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The behaviour of a charged scalar field in an external electric field is discussed. Vacuum 
polarization is calculated' by explicit summation of modes. Instabilities encountered in the 
external field approximation are absent when back reaction effects are included through a se lf­
consistent semiclassical procedure. 

l. INTRODUCTION 

This is the second in a series of papers on the "bulk" properties of quantized fields. 
The first paper in the series [1] derived mechanical and thermodynamic properties of 
non-interacting quantized fields in finite volumes. The present paper discusses elec­
trodynamic properties of quantized fields by considering the response of the 
"vacuum" state to external electric fields . The third paper in the series will discuss the 
response of quantized fields to external gravitational fields [2]. 

For simplicity, we consider primarily charged scalar fields in 1 + 1 spacetime 
dimensions. The fields are confined to a finite spatial interval, so that their modes are 
discrete, and may be found explicitly. 

In Section 2, we give a formal description of the modes and vacuum state for a 
charged scalar field rp in an external electric field. Section 3 treats in some detail the 
simple case of a rp field satisfying Dirichlet boundary conditions. For weak external 
electric fields, the ground state of the rp field exhibits vacuum polarization and 
behaves like a polarizable macroscopic medium, partially screening the applied 
electric field. Section 3 also considers nonclassical phenomena and instabilities which 
appear for larger electric fields. 

Section 4 treats rp fields with general boundary conditions. In some cases, "vacuum 
polarization" is found to "antiscreen" the applied electric field, rather than screening 
like ' a polarizable medium. This behaviour is connected with the appearance of 
instabilities. 

Sections 3 and 4 use the "external field approximation," which accounts for the 
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effect of the external electric field on the modes of the rp field, but ignores the elec­
tromagnetic "back reaction" of the rp field on itself. Section 5 describes a self­
consistent semiclassical procedure which includes the effects of the back reaction. 
This procedure yields accurate results for large external electric fields so long as the 
charge on the rp field is sufficiently small. Instabilities which appeared in the external 
field approximation are found to be absent when back reaction effects are included. 

2. PRELIMINARIES 

This section considers the formal description of a charged spin zero (scalar) field 
in a static external electric field. I The following sections use this formalism to discuss 
the detailed behaviour of the "vacuum" in the presence of an electric field . 

The Klein-Gordon Lagrangian for a complex scalar field rp with mass m and 
charge e minimally coupled to an electromagnetic field A /4 is 

L = ID/4 rpl2 - m2 1rp l2 - iF;v - j~xtA/4 ' 

D /4 == 0/4 + ieA /4 ' 

F/4 V == 0/4 AV - OV A /4 ' 

(2.1 ) 

where j~xt is an external electromagnetic current. This yields the equations of motion 

where 

(2.2a) 

(2.2b) 

(2. 2c) 

is the conserved electric current for the rp field. The rp charge density p is defined as 
p = /6' Choosing Coulomb gauge ojA j = O. Eq. (2.1) yields the Hamiltonian density 
for the rp field 

(2.3a) 

where n is the canonical momentum 

(2.3b) 

With Coulomb gauge, the longitudinal (Coulomb) electric field E L in the penultimate 
term of Eq. (2.3) is constrained by 

(2.4 ) 

I For reviews, see 13- 51. 
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In the last term of Eq. (2.3), E T and B are the transverse electric field and the 
magnetic field, and represent dynamical degrees of freedom in the electromagnetic 
field. (A total divergence term V· (AOEL) does not contribute in the charge zero 
sector, and is dropped in Eq. (2.3) and below.) Introducing the electric displacement 
D and polarization P according to 

V· P= -p, 

V . D =pext, 

the Hamiltonian density (2.3a) becomes 

H = (In1 2 + IDi lfJI 2 + m21lfJI2 + pAo) + 4(D2 - p 2) - Aij~xt 

+ HE~+B2). 

(2.5) 

(2.6) 

Sections 3 and 4 and the remainder of this section consider the external field 
approximation. This approximation consists in taking a quantized lfJ field with a fixed 
classical external electric field, and ignoring the back reaction of the charged lfJ field 
on the electric field and transverse photon contributions. The effective Hamiltonian in 
this case is obtained from Eq. (2.6) by setting E T' B and j~xt to zero, and using the 
relation between Ao and pext in Coulomb gauge 

H<P = Inl 2 + ID i lfJI 2 + m21lfJI2 + pAo 

_ V2A O = V . E = pext. 

The total charge of the lfJ field (in d space dimensions) 

(2.7) 

(2.8) 

for solutions to Eq. (2.2a) is conserved if lfJ satisfies appropriate gauge invariant 
boundary conditions. In the systems considered below, the electric charge is usually 
confined to a finite volume with boundary a, so that 

f d ·ext 0 ni·J; = , 
a 

(2.9) 

where ni is the outward normal to a. The field lfJ must thus satisfy a boundary 
condition of the form 

(2.10) 

where X is a real function. 
The boundary condition (2.10) may be implemented in the Lagrangian (2.1) by the 

introduction of a source term 

oL = -x(a(x)) o(x - a) IlfJI 2 (2.11 ) 



36 AMBJ0RN AND WOLFRAM 

We take a classical static external electric field E i • A gauge may be chosen in this 
case so that A 0 is time independent, and determined up to a constant by 

(2.12) 

The linearity of (2.2a) then allows its solutions to decomposed into normal modes of 
definite frequency: 

(2.13a) 

(2.13b) 

The addition of a constant V to Ao corresponds to a gauge transformation with 
parameter -Vt, leading to a phase change e- iev1 in f/J n and hence a displacement of 
fl n : 

fln -> fln+eV. (2.14 ) 

The hermiticity of the operator V2 with the boundary condition (2.10) (and Ai = 0) 
implies the relation 

