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Properties of the Vacuum. 

I. Mechanical and Thermodynamic * 
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Casimir energies are calculated for quantized field s in cavities with a variety of forms. 
Consequences for models of the vacuum state are considered. The possibility of negative mass 
systems is discussed. Results on energy and entropy of finite quantum systems at non-zero 
temperature are given. 

1. INTRODUCTION 

This is the first in a series of papers on the " bulk" properties of quantized fields . 
These properties are determined from the " response" of the "vacuum" state to 
classical external fields or constraints. Such investigations complement perturbative 
treatments of small disturbances in quantized fields. 

This paper discusses some "mechanical" and "thermodynamic" properties of quan­
tized fields. Sections 2 through 6 consider the mechanical forces associated with 
containment of quantized fields in finite regions. Sections 7 and 8 discuss ther­
modynamic properties of fields in finite regions at non-zero temperatures. In later 
papers, we shall consider "electrodynamic" 11] and " gravitational" properties of 
quantized fields . We shall for the most part use the " free" approximation in which 
interactions of the fields with themselves are ignored. 

The mechanical properties of the vacuum are unlike those of ordinary matter. As 
mentioned in Section 5, a region of vacuum may under certain circumstances have a 
negative energy, so that " empty" cavities may apparently attain negative masses. 

The vacuum (ground) states of several highly non-linear field theories may have a 
foam-like structure with "bubbles" of low field strength separated by walls of high 
field strength. It is plausible that fluctuations of the field within a bubble may exert 
forces which determine the shape of its walls. We discuss this possibility in section 6 
and show that the equilibrium shapes of such bubbles may be isotropic or tubular. 

In section 8 we consider the relation between the entropy and energy density of 
quantized fields at finite temperatures, and show that a recently suggested entropy 
bound [2] is incorrect. 
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We shall usually consider fields contained in regions of space some of whose 
directions are finite in extent. In many cases, the fields may be viewed as confined by 
hyper-cuboidal (hyper-rectangular-parallelipedal) boundaries. The necessary 
constraints on the fields are implemented either by modifying the spacetime on which 
field exists (so that, for example, certain coordinates have finite ranges, or are 
periodically identified) or through physical boundary conditions as would result from 
interaction with extended external sources of infinite strength. Such constraints 
modify the zero-point modes of the fields, and change the energy of the vacuum 
(ground state). This change is manifest as an observable Casimir energy [3]. The 
Casimir energy may be either positive or negative. The corresponding mechanical 
pressure exerted on the walls of a "container" may be either positive or negative, and 
is often anisotropic. The result depends on the exact form of the constraints and on 
the nature of the field. ' 

Section 2 describes in detail the calculation of Casimir energy for the simple case 
of a scalar (spin 0) field between two plates. It is convenient and illuminating to take 
the dimensionality of spacetime as an arbitrary continuous parameter. In this way, 
divergences associated with high frequency fluctuations in the field are regularized. 

Sections 3 and 4 generalize the results to confining regions of other shapes, and to 
vector (spin I) fields. 

Attractive van der Waals "dispersion" forces between electrically neutral 
macroscopic objects may be attributed to Casimir energies of the electromagnetic 
field (e.g. [4]). However, as discussed in section 5, not all Casimir energies may be 
associated with sums of van der Waals forces. For example, the electromagnetic 
Casimir energy of a three-dimensional cubic cavity with perfectly-conducting walls 
leads to an outward pressure [5-8), while a sum of van der Waals forces would 
suggest inward pressure. Sections 3 and 4 consider a variety of systems exhibiting 
repulsive Casimir forces. The existence and nature of these examples appears to have 
caused confusion in previous investigations. 

2. CASIMIR ENERGY IN A SIMPLE SYSTEM 

This section describes in some detail the calculation of the Casimir energy for the 
simple case of a non-interacting scalar field rp with mass m in d-dimensional space 
with one direction of finite length a. The field satisfies the free Klein-Gordon 
equation 

(2.1 ) 

away from any boundaries. One form of constraint on the field is achieved by 
introduction of explicit boundaries consisting of d - I-dimensional hyperplanes 
located at x = 0 and x = a. For points z on these boundaries, the field obeys either 

rp(z) = 0 (Dirichlet) (2.2a) 
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or 

(Neumann). (2.2b) 

or a linear combination of these (Robin). The Neumann condition (2.2b) is 
analogous to "bag" boundary conditions, and implies that the momentum flux of the 
field through the boundaries vanishes. Instead of introducing physical boundaries, one 
may require the periodicity condition 1 (compactification of R 1 to S 1) 

qJ(O) = qJ(a). (2.3) 

We consider first the case of Dirichlet boundary conditions. The modes of the field 
are then 

qJ(X, Xp t) = sin(nnxja) e ikT ' <Te - iwk l , 

w k = J(mrja)2 + k~ + m 2, (2.4 ) 

where n is a positive integer. In the ground state (vacuum) each of these modes 
contributes an energy wd2.2 For normalization purposes, we take the transverse 
coordinates XT to be restricted by I X T I < L where L ~ a. The total energy of the field 
between the planes is thus given by 3 

00 

E= (L j 2n)d - l f dd - 1kT L 1wk • 

n = l 

(2.5) 

High modes render this sum formally divergent. The contributions of such modes 
should however be independent of a. They should thus cancel in calculations of 
forces, or in comparisons of the energy density of the field in the presence and the 
absence of the planes. The sum in Eq. (2.5) may be regularized by a variety of 
techniques. The simplest is by analytic continuation in d. Using the result (e.g. [11]) 

2 d / 2 

f f(k) ddk = _n_f kd - t;"(k) dk 
T(dj2) 

I The "antiperiodic" or "twisted" condition !p(0) = -!p(a) is also consistent. 

(2.6) 

2 One of the many formal derivations of this result is given in Sect. 7. So long as non-linear (self) 
interactions are absent [91, the equal weighting of modes would also follow from a classical field with 
random amplitude and phases constrained to have a Lorentz invariant spectrum 110 I. The normal 
ordering used to remove disconnected vacuum diagrams in the usual formulation of quantum field theory 
applies only in an infinite volume: different normal ordering prescriptions must be used in finite volumes, 
allowing Casimir effects. 

3 If the boundary conditions are charge-conjugation invariant, any density of quantum numbers must 
cancel between particle and antiparticle modes. Energy is the unique quantity which is positive for both 
positive and negative frequency modes. 
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(2.5) becomes 

2n(d - I) /2 00 00 1 1 
E = (L/2n)d - 1 -r--:-«:-:d---l-:-)/-:-::2-:-) ?;;\ fo 2 (kD(d - 3) /2 d(k~) 2! (nn/ a)2 + k~ + m2. 

