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Physical processes are viewed as computations, and the difficulty of answering questions about 
them is characterized in terms of the difficulty of performing the corresponding computations. Cel­
lular automata are used to provide explicit examples of various formally undecidable and computa­
tionally intractable problems. It is suggested that such problems are common in physical models, 
and some other potential examples are discussed. 

PACS numbers: 02.90.+p, O1.70.+w, OS.90.+m 

There is a close correspondence between physical 
processes and computations. On 6ne hand, theoretical 
models describe physical processes by computations 
that transform initial data according to algorithms 
representing physical laws. And on the other hand, 
computers themselves are physical systems, obeying 
physical laws. This paper explores some fundamental 
consequences of this correspondence.! 

The behavior of a physical system may always be 
calculated by simulating explicitly each step in its evo­
lution. Much of theoretical physics has, however, 
been concerned with devising shorter methods of cal­
culation that reproduce the outcome without tracing 
each step. Such shortcuts can be made if the computa­
tions used in the calculation are more sophisticated 
than those that the physical system can itself perform. 
Any computations must, however, be carried out on a . 
computer. But the computer is itself an example of a 
physical system. And it can determine the outcome of 
its own evolution only by explicitly following it 
through: No shortcut is possible. Such computational 
irreducibility occurs whenever a physical system can 
act as a computer. The behavior of the system can be 
found only by direct simulation or observation: No 
general predictive procedure is possible. Computa­
tional irreducibility is common among the systems in­
vestigated in mathematics and computation theory} 
This paper suggests that it is also common in theoreti­
cal physics. Computational reducibility may well be 
the exception rather than the rule: Most physical 
questions may be answerable only through irreducible 
amounts of computation. Those that concern idealized 
limits of infinite time, volume, or numerical precision 
can require arbitrarily long computations, and so be 
formally undecidable. 

A diverse set of systems are known to be equivalent 
in their computational capabilities, in that particular 
forms of one system can emulate any of the others. 
Standard digital computers are one example of such 
"universal computers": With fixed intrinsic instruc­
tions, different initial states or programs can be de­
vised to simulate different systems. Some other ex­
amples are Turing machines, string transformation 
systems, recursively defined functions, and Diophan-

tine equations.2 One expects in fact that universal 
computers are as powerful in their computational capa­
bilities as any physically realizable system can be, so 
that they can simulate any physical system.3 This is 
the case if in all physical systems there is a finite den­
sity of information, which can be transmitted only at a 
finite rate in a finite-dimensional space.4 No physically 
implementable procedure could then short cut a com­
putationally irreducible process. 

Different physically realizable universal computers 
appear to require the same order of magnitude times 
and information storage capacities to solve particular 
classes of finite problems.5 One computer may be 
constructed so that in a single step it carries out the 
equivalent of two steps on another computer. Howev­
er, when the amount of information n specifying an in­
stance of a problem becomes large, different comput­
ers use resources that differ only by polynomials in n. 
One may then distinguish several classes of problems.6 

The first, denoted P, are those such as arithmetical 
ones taking a time polynomial in n. The second, 
denoted PSPA CE, are those that can be solved with 
polynomial storage capacity, but may require exponen­
tial time, and so are in practice effectively intractable. 
Certain problems are "complete" with respect to 
PSPA CE, so that particular instances of them corre­
spond to arbitrary PSPACE problems. Solutions to 
these problems mimic the operation of a universal 
computer with bounded storage capacity: A computer 
that solves PSPACE-complete problems for any n must 
be universal. Many mathematical problems are 
PSPA CE-complete. 6 (An example is whether one can 
always win from a given position in chess.) And since 
there is no evidence to the contrary, it is widely con­
jectured that PSPACE;t!P, so that PSPACE-complete 
problems cannot be solved in polynomial time. A final 
class of problems, denoted NP, consist in identifying, 
among an exponentially large collection of objects, 
those with some particular, easily testable property. 
An example would be to find an n-digit integer that 
divides a given 2n-digit number exactly. A particular 
candidate divisor, guessed nondeterministically, can be 
tested in polynomial time, but a systematic solution 
may require almost all 0 (2 ft ) possible candidates to be 
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tested. A computer that could follow arbitrarily many 
computational paths in parallel could solve such prob­
lems in polynomial time. For actual computers that al­
low only boundedly many paths, it is suspected that no 
general polynomial time solution is possible. 5 Nev­
ertheless, in the infinite time limit, parallel paths are 
irrelevant, and a computer that solves NP-complete 
problems is equivalent to other universal computers.6 