(2.15 ) 

For real fln,m' this yields 

(2.16) 

For complex fln ' 

(2.17) 

In classifying solutions, it is convenient to rewrite Eq. (2.2) as an ordinary first­
order (Schrodinger-like) eigenvalue equation: 

(J i at IJI = HIJI, (2.18a) 

(JIJ.FlJ.v = -elJl*02 IJI, (2.18b) 

HlJln = fln IJIn, (2.18c) 

IJI= (:* ), (2.18d) 

H= (e~o e~J + i (_D;O+ m2 ~) , (2.18e) 

O2 = (~ ~i). (2.18f) 
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With the boundary conditions (2.10), H is an hermitean operator with respect to the 
indefinite scalar product 

(2.19) 

Comparison with Eq. (2.8) reveals that the norm ( 'l' 1 'l') gives the total charge (in 
units of e) for the 'l'state. Similarly, Eq. (2.3) shows that ( 'l' IH I 'l') = f ddX H(<p ). 

Equation (2.16) expresses the orthogonality of the eigenfunctions 'l'm' 'l'n with 
respect to the scalar product (2.19) for real eigenvalues Q m ' Q n' 

For some A o, eigenfunctions with complex eigenvalues Q n exist [3 , 4, 6] . The <p 

fields associated with these eigenfunctions exhibit a real exponential time dependence. 
Equation (2.17) implies that all eigenfunctions with complex eigenvalues have zero 
norm. If 'l'n is an eigenfunction with eigenvalue Q n' 'l'n * is an eigenfunction with 
conjugate eigenvalue Q n *. The scalar product ( 'l'n I 'l'n *) is almost always non-zero. 
It vanishes only for exceptional Ao' at which an additional class of solutions to Eq. 
(2.18) with teW ( time dependence exist. These solutions correspond to the " associated 
eigenfunctions" .p satisfying the equation [7] 

(2.20) 

The first step in the second quantization of the <p field is to determine the 
normalization of the eigenfunctions <Pn ' The eigenfunctions with real eigenvalues may 
be normalized to have total charge ±e. (Note that while the magnitude of the charge 
associated with <Pn can be modified by normalization, its sign cannot. ) Normal modes 
with positive charge are interpreted as "particle" solutions, and those with negative 
charge as "antiparticle" solutions. The energy of a "particle" solution is given by its 
corresponding eigenvalue Q n' while for an "antipaticle" solution, the energy is -Q n ' 

At the exceptional points for which the charge deduced from the scalar product 
(2. 19) vanishes, the modes may be normalized so that ( .pn I 'l'n ) = 1. For complex 
eigenvalues, a possible normalization is ( 'l' n I 'l' n *) = i. 

We shall assume that the eigenfunctions 'l' n (including, when necessary, 
" associated" and complex eigenfunctions) form a complete set of functions with the 
boundary conditions (2.10). A proof of this result is outlined in Ref. [7] . 

The second quantization of the <P field is simplest when Ao is such that all eigen­
values are real, and positive and negative norm eigenfunctions have eigenvalues Q ~+ ) 
and Q~- ) , respectively, such that Q~+ ) > Q~- ) for all n, m. This case is often realized 
in weak electric fields, as discussed in Section 3. Decomposing <P in terms of positive 
and negative norm eigenfunctions 

(2.21 ) 

the equal-time canonical commutation relations 

[<p(x, t), n(y, t)] = it5(x - y) (2.22) 
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imply 

(2.23) 

for the operator-valued expansion coefficients an' bn. 
The vacuum state 10E) in the presence of the external electric field is defined such 

that 

The "induced charge density" in this state is given by 

p/(X) = (OEI p(x) 10E)' 

p= ~ [lp +n+ +n+lp+ -lpn-nlp]. (2.25) 

Hence 

p/(X) = 4 L (p~+)(x) + p~- )(x)), (2.26) 
n 

where p~ ±) are the charge densities associated with the modes lp~ ±). As expected, each 
possible mode of the field contributes with weight 4 in the vacuum state. 

The "vacuum polarization" is given in terms of the induced charge density (2.25) 
in analogy with the classical equation (2.5) by 

v . P(x) = _pi (x), 

D(x) = E(x) + P(x) = t:(x) E(x), (2.27a) 

where t: is the "dielectric constant of the vacuum." The electric field is taken here to 
be classical, as assumed below. Since the net charge of the lp field is conserved, the 
electric displacement satisfies 

v . D(x) = pext. (2.27b) 

The presence of the external electric field causes a shift in the lp energy eigenvalues, 
and hence in the vacuum energy, given by 

H<P(E) - H <P(O) = 4 L [(.o~+) - .o~- ») - (.o~O)(+) - .o~O)( - »)] (2.28) 
n 

where the .0(0) are the energy eigenvalues for zero external electric field. Note that 
while .o~+) and .o~- ) both change under a gauge transformation, their difference is 
gauge invariant. An induced lp charge density modifies the classical electric field, as 
in Eq. (2.27). The energy (2.28) may be considered as the effective potential for the 
electric field calculated to the one loop approximation in the lp field. 
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Even when positive and negative charge eigenvalues do not form separated 
sequences, the expansion (2.21) remains formally correct so long as all eigenvalues 
are real and non-zero. However, as discussed below, the energy in such a case is not 
bounded below, and no ground state may therefore be identified [3]. 

When complex eigenvalues .Q~C) exist, straightforward second quantization of the 
scalar field is no longer possible. An expansion of the form (2.21) may still be used if 
terms corresponding to the complex modes are added [7]: 

L (cnlp~C )e - iD ~C) t + dnlp~C)*e - iD~C)' t) , 
n (c) 

[d, c+ ] = - [c, d+] = i, 

[d, d+ 1 = [c, c+ ] = [c, d] = o. 