The relation 

then yields 

f OO t r (1 +t)'dt=B(1 +r,-s-r-l) 
o 

(2.7) 

(2.8) 

We consider first the case m = O. The necessary sum is then formally given by 

00 

L nd = (-d), (2.10) 
n = 1 

where (s) is the usual Riemann ( function. Using the reflection formula (e.g. [12]) 

(2.11 ) 

together with the reduplication formula 

(2.12) 

the energy (2.9) may be written 

E=- L;~' r (d; 1) (4n) - (d +I)/2(d+ 1). (2.13 ) 

This result is finite for all positive d, and is always negative. The force per unit area 
on the boundary plates is attractive for any value of d and of magnitude 

-o(E/L d- l
) = _ _ d_ r (d + 1 ) (4n) - (d+ 1)/2 (d + 1). 

oa ad+1 2 
(2.14 ) 

The pressure of the vacuum between the plates is thus negative. In the limit a ...... 00, 

(2.13) gives the energy of the field in the absence of the plates. The regularization by 



PROPERTIES OF THE VACUUM 5 

analytic continuation in d used here sets this energy to zero. Special cases of the 
result (2.13) are 

d= 1, 

d=2, 

d=3, 

n 1 
E=---:::: -0.065/ a, 

48 a 

'(3) L 2 
E=---:::: -0.024L/a, 

16n a2 
(2.15 ) 

For small d, E ~ -I/ d; the dimensionless coefficient in E decreases for intermediate 
d, but tends to -00 as d -+ 00, taking on a minimum value of - 2.5 X 10 - 6 at 
d ~ 25.2. 

An alternative scheme for regularizing the sum (2.9) is to impose an (exponential) 
cutoff A in longitudinal momentum, as for electromagnetic modes in material media 
(e.g. [3 D. Writing A. = n/aA, the analogue of Eq. (2.10) is 

00 

L nde - .An = Li _ie - .A) = e.ACP(e - .A, -d, 1) 
n = 1 

= T(I + d) A. - (d + I) + e.A f '(-d - j) (-.~Y , 
j = O J. 

(2.16) 

where cP is the Lerch transcendent [12]. When A -+ 00 this reduces to (2.10), except 
for a singular term whose dependence on a is cancelled by the factor ad in (2.9). As 
mentioned above, terms independent of a have no physical significance, and may 
differ between regularization schemes. Identical a-dependent terms are always 
obtained in momentum-cutoff and dimensional continuation schemes. Each term in 
the sum (2.16) is positive, and the result is correspondingly positive. However, the 
physically relevant a-dependent piece in the energy need not be positive. 

The cutoff in longitudinal momentum should be distinguished from a cutoff at a 
fixed mode quantum number n. The latter scheme cannot be implemented through 
properties of the boundaries. If used, it would yield a divergent a-dependent energy. 

Another method consists in writing the sum L~= I w k as Iims~ _ 1 L ~= I w k s. 

Analytic continuation of the resulting' function then yields a form identical to (2.10) 
[13, 14]. 

Equation (2.5) is for fields satisfying Bose-Einstein statistics. The sign is reversed 
for the case of Fermi-Dirac statistics. When equal numbers of fermion and boson 
states exist (as in supersymmetric models), the leading divergent contributions to 
(2.5) cancel. The total vacuum energy of an infinite volume vanishes when 
corresponding boson and fermion states have equal masses (for the divergent part 
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alone to cancel, only the sums of the m 2 and m4 need be equal [15 D. The total 
Casimir energy in a finite volume will not vanish except with special boundary 
conditions (such as the periodic ones discussed below). 4 (With bag boundary 
conditions, or in a spherical Einstein universe [17], the total Casimir energy does not 
vanish.) 

The sum (2.5) directly gives the energy for a field which exists in a cavity, and 
vanishes outside. The field could instead exist everywhere, but vanish on two thin 
plates. It is convenient for regularization to enclose such a system in a large cavity. 
The total energy of the system is then a sum of contributions from the resulting three 
spaces. With dimensional regularization, the energy of the field in the outer spaces 
goes to zero as their size goes to infinity. With other regularization schemes, a 
divergent contribution may remain. 

We now treat the case of a massive scalar field . The analytic continuation of the 
sum (2.9) for non-zero m is derived in the Appendix. The result for the energy is 

+ (am)(d+ I ) (r (_ d + 1 ) + 4 ~ K (d + 1)/zC2amn)) ] , 
2 ;-:1 (amn) (d+ I)/2 

(2.17) 

where K is a modified Bessel function. The first term in brackets gives a contribution 
to the total energy independent of a and is therefore dropped. The first term in 
parentheses corresponds to a constant energy density and would occur even in the 
absence of the planes. It is cancelled by addition of a constant to the Hamiltonian 
density . The finite physically relevant energy is thus (cf. [18]) 

E= ~ L d- I (4n) - (d + I)/2 (ma)(d + l ) ~ K (d+ I) /2(2amn) 
ad n~1 (amn)(d + 1)/2 

L d- I n(d+ I) /2 00 

= _ ~(4n) - (d + I)/2 2 fo dtt(d - I) /2e- (am)2/nt(t't(O;t) _ I) 

L d - I 00 J (t) t - (d + 1)/2 
= - -- (4n) - (d+ 1)/ 2 vn2(d + 1) /2 f dt ----"(d=--+:...cI'-"')/-'72-;--'-, ___ _ 

ad 0 e"t/ma - 1 

L d - I 1 00 

= -~2 (2n) - d/2 f o dttd- I 10g(1 - e- 2/ t2+(ma)\ (2.18) 

4 This is analogous to the fact that supersymmetry is broken in finite temperature systems because 
boson fields satisfy periodic boundary conditions in imaginary time, while fermion fields satisfy 
antiperiodic ones l16J. Both boson and fermion fields may, however, satisfy periodic boundary 
conditions in space. 
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where & is a Jacobi theta function (see Appendix), and J is a regular Bessel function. 5 

Numerical results for (2.18) (obtained using the second form given) are shown in 
Fig. 2.1. For small m, 

L d - I 
E c:::. - --d- (4n) -(d+ 1) / 2 

a 

[ (d + 1 ) (d - 1 ) 2] X r -2- ((d+ 1)-r -2- ((d-l)(am) + ... 
(2.19) 

(d ~ 3). 

Low modes may be considered responsible for the dependence of the Casimir energy 
on a. When ma ~ 1, the energies of these low modes are dominated by m and approx­
imately independent of a, so that the physical Casimir energy decreases: 

E _ - --- - e- 2ma • 
L d-I 1 (am)d/2 

ad 2 4n 
(2.20) 

As d increases, the contribution of transverse momenta become more important, and 
E decreases less rapidly with ma, as seen in Fig. 2.1. 

For the Neumann boundary condition (2.2b), the sin appearing in the modes (2.4) 
becomes cos, but the final results (2.13) and (2.18) for the physical energy E remain 
the same. 

0.8 

E¢o(m) 

E¢o(m~O) 

0.6 

0.4 

0.2 

ma 

FIG. 2.1 . Casimir energy density for a mass m scalar field satisfying Dirichlet boundary conditions 
on two planes a distance a apart in d space dimensions. 

S The third form given is an example of the Walfisz formula discussed in [19] . 
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With the periodicity condition (2.3) the modes of the field become 

(2.21 ) 

and the energy in this case is E",p(a) = 2E"'D(aI 2), where E"'D(a) denotes the physical 
energy (2.18) for Dirichlet boundary conditions. 

