulation, it could be that many of its 
overall properties can be found by more efficient procedures. 
It is this possibility that makes investigations of cellular auto­
mata worthwhile even when computational irreducibility is 
present. But what should be done is to find a characterization of 
those properties whose behaviour can be found by efficient 
methods, and those for which computational irreducibility 
makes explicit simulation the only possible approach, and 
precludes a simple description. 

Problem 19 

How common are computationally intractable problems about 
cellular automata? 

Questions concerning the finite time behaviour of finite cellular 
automata can always be answered by finite computations. But 
as the phenomenon of computational irreducibility suggests, 
there may be questions for which the computations are necess­
arily very long. One may consider for example the question of 
whether a particular sequence of X site values can occur after T 
time steps in the evolution of a one-dimensional cellular auto­
maton, starting from any initial state. Then one may ask whether 
there exists any algorithm that can determine the answer in a 
time given by some polynomial in X and T. The question can 
certainly be answered by testing all k X +21'1' sequences of initial 
site values that determine the length X sequence, but this 
procedure requires a time that grows exponentially with X and 
T. Nevertheless, if an initial sequence could be guessed, then it 
could be tested in a time polynomial in X and T. As a con­
sequence, the problem is in the class NP. Now if P =1= NP, then 
there may be no polynomial time algorithm for the problem, 
and the best method of solution may essentially be to try all 
the exponentially many possible cases explicitly, so that the 
problem rapidly becomes intractable. In the infinite time limit, 
the analogous problem is in general undecidable. 

Just as undecidability in a system can be proved by establish­
ing a capability for universal computation, so, assuming P =1= NP, 
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computational intractability can be proved through NP­
completeness. A problem is NP-complete if specific instances 
of its correspond to arbitrary problems in the class NP [8,53] . 
This can be shown by establishing equivalence to a known 
NP-complete problem. Thus for example it has been possible to 
give a specific example of a cellular automaton in which the 
problem of determining whether particular sequences can occur 
after T time steps is equivalent the NP-complete problem of 
finding a set of truth values for variables so that a particular 
logical expression is satisfied [54]. How widespread NP­
completeness is in problems concerning cellular automata has 
yet to be established. But one suspects that it is common in 
many class 3 and 4 systems. 

Problem 20 

What higher-level descriptions of information processing in 
cellular automata can be given? 

Cellular automaton evolution can in principle carry out arbitrary 
information processing. An important problem of theory and 
practice is to find a way of organizing this information pro­
cessing. In specific cases one can devise cellular automaton 
rules that allow particular computations to be carried out (e .g. 
[55]). Or one can identify within a cellular automaton struc­
tures that can interact so as to mimic the components of con­
ventional digital computers. But all these approaches are strongly 
based on analogues with conventional serial-processing com­
puters. Information processing in cellular automata occurs 
however in a fundamentally distributed and parallel fashion, 
and one must invent a new framework to make use of it. Such a 
framework would likely be valuable in studying the many 
physical systems in which information processing is also distri­
buted. 

One approach is statistical in nature. It consists in devising 
and describing attractors for the global evolution of cellular 
automata. All initial configurations in a particular basin of 
attraction may be thought of as instances of some pattern, so 
that their evolution towards the same attractor may be con­
sidered as a recognition of the pattern. This approach is 

probably effective when the basins of attraction are local in 
space, as in image processing (e.g., [56]). But the construction 
of attractors for more general problems is likely to be very 
difficult. An attempt in this direction might be made by con­
sidering basins of attraction as sets of sequences corresponding 
to particular formal languages (cf. [50]). 

Another approach is to use symbolic representations for 
various attributes or components of cellular automaton con­
figurations. But the structures used in conventional computer 
languages are largely inappropriate. The definite organization of 
computer memory into named areas, stacks, and so one, is not 
suitable for cellular automata in which processing elements are 
not distinguished from memory elements. Rather perhaps 
data could be represented by an object like a graph, on which 
transformations can be performed in parallel. But the simple 
organizing principles that are required still remain to be found. 
It seems likely that a radically new approach is needed [57] . 
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