(2.29a) 

(2.29b) 

(2.29c) 

The charge of the lp field remains quantized in this case, but the energy is no longer 
discrete. The energy operator for the complex modes is Hn = Re .Q~C) + 
i(.Q nd+ c - .Q n *c + d), and has a continuous spectrum covering all real eigenvalues. 
Again, no ground state may be defined. 

3. EXTERNAL FIELD ApPROXIMATION : 

DIRICHLET BOUNDARY CONDITIONS 

This section uses the formalism introduced in Section 2 to discuss in some detail 
the behavior of a massless charged scalar field lp in 1 + 1 spacetime dimensions 
subject to a static external electric field E. The field is restricted to the finite region 
0 < Z < a, and satisfies the boundary conditions (2.9), (2.10) with X = 00 , so that 
lp(O) = lp(a) = 0 (Dirichlet boundary conditions). It is convenient to introduce the 
dimensionless variables 

Z =Z/a, 

A. = eEa 2, 

e =ea, 

w = a.Q(a) + A.a, (3.1) 

where a is a gauge parameter, and w is gauge invariant. Notice that in 1 + 1 
dimensions, the electric charge e has dimensions of mass. The field satisfies the 
Klein-Gordon equation (2.2a) with Ao = -A.[(z - i) + a] 

([wn+A. (Z-+) r + ~22) lpn(z)=O, (3 .2a) 

lpn(O) = lpn(1) = O. (3.2b) 
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The charge density associated with the field is obtained from (2.5c) and is given by 

(3.3) 

Here, as below, p denotes a dimensionless charge density obtained by multiplication 
of the complete charge density by a 2 • For gauge dependent results, we choose a =~. 
With this symmetrical choice, each positive eigenvalue wn has an associated negative 
eigenvalue - wn • The charge densities of the corresponding modes are related by 
p:(z) = -p;(1 - z) (so long as symmetrical boundary conditions are used). 

When no electric field is applied (A = 0), the modes of the rp field are given by 
rpn(z) = sin(mrz) with wn = nn, where n is an integer. The charge density of each 
mode is symmetrical about the point z = ~. 

For non-zero electric field (A =1= 0), the modes are formally given by 

rpn(z) = a ID _I/2«1 + i) yi2v) + a2D _I/2(- (1- i) yi2v) 

b l (. 2) b2 ( • 2) 
= Vu WO. - 1/ 4 IV + Vu WO. _ 1/ 4 - IV 

=C I VuJ I/4 (V22) +C2 VuNI /4 (V;), 

(3.4 ) 

where Dv is a parabolic cylinder function (e.g., [8]), W" .v is a Whittaker function , 
and J v and N v are respectively regular Bessel functions and Neumann functions. The 
possible eigenvalues wn could in principle be found from (3.4) by solving the 
transcendental equation obtained from rp( I) = rp(O) = O. 

The form of the modes rpn for small A may be obtained from perturbation theory. 
To first order in A, 

rpn(z) = Jnn [sin(nnZ) (I + 2~n (+ - z) ) - cos(nnz) ~ Z(l - Z)]. (3.5) 

The total charge density associated with the nth positive and negative mode in this 
approximation is given by 

p~(z) = Hp~+ )(z) + p~- )(z)l = - eAz(l - z) sin(2nnz). (3.6) 

In the absence of the external electric field (A = 0) the charge densities of the positive 
and negative modes are equal and opposite for all values of z, and no net charge 
density exists: (0 I p(z) 10) = O. Introduction of the electric field shifts the charge 
densities of the positive and negative modes oppositely (p< - )(z) = -p< +)(1- z)). The 
positively charged modes are shifted in the direction of the electric field, as expected 
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from classical considerations. The "centre of mass" for the charge density of the nth 
mode is given to first order in A by 

(3.7) 

To this order, the total induced charge density is given by 

CJJ 

pl(Z) = L p~(z) = -~eAz (l - z) cot(nz). (3.8) 
n = 1 

This charge density leads, as expected, to screening of the applied external electric 
field. 

Figure 3.1 a shows the exact form of the lowest positive energy mode for A = 5 (full 
curve) and A = 0 (dashed curve). The direction of the electric field corresponds to a 
positive charge on the left-hand boundary and a negative charge on the right-hand 
boundary. The positively charged mode shown is thus shifted to the right in the 
presence of the electric field. 

Figure 3.1 b gives the total charge density p~ (z) associated with the lowest-energy 
positive and negative charge modes. The full curve is the exact result ; the dashed 
curve is the first-order form (3.6). The 0(,1,) approximation remains comparatively 
accurate even at ,1,=5. 

Figure 3.1c shows the distortion in the charge density of the n = 2 positive charge 
mode in the presence of an external electric field. 

The total induced charge density is in principle obtained by summing the 
contributions from each mode, according to Eq. (2.26). However, as suggested by the 

ok-------~----~ 

-I 

o 0.5 
z 

(a) (b) 

FIG. 3.1. Modifications in low modes of a un;t charge massless scalar field If! in an external electric 
field of strength A directed from left to right. The If! field is taken to vanish at z = 0 and z = I (Dirichlet 
boundary conditions). A symmetrical gauge is chosen. (a) Charge density for the lowest energy 
positively charged mode. (b) Total charge density for the lowest energy positive and negatively charged 
modes with A = 5. Dashed line gives an approximate result obtained to first order in A. (c) Charge 
density for the second positively charged mode. 
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-P(Z) 

o 

0 

0.5 
z 

(b) 

No 50 
( P) '" 0 .14 

0.5 
Z 

(d) 