3. CASIMIR ENERGY IN MORE COMPLICATED REGIONS 

This section derives the Casimir energy for a scalar field in a general hyper­
cuboidal region, with p sides of finite length a I"'" ap and d - p sides with length 
L ~ ai' 

The simplest results are obtained by taking the field periodic in the finite length 
directions (case P), corresponding to compactification of p space dimensions to a 
hypertorus TP . The modes of the field then consist of a simple product of modes 
analogous to (2.21) for each direction. The total energy is obtained by summing 
separately over the ni for each set of modes: 

00 

X L 

(3.1 ) 

[( nl) 2 (np)2J(d -P+I)/2 - + ... + -
a l ap 

The necessary mUltiple sum may be written in terms of the Epstein zeta function 
[20,21] 

00 

Zp(l l a p ••. , ll ap; s) = L (3.2) 
n) =-oc> 

where the prime indicates that the term for which all ni = 0 is to be omitted. This 
function obeys the reflection formula [201 

(3.3) 
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analogous to (2.11) and derived in the Appendix. Using (3.3) the Casimir energy 
(3 .1) becomes 

(3.4 ) 

This result is again finite for all d ~ p and p > O. It is always negative. 
The asymptotic formulae given in the Appendix show that when one of the lengths 

a 1"'" ap becomes much larger than the others, the energy tends exponentially to that 
obtained with only p - 1 finite ai . 

When all the ai = a some simplification may occur. Figure 3.1 gives a plot of 
Wp(S) = Wp(a l = I, ... ,ap= I;s) in this case for several values of p.6 The 
corresponding physical energies for a few values of d are listed in the first column of 
Table I. Notice that if all ai are constrained to be equal, the Casimir energy is 
negative and leads to a force which tends to contract the system. 

1.6 ,---,--.--r- -rr- --,---,,-----n----,--,--,----.--,----or-r----n 

Wp (s) 
1.4 

1.2 

1.0 

0.8 

0.6 

0.4 

0.2 

2 3 4 5 6 
5 

7 8 9 10 12 

FIG. 3.1. Values of the function Wp(s) defined in Eg. (3.3), giving the Casimir energy of a massless 
scalar field constrained to be periodic with unit period along p orthogonal directions in s - 1-
dimensional space. 

6 Accurate numerical evaluation of the necessary sums is easily achieved by a direct summation in 
which progressively larger sets of terms are averaged together as n; increases. 



10 AMBJ0RN AND WOLFRAM 

TABLE I 

Casimir Energies Divided by Volume for Massless Scalar (qJ) and Vector (A) Fields in d Dimensions 
Satisfying Periodic (P), Dirichlet (D), Neumann (N), Perfect Conductor (C), and "Bag" (B) Boundary 

Conditions on Each Surface of p -Dimensional Unit Hypercubes 

d p E~p E~D E~N EAC 

- 0.13 - 0.13 - 0.13 

2 I - 0. 19 - 0.024 - 0.024 - 0.024 
2 2 - 0.71 +0.041 - 0.22 - 0.22 

3 1 - 0.11 -0.0069 - 0.0069 - 0.014 
3 2 - 0.31 +0.0048 - 0.043 - 0.038 
3 3 - 0.81 - 0.016 - 0.29 +0.092 

4 I - 0.085 - 0.0025 - 0.0025 - 0.0075 
4 2 - 0.19 +0.00081 - 0.013 - 0.011 
4 3 - 0.39 - 0.0016 - 0.088 +0.0096 
4 4 - 0.85 +0.0061 - 0.33 - 0.044 

5 I - 0.065 - 0.0010 - 0.0010 - 0.0041 
5 2 - 0.15 +0.00012 - 0.0051 - 0.0046 
5 3 - 0.27 - 0.00031 - 0.019 + 0.0012 
5 4 - 0.48 +0.00050 - 0.073 - 0.0045 
5 5 - 0.95 - 0.0025 - 0.37 + 0.021 

Some special values of Zp(s)=Zp(a l = 1, ... ,ap= l;s) are [22]: 

Zo(s)=o, 

ZI(S) = 2C(s), 

Z4(S) = 8(1 - 22- S)( ( ~ ) C ( ~ - 1), 

Zg(S) = 16(1 _ 21-S/2+24 - S)(( ~) C( ~-3), 

EA n 

- 0.24 
+0.04 1 

- 0.014 
- 0.038 
+0.092 

- 0.0075 
- 0.025 
- 0.047 
+0.14 

- 0.0041 
- 0.015 
- 0.055 
- 0.055 
+0. 18 

(3.5) 

where {J(S)=L~= o(-IY(2n+l) - S and {J(I)=nI4, {J(2)=G=::O.915 (G is 
Catalan's constant), {J(3) = n3/ 32. Zis) apparently cannot be expressed as a product 
of one-dimensional sums. 

Figure 3.2 shows the energy divided by volume for p = 2 systems as a function of 
a21 a I. In all cases, the minimum energy is achieved when a 1 = a2. When a2 ~ a 1 the 
energy tends exponentially to the result obtained for infinite a 2 , as mentioned above. 
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0 

-0.1 
-0.05 

-0.2 

E E -0 .1/ 

-0.15 
-0.4 

-0.5 
I 100 

- 0.2 '--...J...._-'---'_-'-_..1..---' 
I 10 100 

0 2/0 1 

FIG. 3.2. Casimir energy divided by volume for a massless scalar field in d space dimensions 
constrained to be periodic with periods a, and a2 along two orthogonal directions. 

Figure 3.3 gives contour plots of the energy divided by volume for systems with 
p = 3 in the case d = 3 as a function of a2/aI and a3/aI • Again, the minimum energy 
is achieved in the symmetric configuration a I = a 2 = a3 • Similar behaviour appears to 
occur for higher values of p. A system of fixed volume containing scalar fields with 
periodic constraints therefore attains its minimum energy when all a j are equal. 

FIG. 3.3. Contour plot for the energy divided by volume of a massless scalar field in three space 
dimensions constrained to have periods a" a2 and a J along the three directions. The energy is always 
negative. Regions shaded lighter correspond to more negative energies. 
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The analogue of Eq. (3.4) for a massive scalar field is 

Eq)a! , ... , ap ;p; d; m) = -~L d- Pa! ... apmd+ 1(2 yin) - (d+ I) (3.6) 

X [r (- d +2 1 ) + 2 n, =f_ ~ f K(d + 1) /2(m V(al n!)2 + ... + (a pnp)2) ]. 
~ np=-oo (m/2V(a l n!)2 + ... + (apnp)2))(d+I)/2 

Notice that as in Eq. (2.17) above, the first term here corresponds to a constant 
energy density throughout the volume, and may be cancelled by a constant term in 
the Hamiltonian density. The remaining physical energy is always negative. 