FIG. 3.2. Vacuum polarization for massless unit charge scalar field satisfying Dirichlet boundary 
conditions in a weak external electric field with strength .l. = 5. The contributions from N positive and 
negative charge modes are included. In the case N = 1, the result obtained at fir st order in .l. is shown 
(dashed curve). 

perturbative result (3.6), the numerical convergence of the resulting sum IS not 
adequate. Nevertheless, consideration of the induced electric field 

P(z) = - r dZ'pl(Z') 
o 

(3.9) 

yields a suitably convergent sum. Figure 3.2 shows the vacuum polarization obtained 
with a sequence of partial mode sums, all for ,1.=5. In the result (Fig. 3,2a) for the 
lowest mode alone, the 0(,1.) approximation is also given (dashed curve). The final 
vacuum polarization suggests that the "vacuum" behaves like a macroscopic 
dielectric medium with dielectric constant t: > 1 under the influence of a small applied 
electric field. Notice that the total vacuum polarization is dominated by the behaviour 
of the lowest mode. 

Figure 3.3 shows the average vacuum polarization as a function of A. The results 
show that the 0(,1.) perturbative estimate remains accurate until A ~ 10. 

Equation (3.2) assumes an external electric field uniform throughout the region ° < Z < 1. As an alternative, one may take the field to be uniform only in the region 
! - w < Z < ! + w, and to vanish elsewhere. In the limit W ---> 0, this corresponds to a 
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1.5 

<P> 

1.0 

0.5 

20 

FIG. 3.3. Average vacuum polarization for massless unit charge scalar field satisfying Dirichlet 
boundary conditions, given as a function of the strength ). of the external electric field. K labels the 
number of iterations in the self-consistent procedure used to account for back reaction effects. The 
dashed line gives the result obtained to first order in ).. 

potential jump with an infinite associated electric field. Figure 3.4 shows results for 
.1.=5 and various w. The lowest mode is insensitive to short distance details of the 
electric field, and depends primarily on the total potential difference from z = 0 to 
z = 1. 

The results above are for small external electric fields A. We now discuss the case 
of large A. Throughout this section, we use the external field approximation. 2 For 
large A, the back reaction effects thus ignored become important. Their consequences 
are considered in Section 5. 

Figure 3.5 shows the energies and charge densities of the first few positive energy 
levels as a function of A. 

For A ;S 8, the charge density for the lowest positive energy, positive charge mode 
is positive everywhere. Above A ~ 8, a region of negative charge density develops. 
The integrated total charge nevertheless remains normalized to + I. The Hamiltonian 
(2.7) suggests that for large A, it may be favourable for a positively charged mode to 
develop a negative charge density in the region where Ao is largest. The expression 
(3.3) shows that negative charge density appears in the region 0 < z < 1- w/A. 

When .1.=0, the energy levels are equally spaced with wn = mr. Only the kinetic 
energy term in (2.7) contributes for .1.=0. For small A, the distortion of the charge 
density produces a small negative potential energy, which reduces the total energy of 
the mode. The effect is 0(.1. 2 ) in a perturbation expansion. For large A, the electric 

2 Some of the results here were also given in Ref. [31. 
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o 0 .2 0.3 0 .4 0.5 
Z 

(b) 

FIG. 3.4. Results for massless unit charge scalar field satisfying Dirichlet boundary conditions with 
an external electric field of strength A = 5 uniform in the region 4 - w ~ z < 4 + wand zero elsewhere. 
(a) Charge density for lowest positive mode. (b) Total vacuum polarization. 

(a l 

(b l 

( el (dl (el 

FIG. 3.5. Energies and charge densities for first few positive energy levels of a massless charged 
scalar field satisfy ing Dirichlet boundary conditions in an external electric field of strength A. For some 
values of A, the eigenvalues ware complex. In such regions, Re(w) is shown as a wavy curve. The 
vertical distance of the dashed curves indicates the value of lm(w). Cutting along the dashed lines and 
folding the upper half ellipses upwards and lower ones downwards yields a three-dimensional plot with 
the lm(w) axis out of the page. 
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potential energy overwhelms the kinetic energy, and at A = At ~ 16, the total energy 
of the lowest mode drops vertically to zero. The region of negative charge density in 
the lowest mode expands as A increases, and when A reaches At' it becomes as large 
as the region of positive charge density, so that the total charge of the mode vanishes. 
The formal aspects of this behaviour were discussed in Section 2. Each positive W 

level in Fig. 3.5 is accompanied by a level with opposite wand opposite total charge. 
Precisely at A = At' the lowest positive and negative levels join into a single mode 
with zero energy and zero total charge (but non-zero charge density). As mentioned 
in Section 2, an additional "associated eigenfunction" exists at this value of A, and 
the ground state is no longer unique [3, 7]. At this point, the external field approx­
imation therefore presumably ceases to yield correct physical results, even though it 
is formally possible to choose a vacuum state and perform canonical quantization 
[3, 7]. The self-consistent approach described in Section 5 avoids these difficulties. 

Section 2 mentioned that in some cases, complex eigenvalues Wn may occur. The 
first set of complex energy levels appear just above A = At' The real part of their 
energy vanishes, while the imaginary part is non-zero for A > At' The charge densities 
of the modes are shown in Fig. 3.5. As discussed in Sect. 2, the total charge obtained 
by integration of this charge density always vanishes. 

Figure 3.5 shows that when A ~ 23, the pair of complex energy levels disappears, 
and a pair of positive and negative real energy levels appear. In the region 
23;;:; A;;:; 27, all eigenvalues are real. However, the lowest positive energy level has 
negative total charge and thus negative energy. The combination of this mode with its 
negative w partner has zero charge and negative total energy -2w. High occupation 
numbers in these modes lead to indefinitely negative energies and no definite vacuum 
state. 

Figure 3.6a extends the energy levels shown in Figure 3.5 to higher values of A. 
Curve segments with ow/oA < 0 correspond to modes with positive charge and 
positive energy, and those with ow/oA > 0 to negative modes [3,4]. At each point of 
vertical tangency, a zero norm mode exists. Between each adjacent pair of vertical 
tangents extend a pair of complex W modes. When these complex modes are included, 
each energy level in Figure 3.6a forms a continuous curve as a function of A. The 
curve develops an imaginary part whenever it crosses another curve. The wave 
functions for all modes associated with a particular continuous curve exhibit the same 
number of nodes in the interval 0 < z < 1. Notice that when ,1,-> 00, the fraction of 
possible A values at which no complex modes exist tends to zero. 

The existence of real modes even at high A is essential in obtaining known results 
l6] for the continuum limit of a uniform electric field throughout space. This limit 
corresponds to a -> 00 and hence ,1,-> 00 . As ,1,-> 00, the pattern of energy levels 
stabilizes, and the charge densities for real modes with w;;:; A take on the form 
illustrated in Figure 3.7. The modes have positive charge density in the region z > 4 
and negative charge density in the region z < 4. In the limit a -> 00, the modes may 
be superposed to yield travelling waves carrying positive charge to the right and 
negative charge to the left, thereby corresponding to continuum modes, and allowing 
the interpretation of particle-antiparticle pair production. 
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400:------~ 40r----~ ...... 

20,--__ 

-40F------ -40_--~~ 

-600~--~5~0====~1~00~==~~~~2~00 -600~==~20~0==~~~~La1J~Lb~ 
A 

(0) 

FIG. 3.6. Positive and negative energy levels for a massless charged scalar fi eld satisfying Dirichlet 
boundary conditions with an appl ied external electric field of strength A. (a ) Electric fie ld uniform 
throughout region 0 < z < I ; (b ) electric field uniform for 0.4 <·z < 0.6, and zero elsewhere. Between 
each pair of vertical tangent points, a pair of complex energy eigenvalues exist. Curve segments with 
OW/OA < 0 have positive charge and positive energy ; others have negati ve charge and negative energy. 

In finite systems, each mode is normalized if possible to unit total charge. In an 
infinite system, modes are normalized to give particle wave functions with unit charge 
density. Complex energy modes exhibit real exponential growth modulated by an 
oscillating factor in both time and space (see Eq. (3.4)). The oscillating factor allows 
modes to satisfy the necessary boundary conditions. However, away from the boun­
daries, the real exponential factor give rise to exponentially large charge densities. 
The normalized modes thus have exponentially small charge densities except in an 
exponentially small region. In the limit A -+ 00 , the normalized complex energy modes 
have zero charge density almost everywhere, and are therfore of no physical 
relevance. 

The energy levels shown in Figure 3.6a assume that a uniform electric field exists 
throughout the region 0 < z < 1. Figure 3.6b shows the energy levels obtained with a 
field uniform between z = 0.4 and z = 0.6, and zero elsewhere. The results in Figs. 
3.6a and 3.6b are qualitatively similar. The qualitative independence of the results on 

• 
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pl~I(Z) 

o 0.2 0.4 0.6 O.S 

FIG. 3.7. Charge density for lowest positive energy level of scalar field with Dirichlet boundary 
conditions in an electric field of strength A = 200. Separation into positive and negative " particle" 
regions is evident. 

the width of the electric field reflect the similarity of particle production in a uniform 
electric field and a step potential. 

4. EXTERNAL FIELD ApPROXIMATION: GENERAL BOUNDARY CONDITIONS 

According to Eq. (2.10) the most general charge-conserving boundary conditions 
for a massless scalar field in 1 + 1 dimensions have the Robin form 

oq>(O) = ho q>(0), 
oz 

Oq>(O) =-h (1) 
oz I q> . (4.1 ) 

Section 3 considered the special case ho = hI = 00 , corresponding to Dirichlet 
boundary conditions. 

We discuss first the implementation of the boundary conditions (4.1) in the 
absence of an external electric field (A. = 0). In this case, Eq. (2.2) is the equation of 
motion for a classical vibrating string with amplitude q>(z, t). The boundary 
conditions (4.1) specify the string to be attached at its two ends by elastic forces 
Fa = - haq>(a, t) (a = 0,1). Equations (2.2) and (4.1) form a standard Sturm­
Liouville system in this case. If one of the ha is negative, larger negative potential 
energy is achieved by increasing q>(a, t), and "runaway" solutions exist. The eigen­
values w corresponding to these solutions are complex. 3 The complete set of eigen­
functions q>n(z), including those with complex or vanishing w, span the space of 
square-integrable functions on the interval 0 < z < 1. 

Figure 4.1 shows the behaviour of the first few energy levels of the q> field as a 
function of the strength of the external electric field, for a selection of boundary 

J The precise condition for complex eigenvalues is either ho < 0 and hi < 0 or ha > 0 > h5 and 
- h5> h,)(1 + ha). 
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FIG. 4.1. Energy levels for a massless charged scalar field subject to a range of boundary 
conditions, as a function of the strength A of an external applied electric field. ho, h I parametrize general 
Robin boundary conditions. Dirichlet and Neumann boundary conditions are limiting cases. 

conditions with ho = ±h I. The results interpolate smoothly between the limiting cases 
of Neumann boundary conditions (hI = ho = 0) and Dirichlet boundary conditions 
(h I = ho = 00). When hI = +ho. decreasing ha shifts the energy levels as if the A axis 
was shifted to move the point A = ,1.c towards the origin. When ha = 0, the zero norm 
eigenfunction which appeared at ,1.= ,1.c in the Dirichlet ha = 00 case appears at 
,1.= 0, as the eigenfunction tp(z) = 1. As expected, complex modes appear immediately 
above ,1.=0 in the Neumann ha = ° case. 