Imposing only periodicity constraints, the quantum numbers nj specifying modes of 
a scalar field may each run over all integer values. The mode for which all nj = 0 
carries zero energy when m = 0 and is therefore irrelevant. However, with the 
Dirichlet boundary conditions (2.2a), each quantum number is restricted to the range 
1 ,,:;; nj":;; 00. Similar, the Neumann condition (2.2b) implies 0 ":;; nj ":;; 00. Using the 
results 

N N N N 

L L f(n l , ••• , np) = 2- P L [1 - On,] ... L [1 - Onp] fen w" np), 
nl = 1 np = I nl =-N np =- N 

(3.7) 
N N N N 

L L fen! , ... , np) = 2- P L [1 + On,] ... L [1 + Onp] f(n w " np) 
n, =O np =O n, =-N np = - N 

valid for functionsf even in the np one may write the energies obtained with Dirichlet 
(D) and Neumann (N) boundary conditions in terms of the result (3.4) as 

E"'D(a p ••• , ap ;p; d; m) 
N 

p 

= 2- P L L 
j = 1 Ii" .... j j) 

(
-1 )P-j 
+1 E",p(2a j , '''., 2a jj ; ); d - p +}; m), (3.8) 

where the final sum is over distinct sets {iI'"'' ij } with all i, ":;; P and i I of- i2 .... Since 
the E ", p are always negative, this result implies that the energy obtained with 
Neumann boundary conditions is also negative in all cases. With Dirichlet boundary 
conditions, however, the energy may be positive. In the limit d --+ 00 (p fixed), the 
sum is dominated by the} = 1 term in which the smallest of the a j appears. The 
limiting energy is infinitely negative, as for the case p = 1. 

The second two columns of Table I give the Casimir energies of massless scalar 
fields satisfying Dirichlet and Neumann boundary conditions on the surface of a 
hypercube (all a j equal). 

As in the 'periodic case, the Casimir energy for a field satisfying Neumann 
boundary conditions leads to a force which tends to deform a fixed volume confining 
region into a cube. 

The case of Dirichlet boundary conditions is more complicated. In the minimum 
energy shape for a particular value of d and a given volume it appears that some 
number r of lengths a j are small and equal, and the rest are large. At least for 
2 ,,:;; d":;; 6, r = 1 when d is even, and r = d when d is odd. When d becomes greater 
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0.005 ,--,---,--,----,---,---, 0.0005,-,---,---,--,---,-, 

o 
o 

E E - 0.0005 

-0.005 
-0.0010 

-0.010 L---'---_'---'----'-_~~ -0.0015 L---'---_-'---'----'-_--'---' 
I 10 100 I 10 100 

02/0, 0 2/0, 

E -2.5xI0-6 
-3 xlQ-5 

- 5x 10 -5 L, --'--'--C'O;:--'---'-:!.'OO 

02ia , 

- 3.5 xlO - 6 L, -'---'--,';,0:--'---'----,;,00 

0 2/0, 

13 

FIG. 3.4. Casimir energy divided by volume for a massless scalar field satisfying Dirichlet boundary 
conditions on the sides of a rectangular a I X a2 "tube" in d space dimensions. 

o 
...... 
'" o 

FIG. 3.5. Contour plot for the energy divided by volume of a massless scalar field satisfying 
Dirichlet boundary conditions on the sides of an a, X a2 X a'3 box in three space dimensions. Regions 
shaded darker correspond to higher energies. The thick contour is at zero energy. 
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than about 5.7, the energy for the symmetrical p = 2 case ceases to be positive, and 
for d ~ 25, the energy for symmetrical p = 2 becomes lower than that for p = 1. 
Figure 3.4 shows the energy divided by volume for the case p = 2 as a function of 
a2la l : the development of a minimum at a l = a2 as d increases is evident. Figure 3.5 
gives a contour plot of the Casimir energies with p = 3 for the case d = 3 as a 
function of a3/a l and a2l a l • Again the lowest-energy configuration is the 
symmetrical one a I = a2 = a3 • 

4. CASIMIR ENERGY FOR FIELDS WITH SPIN 

The mode energies for fields satisfying periodicity constraints are always the same 
as in the corresponding scalar (spin less ) case. 7 Hence the total Casimir energy is 
given by the scalar field result multiplied by relevant spin mUltiplicity factors 
(negative for fermions). 

Dirichlet and Neumann boundary conditions for scalar fields have no direct 
generalization to fields with spin. 

The simplest general condition is that the action for a field should vanish outside a 
specified volume. For massless vector (spin 1) fields, this corresponds to bag 
boundary conditions, as discussed below. For a massless spinor (spin 1/ 2) field 
between two parallel planes this boundary condition yields a Casimir energy: In 
higher dimensional hyper-cuboids, the presence of corners prevents solutions to the 
massless Dirac equation with these boundary conditions. 8 Even with p = 1, no 
solutions exist for a massive spinor field [15]. 

Consistent boundary conditions may be formulated for a massless vector 
("photon") field in d space dimensions. The field strength is represented by a totally 
antisymmetric rank-2 tensor F#v' The dual of this tensor is defined as F:, "" " # d - I = 
6#1"" "#d _ IVJ.FvJ.. The field satisfies the equations 

(4.1 a) 

(4.1b) 

We first consider a cavity with walls of infinite conductivity. The field then 
satisfies the boundary condition 9 

n#F* = 0 
,U. V)·· . Vd -2 

(4.2) 

7 Fields in equilibrium at finite temperature satisfy such constraints; the energy density of a (non­
interacting) field at finite temperature is correspondingly given by the spin multiplicity factor times the 
result for a scalar field at the same temperature. 

S Solutions nevertheless exist in a sphere [23 J. 
9 In the usual case of superconductors in four dimensions, this condition becomes n · B = 0, 

n X E = O. In d space dimensions, define a generalized electric field E; = Fo; where i is a space index 
1, ... , d. To avoid infinite currents in the conductor, all components of Ei not along n~ must vanish. In the 
conductor, E; = 0 so that F k i = 0 for all directions k, I orthogonal to n. These constraints imply 
condition (4.2). 
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on each wall with spacelike normal vector nil. In determining modes of the field, it is 
convenient to introduce potentials All such that 

and to work in the "radiation" gauge 

Ao=O, 

o;A;= O. 

(4.3a) 

(4.3b) 

The modes of the field in a conducting hyper-cuboid with p pairs of faces In d­
dimensional space are then 

p 

A; = a; cos(k;xJ n sin(kjxj ) e;k,.xr- ;wl 

j = 1 
Nd 

p 

(1 ~ i ~p), 

Aj = ibj n sin(k{x{) e;krxr- ;wl 

{ = 1 

(p <j~ d), 

k; = nnja;, 

W = y'k; + k~. 

where gauge condition (4.3) implies (cf. [24]) 

(4.4) 

(4.5) 

The modes in (4.4) may have 0 ~ n; < 00. Their energies are the same as in the scalar 
case (2.4). Condition (4.5) connects quantum numbers associated with different 
directions, and forbids modes for which two or more of the n; vanish. The total 
Casimir energy may then be written in terms of the scalar field result (3.4, 3.8) as 