The presence of complex modes at small A for Neumann boundary conditions leads 
to very different results for vacuum polarization than in the Dirichlet case discussed 
in Section 3. To first order in A, the induced charge density associated with the nth 
mode satisfying Neumann boundary conditions is 

p~(z) = + lp~+ )(z) + p~- )(z)l = d [Z(1 - z) + (n~)2 ] sin(2nnz). (4.2) 

This result is essentially opposite to Eq. (3 .6 ) obtained with Dirichlet boundary 
conditions. The induced charge density tends to increase ("anti screen") the electric 
field, rather than to decrease ("screen") it, as in the Dirichlet case. 

Figure 4.2 shows the total vacuum polarization obtained by summing the 
contributions of all modes with real eigenvalues for A = 5 and Neumann boundary 
conditions. Modes with complex eigenvalues should also appear in the sum, but no 
unique prescription for their inclusion exists [3, 7]. The result of Fig. 4.2 with these 
modes omitted clearly exhibits a positive average polarization, corresponding to an 
effective dielectric constant e < 1. Dielectric constants in the range ° < e < 1 usually 
imply instability [9, 10]. As discussed in Section 5, however, inclusion of back 
reaction effects removes complex frequency modes and yields a stable system with 
dielectric constant e > 1. 
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0.2 

- P ( z) 

0.1 

FIG. 4.2. Vacuum polarization obtained by summing modes of a massless charged scalar field 
subject to Neumann boundary conditions, omitting modes with complex eigenvalues. Antiscreening is 
evident. 

Antiscreening is found at small A. whenever modes with real eigenvalues are 
summed, but a mode with complex eigenvalue is omitted. Boundary conditions for 
which no complex mode exists at sufficiently small A. always give rise to screening in 
this region. 

5. BEYOND THE EXERNAL FIELD ApPROXIMATION 

Sections 3 and 4 considered the effect of a fixed classical external electric field on 
a charged quantized ({J field. However, the ({J field charge density induced by the 
external field itself generates an electric field, which may in turn modify the vacuum 
polarization. Assuming that the electric field may still be treated as classical, this 
"back reaction" may be included exactly. In this section, we describe the necessary 
procedure, and discuss results for large external electric fields including back reaction 
effects. 

The complete result for vacuum polarization including back reaction effects is 
obtained by solving the coupled equations (see Section 2) 

(lWn - eAol2 + !22 ) ({In = 0, 

Pn = e(w n - eAo) l({Jn I2, 

1 00 z z ' 

Ao = (A 0)0 + - L f dz' J dz"(Pn(z") - Pn(1 - z")) 
2 n= I 1/ 2 0 

1 I (1 ) = (Ao)o + T fo dz - Tlz - z' I (P(z') - p(1 - z')), 

(S.la) 

(S.lb) 

(S .lc) 

where (Ao)o is the original external potential. In the second form of Eq. (S.lc), the 
factor - ! I z - z' I is the Coulomb Green function in 1 + 1 dimensions. 

Equations (5.1) take a quantized ({J field, but assume a classical A field depending 
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only on the expectation value of the rp charge operator (2.25). This approximation 
should be accurate for arbitrarily large A = eEa 2, so long as the charge e on a single 
rp quantum is sufficiently small. 

In terms of Feynman diagrams, the external field approximation used in Sections 3 
and 4 sums all diagrams with a single rp loop and an arbitrary number of external 
field vertices. Equation (5.1) includes also diagrams with many rp loops in a tree 
connected by Coulomb photons. It does not account for diagrams involving photons 
within a single rp loop. 

The integro-differential equations (5.1) yield a "self-consistent" solution for 
vacuum polarization. The equations may often be solved by a simple iterative 
procedure. At the first step in the procedure the vacuum polarization obtained with 
the original external electric field is calculated as in the external field approximation. 
The next step consists in calculating the correction to the electric field resulting from 
the vacuum polarization. This modified field is then used to calculate a new vacuum 
polarization. The iteration continues until a self-consistent vacuum polarization is 
obtained. Labelling successive steps in this procedure by the parameter K, the 
necessary sequence of equations is obtained by replacing Wn' rpn and Pn by (Wn)K' 
(rpn)K and (Pn)K respectively in Eqs. (5.1), and replacing Ao by (Ao)K - 1 in (5.la) and 
(5.lb) and by (AO)K in (5.lc). 

At small A, the rp vacuum polarization obtained in the external field approximation 
is small. So long as e is small, the resulting modification to the electric field is small, 
and back reaction effects are negligible. With Dirichlet boundary conditions at 
A = 10, inclusion of back reaction effects changes the final vacuum polarization by 
-3 %. As A approaches Ac ' however, the charge density associated with the lowest 
mode increases, and the total vacuum polarization becomes larger. Figure 5.1 shows 
the total vacuum polarization at successive steps in the iterative procedure for a rp 
field with Dirichlet boundary conditions and e = 1 close to A = Ac' K = 0 is the 

0 

-0.5 

-P(z) 

-1.0 

-1.50 0.2 0.4 0.6 O.B 

FIG. 5. 1 Vacuum polarization for massless unit charge scalar field with Dirichlet boundary 
conditions in an external electric field with strength A = 15.5 close to Ac. Back reaction effects are 
included by an iterative procedure. The steps in the procedure are labelled by K. K = 0 corresponds to the 
original zero polarization. K = I gives the external field approximation result. In the limit K -+ <Xl, the 
vacuum polarization tends to the exact self-consistent form obtained from Eq. (5.1). 
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original zero vacuum polarization. K = 1 is the result in the external field approx­
imation. The result for K -+ 00 is the final self-consistent one. When K > 1, the 
vacuum polarization depends not only on A, but also on the charge e. Notice that in 
the case shown, the iterative procedure converges rapidly. 

When A increases above Ac ' the external field approximation yields complex energy 
eigenvalues, and is no longer appropriate, as discussed in Sections 3 and 4. Equations 
(5.1) may nevertheless still be solved iteratively if a suitable starting form for (Ao)1 is 
chosen. Figure 5.2 shows the vacuum polarization just above A = Ac as a function of 
K for two choices of (Ao)I' The procedure is seen to converge to the same final self­
consistent vacuum polarization in the two cases. 

When A approaches Ac ' the energy W I of the lowest mode in the external field 
approximation goes to zero. Figures 5.2c and 5.2d show, however, the sequence of 
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0 1 2 3 4 5 6 7 8 9 10 
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FIG. 5.2. Results for a massless unit charge scalar field with Dirichlet boundary conditions in an 
external electric field just above the critical field Ac "" 16. Steps in the iterative procedure used to include 
back reaction effects are labelled by K . (a) and (b) show results for vacuum polarization at various 
stages in the iterative procedure. (c) and (d) give the behaviour of the lowest energy eigenvalue w , as a 
function of K. Two choices are made for the starting potential (A 0)' in the iterative procedure. (The 
original external electric field cannot be used because of the complex eigenvalues it yields when A > Ae. ) 
The starting polarizations are labelled K = 1. In (a) and (c) the potential 2Ac sinh(2(z - ~» /cosh(l) was 
used; in (b) and (d) the potential from vacuum polarization at A = 15. The results from the two starting 
potentials are seen to converge to the same final K .... 00 self-consistent form. 
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3 

FIG. 5.3. Behaviour of lowest positive energy level for massless unit charge scalar fi eld with 
Dirichlet boundary conditions, as a function of the strength A of an external electric field. Steps in the 
iterative procedure used to account for back reaction effects are labelled by K. K = I gives the external 
field approximation result. The curve marked K = 2 is the second step in an iteration starting from zero 
vacuum polarization. K = <Xl gives the final self-consistent result. 

values for WI obtained in the iterative procedure. The two starting (Ao)1 chosen yield 
the same final self-consistent non-zero value for WI in the limit K -t 00. 

Back reaction effects generally reduce the effective electric field. They thus tend to 
raise WI' and prevent the appearance of complex eigenvalues. Figure 5.3 shows the 
behaviour of WI as a function of A. with Dirichlet boundary conditions and c = 1. The 
self-consistent K -t 00 result extends continuously above A. = A.c ' No complex eigen­
values appear. The absence of complex eigenvalues allows straigthforward quan­
tization of ffJ field modes. For large A., the charge density of the lowest mode far 
exceeds that of the higher modes. In the remainder of this section, we shall usually 
ignore contributions from higher modes. Figure 5.4a shows the vacuum polarization 
obtained in the self-consistent limit with Dirichlet boundary conditions and c = 1. 
Figure 3.3 shows the average polarization as a function of A.. The vacuum 
polarization increases rapidly at large A., always reducing the effective electric field 
sufficiently to avoid complex eigenvalues. The P(z) for different A. shown in Fig. 5.4a 
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0 h- ro 

0 h'l 
h' 0.1 
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-p (z)-2 -P(z) h'0.02 

).,: 15 -4 h 'O.OI 

" 17.5 h '0.005 
-4 A'20 -6 

h '0.002 
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FIG. 5.4. Self-consistent results for vacuum polarization of a massless scalar field carrying charge e 
induced by an external electric field of strength A. (a) Dirichlet boundary conditions; e = I. (b) 
A= 15.5-Ac ; Dirichlet boundary conditions. (c) A= I; €= I; Robin boundary conditions with 
ho = - h I = h. (h -+ <Xl corresponds to Dirichlet and h -+ 0 to Neumann boundary conditions.) Only the 
lowest energy mode is included: small contributions from higher modes are dropped. 
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differ essentially only in overall scale. Large screening of the external electric field 
occurs around z = 1, but boundary conditions on the qJ field enforce zero vacuum 
polarization for z = 0, 1. 

The behaviour of a physical system with a large external electric field depends on 
the mechanism by which the field is introduced. In typical situations, an external 
electric potential is increased as a function of time (for example, by separating 
"capacitor" plates carrying fixed electric charges). Transients resulting from a rapid 
increase in the electric field would mix normal modes and require a complete solution 
of the time-dependent Klein-Gordon equation (2.2). However, if the rate of change of 
the electric field is small compared to the frequency of the low modes of the field, 
then time-independent normal mode analysis provides an adequate approximation. As 
the external electric field is increased, the vacuum polarization achieves its self­
consistent form at every A. Suitable choices for (Ao)1 in Eq. (5.1) are obtained by 
solving the equations for one value of A, and using the resulting vacuum polarization 
in the starting potential for a slightly higher value of A. Numerical instabilities in 
practice require rather small A steps to be used in this procedure. 
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FIG. 5.5. Behaviour of the lowest positive energy level W, for a massless charge e scalar field in an 
external electric field of strength A. K labels steps in the iterative procedure used to account for back 
reaction effects. K = I corresponds to the external field approximation. Final self-consistent results are 
obtained in the limit K --+ 00. (a) W, for Robin boundary conditions with ho = - hi = 0.1 as a function of 
A. (b) w, as a function of e for Dirichlet boundary conditions with A = 15.5 - Ae. (c) w, for A = I as a 
function of the parameter h = ho = - hi specifying Robin boundary conditions. h --+ 0 corresponds to 
Neumann boundary conditions. 
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Figure 4.1 shows that with Robin boundary conditions ho = -h I = h, the critical Ac 
in the external field approximation decreases with decreasing h. The behaviour of WI 

as a function of A for h = 0.1 is shown in Fig. 5.5a. Once again, the self-consistent WI 

remains non-zero above A = Ae , and no complex eigenvalues appear. Different self­
consistent results are obtained for different charges E. Smaller charge implies smaller 
back reaction; the value of WI thus tends to be smaller for E = 0.1 than for E = 1, but 
it remains non-zero. 