EAc(al , ... , ap;p; d; m = 0) = (d - 1) E(JJD(a l , ... , ap ;p; d; m = 0) (4.6) 

p 

+ L E(JJD(a l ,···,a; _I,a; +I,··.,ap;p-l;d-l;m=O). 
; = 1 

The Casimir energies obtained in the symmetrical configuration a l = ... = ap for 
several cases are given in the fourth column of Table I. 10 For low values of d, the 
energy is positive for odd p > 1, and negative otherwise. Figure 4.1 shows the energy 
divided by volume with p = 2 as a function of a2ia l • For d :::; 6, the minimum energy 

10 The result for d = 3, p = 2 agrees with that obtained in [71 with momentum cutoff regularization. 
The speculation of [131 based on the scalar field calculation that this result should be different in dimen­
sional or zeta function regularization is unfounded : it was implicitly based on incorrect counting of elec­
tromagnetic field modes. 
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FIG. 4. 1. Casimir energy divided by volume for a massless vector field enclosed in a perfectly 
conducting rectangular a I X a, "tube" in d space dimensions. 

o ...... 
'" o 

FIG. 4.2. Contour plot for the energy divided by volume of a massless vector field in a perfectly­
conducting a I X a, X a 3 box in three space dimensions. Regions shaded darker correspond to higher 
energies. The thick contour is at zero energy. 
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is achieved with a l = az; for larger d, a l }> a2 gives smaller energy. Figure 4.2 gives a 
contour plot of the energy divided by volume in the case d = p = 3 as a function of 
a21a l and a3la l • When d = 3, a l = a2 = a3 gives the maximum energy. The minimum 
energy is achieved when a l = a2 ~ a3 • In three dimensions, Casimir energy should 
thus tend to deform closed conducting boxes of fixed volume into long tubes. For 
d;:;: 6, a l ~ a2 , a3 , ••• is the minimum energy configuration. 

An alternative to the perfect conductor boundary condition (4.2) is obtained by 
requiring the action for the vector field to vanish outside a bounded region. Inserting 
the necessary step function in the action integral, and varying with respect to the 
potential A /J' one obtains at the boundary the constraint II 

(4.7) 

where n/J is a spacelike normal vector. This boundary condition is assumed in the bag 
model for hadrons in QCD. Constraint (4.7) is dual to constraint (4.2). For d= 3, 
this implies identical Casimir energies in the two cases. The modes of a field subject 
to (4.7) are obtained from (4.4) on interchanging sin and cos. The total energy is 
given in terms of the scalar field result «3.4) and (3.8)) by 

p 

= '" '" (d-j)E(j) (a i , ••• ,ai . ;p-j+ l;d-j+ l;m=O), (4.8) ~ ~ D I p - )+ I 
j = l (i1, oo*! ip _J+ tl 

The last column of Table I lists results for this energy with a l = ... = ap in a variety 
of cases. The energy with p = 2 is shown as a function of a21a I in Fig. 4.3. Maximum 

- 0.0004 i-r----:c:::r:::;:::j:=:t==j 

-0.0006 
-0.01 

-0.0008 

E -0.0010 

-0.0012 

-0.0014 

- 0 .0 4 '---'--'---'---'---'---' -0.001 6 '---'--'---'---'---'---' 
I 100 I 10 100 

°2 / °1 

FIG. 4.3. Casimir energy divided by volume for a massless vector field satisfying " bag" boundary 
conditions on the sides of an Q, X Q, "tube" in d space dimensions. 

" In three. dimensions this becomes n X B = 0, n . E = 0, as appropriate at the surface of a material 
containing infinitely mobile magnetic monopoles. 



18 AMBJ0RN AND WOLFRAM 

energy appears to be achieved when a l = ... ap • The minimum energy for a given 
volume is attained when a l = ... ap _ 1 ~ ap • 

A massive vector field satisfying the Proca equation in d space dimensions has d 
degrees of freedom; the corresponding massless field would have d - 1 degrees of 
freedom. One may formally impose boundary conditions (4.2) and (4.7) even on a 
massive vector field. The results are obtained by replacement of the factors d - 1 and 
d - j in Eqs. (4.6) and (4.8) with d and d - j + 1, respectively, and with m equal to 
the mass of the vector field. The zero mass limits of the corresponding energies do 
not coincide with the zero mass results obtained above (and given in Table I). 
However, as shown in [25], Eq. (4.2) no longer gives the boundary condition on a 
perfect conductor for massive vector fields. The additional (longitudinal) polarization 
state for massive vector fields is found to decouple in the limit m -+ 0, and thus 
presumably contributes no Casimir energy 12 (cf. [26]). The bag boundary condition 
(4.6), which allows no momentum flux outside a bag, nevertheless maintains its 
physical significance even for massive vector fields. For d = 3, the small mass limit of 
the Casimir energy with this boundary condition is - 0.021 for p = 1 and -0.19 for 
p = 3. These results clearly differ from those for a genuinely massless vector field 
given in Table 1. 

For massless spin-2 fields, no physical boundary conditions appear to be consistent 
with the gauge invariance of the Lagrangian. 

5. DISCUSSION AND EXTENSIONS 

The calculations of Section 3 and 4 were performed only for the case of cuboidal 
cavities. The Casimir energy is, however, not expected to be sensitive to the detailed 
shape of the cavity (cf. [6]). Comparison of the electromagnetic Casimir energies for 
three-dimensional spheres and cubes bears out this expectation. Table I gives the 
Casimir energy of a cubical cavity with side length a as E:::: O.092/a, yielding an 
energy divided by volume of E/V:::: 0.092/ V4/ 3• The corresponding energy for a 
spherical cavity of radius r is E :::: 0.062/r [5, 6, 8] yielding E / V:::: -0.100/ V4/3, very 
close to that for a cube. 

A further simplification in the calculations of Sections 2, 3 and 4 was to assume 
that the field existed only inside the cavity. In some physical situations, the field may 
also exist outside the cavity, satisfying appropriate boundary conditions on the 
exterior as well as interior surface of the cavity wall. Nevertheless, as mentioned in 
Section 2, fields exterior to a pair of parallel plates do not affect the Casimir energy 
associated with the plates. In systems with p > 1, however, exterior fields are expected 
to affect the Casimir energy. Any divergences associated with external mode sums 

12 The modes of a massive vector field in a cuboidal cavity are complicated when correct boundary 
conditions are imposed [25]: the sum necessary to obtain the Casimir energy cannot be performed 
analytically. 
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should cancel in the computation of physical Casimir energy differences. 13 The 
contribution of exterior fields for cuboidal regions is difficult to calculate (the 
necessary modes are discussed in [28D. For a spherical region, inclusion of exterior 
modes reduces the Casimir energy per unit volume from 0.100 to 0.073 [5, 6, 8]. The 
energy per unit area for a circle with both interior and exterior modes included is 
~0.040 [29] while the Casimir energy for the interior of a unit square is ~0.041. 

In Sections 2, 3 and 4 we considered only the total Casimir energy of a cavity, and 
not the energy density as a function of position. Forces exerted on walls confining a 
field depend only on this total energy. However, gravitational effects may depend on 
the local energy density. 