Figure 5.5b shows the dependence of WI on E in the presence of back reaction 
effects. Figure 5.4b shows the corresponding vacuum polarization. For E ~ 10, results 
become unreliable as the semiclassical approximation fails . 

Figures 5.4c and 5.5c show the dependence of the vacuum polarization and first 
energy level on the parameter h specifying Robin boundary conditions. WI remains 
non-zero in the self-consistent limit for all h > O. As h approaches zero, 
corresponding to Neumann boundary conditions, however, WI tends to zero. The 
vacuum polarization increases as WI decreases. When h = 0, WI reaches zero. As 
discussed in Section 4, Neumann boundary conditions lie on the edge of the Robin 
parameter region in which free field modes have complex eigenvalues. The Neumann 
case is thus at the boundary between stable and unstable systems in the self­
consistent limit. For h < he ~ 0.042, the lowest energy level in the external field 
approximation (K = 1) shown in Fig. 5.5c has a complex energy eigenvalue. In the 
self-consistent limit K ...... 00 , no complex eigenvalues occur. Figure 4.2 showed the 
vacuum polarization obtained with Neumann boundary conditions, ignoring complex 
energy eigenvalues, and exhibited anti screening. Figure 5.6a shows vacuum 
polarization resulting from the lowest real frequency mode for Robin boundary 
conditions with h = 0.1 in the external field approximation. Antiscreening is again 
apparent. Figure 5.6b shows the vacuum polarization found in the self-consistent 
limit. No complex energy eigenvalues exist, and the vacuum polarization gives 
screening. It appears that in all cases for which the external field approximation 
implies complex energy eigenvalues and antiscreening of real modes, inclusion of 
back reaction effects by the self-consistent method removes the complex modes, and 
restores screening. 

For some choices of parameters, the self-consistent vacuum polarization shown in 
Fig. 5.4 screens a significant part of the original external electric field. However, as 
mentioned above, the shape of the vacuum polarization as a function of z remains 
roughly unchanged. In some cases, the vacuum polarization may become so large 
that around z = !, it reverses the total electric field. 

Equation (2.24) shows that in the external field approximaztion, all modes of the <p 

field have zero occupation number in the vacuum state. The vacuum state is generally 
the state of lowest energy: when back reaction effects are included, the lowest energy 
state might involve non-zero occupation numbers (cf. [4 D. Nevertheless, in the self­
consistent limit it appears however that non-zero occupation numbers always increase 
the total energy obtained from Eq. (2.6). The vacuum state therefore remains as the 
unique state with zero occupation number for each mode. 
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FIG. 5.6. Vacuum polarization associated with the lowest mode of a massless unit charge scalar 
field with Robin boundary conditions h = 0.1 in an external electric field of strength A = 2. (a) Result in 
the external field approximation (ignoring complex frequency modes). (b) Result including back reaction 
through self-consistent procedure. 

6. DISCUSSION AND EXTENSIONS 

Sections 3 and 4 described the behaviour of a charged scalar field with an applied 
electric field in the "external field approximation." Section 5 gave results including 
back reaction effects by a self-consistent semiclassical procedure. Complex frequency 
modes indicating instabilities were found for large electric field strengths in the 
external field approximation. These instabilities never occurred when back reaction 
effects were included. The magnitude of vacuum polarization in the self-consistent 
limit was always found to reduce the effective electric field until no instatilities 
appeared. In some cases, the vacuum polarization was sufficient to reverse the electric 
field around z = 1. 

The self-consistent semiclassical procedure of Section 5 takes a quantized rp field 
and a classical electromagnetic field determined from the expectation value of rp. 
Results depend not only on A = eEa 2 (as in the external field approximation), but 
also on the charge e of a single rp quantum. Whereas the external field approximation 
fails for large A, the semiclassical approximation is accurate for large A, so long as 
e 2/ (4n) is small. The rp field is quantized in the semiclassical approximation by 
decomposition into energy eigenstates in the required external electric field. In the 



56 AMBJ0RN AND WOLFRAM 

vacuum state, each mode of the ((J field has zero occupation number: non-zero 
occupation numbers lead to higher energies. States with non-zero occupation numbers 
should, however, contribute at a finite temperature. Finite temperature typically 
serves only to enhance the contribution of the lowest mode, and has no qualitative 
effect on vacuum polarization. 

The results in Sections 3, 4 and 5 were all given for massless scalar particles. 
Results for massive particles are qualitatively similar: the presence of the mass 
typically reduces the vacuum polarization for a given external electric field. There is 
no adequate definition of a charged vector field in 1 + I dimensions with an external 
electric field. Spinor fields may be defined, but yield no vacuum polarization in the 
external field approximation. Extension of the results given here to more space 
dimensions is in principle possible. Scalar electrodynamics remains formally 
superrenormaizable in 2 + I dimensions, so that calculations analogous to those of 
this paper may in principle be performed without including renormalization. In 2 + I 
dimensions, non-trivial charged vector or Yang-Mills fields exist, and calculations of 
suitable gauge invariant quantities using the methods of this paper should explicitly 
exhibit antiscreening and asymptotic freedom. 
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