The energy density for fields with periodicity constraints is always independent of 
position. For massless fields, this energy density is finite. For massive fields, a single 
divergence proportional to the total volume appears. As in Section 2, this may be 
cancelled by addition of a constant to the Hamiltonian density (a "cosmological 
term" or "bag constant"). 

In the presence of explicit boundaries the possible divergences and "surface" 
Lagrangian counterterms become more complicated. For example, for a scalar field 
the energy-momentum tensor with minimal coupling diverges like b - (d + 1) when the 
distance b from a boundary tends to zero [30]. With conformal invariant coupling, 
the divergences in the energy-momentum tensor are proportional to b- d times the 
curvature of the boundary [30-32]. With dimensional regularization, the formal 
integral of such pure power divergences is zero, and thus does not affect the total 
Casimir energy. The origin of divergences in the local energy density is presumably 
the unphysical assumption of a precisely localized boundary. Such a boundary could 
be maintained only with an infinite binding energy which must compensate the 
infinite local Casimir energy at the boundary. The binding energy of the boundary 
depends only on the form of the boundary itself. It is, for example, independent of the 
separation between two boundary planes, and thus does not contribute to the Casimir 
force. 

Sections 2, 3 and 4 considered Casimir energy resulting from the modification of 
modes in quantized fields associated with the introduction of boundaries. The modes 
are also modified by the presence of localized "particles." A polarizable particle 
perturbs the modes of the electromagnetic field in a large box. The perturbations 
associated with the polarizable electrically-neutral particles lead to "van der Waals 
forces" between the particles [33,34]. For positive polarizability, these forces are 
always attractive. 

There are two other common interpretations of van der Waals forces. In the first 
(e.g. [35 D, the forces arise from two-photon exchange. The corresponding Feynman 
diagram contains a closed photon loop, which represents vacuum fluctuations in the 
electromagnetic field, perturbed by two insertions representing the two particles. An 
integration is performed over the possible momenta of the virtual intermediate 

13 Finite results require the regularization parameter to be taken independent of the size of the 
system: if a cutoff on mode number n is used, divergences may remain 127]. 
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photons. In the second interpretation [36,37], the form (2.5) of the zero-point fluc­
tuations in the electromagnetic field is assumed, and the resulting force of attraction 
on macroscopic surfaces is calculated. 

Given the van der Waals forces between a pair of particles, a simple scheme would 
take the Casimir forces between surfaces as a superposition of forces between their 
constituent particles. A conducting surface may be taken to consist of a collection of 
polarizable particles. According to the simple scheme, the Casimir forces between 
conducting surfaces would then always be attractive. The results of Section 4 show 
that in practice they are often repulsive (as in the case of a cubical cavity). The 
simple scheme fails for essentially two reasons. First, the presence of the boundaries 
modifies the modes of the electromagnetic field, and thus changes the virtual photon 
propagator and the spectrum of the zero-point fluctuations in the electromagnetic 
field. Second, whenever the boudary is connected (as when p > 1), it is not possible to 
separate the "self-energy" of the boundary from the true Casimir energy of the 
confined field. In the case of two parallel planes, the simple scheme nevertheless leads 
to a correct Casimir energy. This result is probably fortuitous: the scheme is known 
to fail for p > 1 and probably fails with non-planar boudaries even with p = 1. 

The failure of superposition for van der Waals forces is in principle amenable to 
experimental investigation. The repulsive nature of Casimir forces in a spherical 
cavity could perhaps be seen in the behaviour of small bubbles (possibly in liquid 
4He). 

In physical systems, the assumption of perfectly conducting cavity walls holds at 
best only for frequencies much lower than those characteristic of the interatomic 
spacing. The Casimir energies of dielectric systems may be given as integrals over the 
dielectric constant e(w) [8,36,37]. The decrease in conductivity at high frequencies 
(leading to free transmission of high modes by the cavity walls) appears to affect 
only details of Casimir energies: their approximate magnitude and sign is left 
unchanged. 

6. ApPLICATIONS 

We discuss in this section several potential consequences of Casimir energies, 
mostly for microscopic phenomena. 

Sections 3 and 4 showed that the total Casimir energies of finite cavities may be 
negative. (An example is a sufficiently elongated conducting cavity containing elec­
tromagnetic field in three dimensions.) Such negative energies violate the dominant 
energy condition commonly postulated in classical general relativity (e.g. [38]). 
Failure of the dominant energy conditions renders the Hawking-Penrose singularity 
theorems impotent. (Theorems are also invalidated by violations of the strong energy 
condition p ~ - p/3 [39].) The total energy (or mass) of a cavity is negative only if 
the energy of its walls is sufficiently small. The calculation of the wall energies can be 
performed only with an explicit physical model for their construction. One suspects 
that the result will show that an isolated system with negative total mass cannot 
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exist. 14 If such a system were possible, then the usual vacuum should be unstable and 
decay into such systems. 15 

In simple models, composite particles are often taken to consist of a bag containing 
approximately free fields. An early semiclassical model for the electron involved a 
charged spherical conductor, whose positive electrostatic energy was cancelled by 
negative Casimir energy [40,41]. The requirement of cancellation implied a definite 
value for the electromagnetic coupling constant a. In practice, a spherical (zero 
angular momentum) conducting cavity or shell has positive [5] rather than negative 
electromagnetic Casimir energy, and no value of a yields a stable system. The QCD 
bag model takes hadrons to consist of a bag containing approximately free quark and 
gluon fields, yielding again a positive Casimir energy [42]. However, in a model with 
scalar constituents, the results of Section 4 show that binding of a composite particle 
by Casimir energy is potentially possible. 

Casimir energy may also be important in determining the structure of the vacuum 
state in interacting field theories. According to a simple model (e.g. [43 D, the 
vacuum state in QCD consists of a "foam-like" collection of regions ("bubbles") of 
low field strength, separated by walls of high field strength. The size of the bubbles is 
governed by the characteristic distance ~ 1 / A at which the effective QCD coupling 
constant becomes strong. Similarly, in QED and quantum gravity [44], a foam 
structure associated witht the increasing strength of the effective coupling at very 
short distances might be expected. Many phenomena may contribute in determining 
the structure of the foam. The properties of the walls are crucial, but can presumably 
be found only by consideration of the complete interacting field theory. The bubbles 
may contain for example magnetic fields whose energy density determines their size. 
However, a universal feature is the presence of Casimir energy arising solely from the 
confinement of the fields in bubbles. Section 4 shows that in, for example, the case of 
QCD or QED in three space dimensions, this Casimir energy leads to a force which 
tends to deform bubbles of fixed volume into long tubes. (In a foam, the total volume 
of each bubble should remain fixed.) If Casimir energy is dominant, this suggests that 
the vacuum in QCD should consist of a foam of long tubes rather than approx­
imately spherical bags. 

For certain dimensionalities and boundary conditions, the Casimir energy is 
minimized when some of the dimensions of a system are very long compared to the 
others. In such cases, bubbles of a certain dimensionality should become very thin in 
some directions and very long in others, so that the dimensionality of their interior is 
effectively reduced. The bubbles in the vacuum state for an interacting field theory in 

14 Interactions within a collection of positive and negative classical electric charges contributes a 
negative energy, but this negative energy is always overwhelmed by positive self energy of the charges. 
Similarly, the gravitational binding energy of a classical collection of masses is apparently always 
overwhelmed by kinetic energy, yielding a positive total energy. Similar compensation may occur for 
quantum mechanical Casimir energy. 

IS The lowest energy state in quantum gravity might nevertheless consist of an assembly of small 
(almost) closed universes with negative Casimir energies. 
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d> 3 space dimensions could thus deform as a result of Casimir forces into bubbles 
which are long in, say, 3 directions but short in d - 3. Excitations along the three 
long directions could be approximately massless, but those along the short directions 
could be unobservable because of their large masses. Casimir energy could thus 
potentially lead to spontaneous reduction in the effective dimensionality of a field 
theory. 

A complete spatially finite universe also exhibits a non-zero Casimir energy. The 
resulting pressure may well be anisotropic, as in the case of physical boundaries. An 
intriguing possibility is that in a high dimensional universe, Casimir energy could 
cause collapse along some directions, and expansion along others (cf. [45 D, thereby 
reducing the apparent dimensionality of spacetime. A quantitative investigation of 
this possibility would require evaluation of the Casimir energy in anisotropic 
universes (e.g., governed by static mixmaster metrics, as recently considered in [46]). 

7. CASIMIR ENERGIES AT FINITE TEMPERATURE 

In this section, we consider free fields in finite volumes, maintained in thermal 
equilibrium at a temperature T = I/fJ. Introducing a partition function Z for the 
complete system, one obtains as usual 

- 1 
F=pIOg(Z), 

a 
E = afJ 10g(Z), 

s = - aF = fJ2!..... (~IOg(Z») 
aT afJ fJ ' 

where F is the Helmholtz free energy, E the total energy and S the entropy. 

(7.1 ) 

The partition function Z at finite fJ may be obtained from the path integral 
expression for the vacuum-to-vacuum amplitude by taking an imaginary time coor­
dinate, in which boson fields have periodicity fJ. 

We consider first a scalar field with mass m, constrained to have periodicities 
Q I' ... ' Qp in p space directions. The field is maintained in thermal equilibrium at a 
temperature T = I/fJ, and thus has period fJ in the imaginary time direction. 
Suppressing an irrelevant normalization factor, the vacuum-to-vacuum amplitude is 
given by 

(7.2) 

where the partition function may be written 
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(7.3) 

x f dd - PkTlog [(2~nr + (2:JJnf + ... + C::nf +k~+m2l 

In the zero temperature limit fJ ---'00 the no summation in (4.3) is replaced by an 
integral over ko = 2nno/fJ and the partition function becomes 

where an irrelevant additive constant independent of a j has been dropped. The 
corresponding energy is then given by E = F = ~ L W n' as in Sections 2 and 3 above. 

In the case m = 0, writing log(x) = lim,-->o(O/&) x', one may use Eqs. (3.2) and 
(A.l3) to obtain 

( ) _ 1 d- p (d+l) - (d + J) / 2 (fJ 'd) (75) log Z -TfJaJ ... apL r -2- n Zp +J ,ap ... ,ap' + 1. . 

A convenient representation at low temperatures (high fJ) is obtained using 
Eq. (A.13): 

_I d-p (d+l) - (d+J) /2 ( 'd) 10g(Z) - TfJaJ ... apL r -2- n Zp a J , ••• , ap' + 1 

00 

+ L 
00 L f dd - PkT log(l _ e -lltk j.+ (hnl /QI) 2+oo o+(hn p/Qpl')l il ) 

np = -00 

r(d-p+ l)(d-p+ I) Ld - p 
+ n(d- p+ 1) / 2 fJd - P (d =1= p). (7.6) 

( 2nn 0 / 2 2) X Kd/2 TV (a J nJ) + ... + (apnp) 

-Ld- paJ ... apfJ-dr(d; I) n - (d+J) /2(d+ I) (d =1= p). (7.7) 
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FIG. 7.1. Energy and entropy as a function of inverse temperature fl for a massless scalar field in 
three space dimensions constrained to have unit periods along p orthogonal directions. 
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When p = 0, no constraints are imposed, and Eqs. (7.5), (7.6) and (7.7) yield the 
standard result for a free Bose gas: 

E(f3,p = 0, d) = L d/3 - (d + I) dn - (d + 1)/ 2 (d + 1). (7.8) 

Figures 7.1a and b show the internal energy and entropy deduced from Eqs. (7.5), 
(7.6) and (7.7) with d= 3 and p= 1,2 using relations (7.1). At low temperatures 
(high /3), only the first term of Eq. (7.6) survives. The internal energy tends to the 
zero temperature Casimir value. The entropy tends to zero, reflecting the uniqueness 
of the vacuum state (third law of thermodynamics). The second and third terms of 
Eq. (7.6) represent respectively the contributions of discrete modes in the p 
constrained directions and continuous modes in the d - p unconstrained directions, 
weighted with the Bose-Einstein distribution at temperature 1/ /3. The modes in the 
constrained directions have a non-zero minimum energy, and the second term in (7.6) 
becomes exponentially small when the temperature falls below this minimum energy 
(f3 ~ I in Figs. 7.1a and b. The modes in the unconstrained directions have zero 
minimum energy, yielding a power law form for the third term. In the high­
temperature limit (f3 -t 0), only the third term of Eq. (7.7) survives, yielding the 
Planck result (7.8), independent of p. 

When d -t p, the ( function in Eq. (7.5) exhibits a pole. The third term in Eq. (7.6) 
gives the contribution of modes in the d - p = ° unconstrained directions, and is 
expected to vanish, but instead formally exhibits a pole. The term is seen to vanish if 
the contributions of low-frequency modes are regularized by a finite L before the 
dimensionality is taken to zero. In this case, the partition function for a free Bose gas 
is given approximately by 

(~)J ddklog(l-e - lllkl) 
2n Ikl > hK/L ( ) 

7.9 
2nd/2 00 \ (_L _) d T( d + 1, 2nK/3n/ L) _ T( 1, 2nK/3n/ L ) I 

= T(d/ 2 + 1) Kd n2;1 I 2nK/3 nd+ 1 n \' 

where T(a, x) = f~ ta - 1e - t dt is the incomplete gamma function. For positive integer 
d (7.9) yields the result (7.8) with corrections of order (f3/L). For d = 0, Eq. (7.8) 
yields zero in the limit L -t 00. Thus when d = p, Eq. (7.6) is valid if the last term is 
set to zero. 

In the high-temperature expansion (7.7) the pole at d = p appears in the first term. 
It may removed in analogy to the low-temperature case above by subtracting the free 
Bose gas result (7.8) yielding for the first term 
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= ~!!;, +Ld-PT (P ~ d) n(p - d) /Z [Zp CI , ... , :p;P - d) - ZI (~ ;P - d) ] 

=+Ld- PT (P ~ d) n(p - d) /Z [Z~ (:1 , ... , :d; 0) - Z; (~ ; 0) l (7.10) 

where Z;(a; s) = (djds) Zp(a; s). In the case a, = ... = ap this becomes 

log (~) ++T(~) n - d/zZd_ ,(a l = I, ... ,ap= I;d) 

+ L'" L log(1_e - h v'n r+ ···+nJ- 1 ). 

n l nd _ 1 

(7.11 ) 

The resulting internal energy and entropy for d = P = 3 are given in Fig. 7.1 c. In the 
high-temperature limit, the first correction to the p-4 Planck form is O(log(fJ)). 

The results for fields at finite temperature obeying periodicity constraints may be 
extended to fields with other boundary conditions using the relations (3.8) and (4.6), 
(4.8) just as in the zero temperature case. (In the analogue of Eq. (3.8), however, the 
sum over j must be extended to include j = 0, since for finite p, E <lJp "* 0 when P = 0.) 
With periodic and Neumann boundary conditions, modes with n l = nz = ... = np = 0 
exist, and provide a power correction to the zero temperature Casimir energy at high 
p. With Dirichlet, perfect conductor or bag boundary conditions, no such modes can 
occur, and the corrections are exponential. In the high-temperature limit, corrections 
to the Planck form with progressively lower powers of temperature are proportional 
to the areas of progressively smaller subspaces of the boundary. When d = 3, the 
high-temperature result for a vector field obeying either perfect conductor or bag 
boundary conditions is 

(7.12) 

where C(aJ is a complicated function of the a i (which could be derived from 
relations given in [20 D. 

8. ENERGY AND ENTROPY OF FINITE QUANTUM SYSTEMS 

In this section, we discuss the results of Section 6 on the energy and entropy of 
quantized fields in finite volumes at non-zero temperature. 

It was recently suggested [2] that the entropy of any finite quantum mechanical 
system should be bounded by 

s ~ 2nER, (8.1 ) 
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FIG. 8.1. Energy (E) and entropy (S) of an electromagnetic field in a perfectly conducting three­
dimensional cubic cavity. The ratio S/E exhibits a definite maximum. 

where E is the energy of the system, and R is the radius of a circumscribing sphere. 
The equality is realized for a black hole. Bound (8.1) would imply an absolute lower 
limit on the energy required to transmit information (negentropy) at a particular rate 
[48]. 

Since the entropy of a system cannot be negative, the validity of the bound (8.1) 
requires that E ~ O. However, Sections 3 and 4 show that a finite physical system can 
have E < 0. 16 The bound (8.1) is therefore incorrect. Figure 8.1 shows the energy and 
entropy of an electromagnetic field in a cubical three-dimensional cavity. Notice that 
the maximum value of S/E is achieved at the point for which S/E = p, as expected 
from Ref. [2]. Figure 8.2 shows Sand E for a cavity with side lengths in the ratio 
1: 1: 4, and provides an example of a system for which (8.1) fails. 

The existence of a bound such as (8.1) is suggested by the second law of black 
hole dynamics [2]. This law is however violated by the presence of negative energies 
through the failure of the dominant energy condition. 

Other reasons for and examples of the violation of (8.1) have very recently been 
given in [49]. 
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FIG. 8.2. Energy and entropy of an electromagnetic field in a perfectly conducting three-dimensional 
cavity with sides in the ratio I: I: 4. The energy is negative for sufficiently low temperatures, and no 
bound on S/E exists. 

16 As discussed in Section 6, however, the "walls" of such systems may nevertheless compensate their 
negative energy to yield a net positive energy which respects bound (8. 1). 
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APPENDIX: MODE SUMS 

This Appendix derives formulae for analytic continuation and limiting behaviour of 
mode sums used in Sections 2 and 3. 

We consider first the one-dimensional massive mode sum (cf. (2.9)) 

( s) 00 [ ( m ) 2 (n ) 2] - 5/ 2 S = n - 5/2 r - 2: - + - , 
2 n =-oo n a 

Re[s 1 > 1. (A. I) 

We require an analytic continuation of S valid for s negative. Introducing the Jacobi 
& function 

00 

&(z; x) = 2: e -"n2xe 2"nz (A.2) 
n = -00 

one may use the integral representation of the gamma function to write 

(A.3) 

Applying Jacobi's transformation 

&(z; x) = _1_ e"(Z'/X)& (~;~) 
Vx IX X 

(A.4) 

S becomes 

This form provides an analytic continuation for all values of s away from the pole at 
s = 1. 

Performing the integral in (A.5) for each term in the sum (A.2) one obtains the 
large m expansion 

am 1-5 [ (S - I ) 
S = n(I -5 ) / 2 r -2- + 2 

00 

2:' 
n = -00 

K I _sC2m I an I) J 
(m lan l)( 1 5)!2 ' 

(A.6) 

where K is a modified Bessel function, and the prime indicates omission of the n = 0 
term in the sum. Some integral representations of the sum in (A.6) are given in 
(2.18). 

An analytic continuation for multi-dimensional mode sums is obtained in direct 
analogy with (A.5) using the generalized Jacobi & function defined by 

p 

&(z 1> ••• ' zp; XI , ... , xp) = TI &(z;; xJ. 
; = I 

(A.7) 
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The corresponding generalization of the large m expansion (A.6) is thus 

( s) 00 00 [ (m ) 2 (n) 2 (n ) 2] - s/ 2 n - s/ 2r - 2..: ... 2..:' - + --...!.. + ... + ~ 
2 n, = -oo np= - oo n G, Gp 

(A.8) 

In the massless case m = 0, all mode sums may be expressed in terms of the 
Epstein zeta function (3.2) 

00 00 
Zp(G, , ... , Gp ; s) = 2..: 2.:' [(n,G,)2 + ... + (n pGp)2] - S/ 2 (s > p), (A.9) 

An integral representation for this function in terms of the generalized Jacobi {1 

function is 

(¢n) - S/ 2 r ( ~ ) Z(G" .•. , Gp ; s) 

_ (2 2) ;: - s/2f oo d S/2- '(-'l(0 O. 2 2) I) -- -+-- +.. xx vp , ••• , ,G,X, ••. ,GpX -
S p-s , 

+ ;:(s - p) / 2 f OO dyy <P - S)/ 2- LCl (0 O· ~ ~) - I) 
~ V -p , ••• , , 2 , ••• , 2 ' 

'n G, Gp 

(A.IO) 

where ¢P/ 2 = G, ••• Gp • This representation gives an analytic continuation for Z except 
for a pole at p = s. The reflection formula (3.4) 

(A.II) 

follows. 
Several further representations for Z appropriate in different limiting cases may be 

obtained from (A. 10). In the limit Gp ~ G, , •.. , Gp _ , one may sum first over n, , ..• , n p _ " 

and then use an analogue of (A.8) with m = nGpnp to obtain 

= G~ -s2n<p -s- ')!2r (S - ~ + I) (s _ p + I) 
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00 00 

+ (2nr S - p )!2 

(A.12) 

The last term in both forms falls ofT exponentially with api a;. When p -+ s, the first 
term becomes (2/(s - p)) a~- s -log 4n, and thus exhibits a pole. 

For ap ~ ai'"'' ap_ 1 ' a convenient representation is 
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