The structure of a system need not be complicated 
for its behavior to be highly complex, corresponding to 
a complicated computation. Computational irreduci­
bility may thus be widespread even among systems 
with simple construction. Cellular automata (CA) 7 

provide an example. A CA consists of a lattice of 
sites, each with k possible values, and each updated in 
time steps by a deterministic rule depending on a 
neighborhood of R sites. CA serve as discrete approx­
imations to partial differential equations, and provide 
models for a wide variety of natural systems. Figure 1 
shows typical examples of their behavior. Some rules 
give periodic patterns, and the outcome after many 
steps can be predicted without following each inter­
mediate step. Many rules, however, give complex pat­
terns for which no predictive procedure is evident. 
Some CA are in fact known to be capable of universal 
computation, so that their evolution must be computa­
tionally irreducible. The simplest cases proved have 
k = 18 and R = 3 in one dimension,s or k = 2 and 
R = 5 in two dimensions.9 It is strongly suspected that 
"c1ass-4" CA are generically capable of universal com­
putation: There are such CA with k = 3, R = 3 and 
k = 2, R = 5 in one dimension .lo 

Computationally, irreducibility may occur in systems 
that are not full universal computers. For inability to 
perform, specific computations need not allow all com­
putations to be short cut. Though c1ass-3 CA and oth­
er chaotic systems may not be universal computers, 
most of them are expected to be computationally ir­
reducible, so that the solution of problems concerning 
their behavior requires irreducible amounts of compu­
tation. 

As a first example consider finding the value of a 
site in a CA after t steps of evolution from a finite ini­
tial seed, as illustrated in Fig. 1. The problem is speci­
fied by giving the seed and the CA rule, together with 
the logt digits of t. In simple cases such as the first two 
shown in Fig. 1, it can be solved in the time 0 (logt) 

II 

necessary to input this specification. However, the 
evolution of a universal computer CA for a polynomial 
in t steps can implement any computation of length t. 
As a consequence, its evolution is computationally ir­
reducible, and its outcome found only by an explicit 
simulation with length 0 (t): exponentially longer 
than for the first two in Fig. 1. 

One may ask whether the pattern generated by evo­
lution with a CA rule from a particular seed will grow 
forever, or will eventually die OUt. 11 If the evolution is 
computationally irreducible, then an arbitrarily long 
computation may be needed to answer this question. 
One may determine by explicit simulation whether the 
pattern dies out after any specified number of steps, 
but there is no upper bound on the time needed to 
find out its ultimate fate .12 Simple criteria may be 
given for particular cases, but computational irreduci­
bility implies that no shortcut is possible in general. 
The infinite-time limiting behavior is formally unde­
cidable: No finite mathematical or computational pro­
cess can reproduce the infinite CA evolution. 

The fate of a pattern in a CA with a finite total 
number of sites N can always be determined in at most 
kN steps. However, if the CA is a universal computer, 
then the problem is PSPACE-complete, and so pre­
sumably cannot be solved in a time polynomial in N. 13 

One may consider CA evolution not only from finite 
seeds, but also from initial states with all infinitely 
many sites chosen arbitrarily. The value aU) of a site 
after many time steps t then in general depends on 
2.\ t ~ Rt initial site values, where .\ is the rate of in­
formation transmission (essentially Lyapunov ex­
ponent) in the CA.9 In c1ass-1 and -2 CA, information 
remains localized, so that .\ = 0, and a (t) can be found 
by a length O(logt) computation. For c1ass-3 and -4 
CA, however, .\ > 0, and aU) requires an O( r) com­
putation.14 

The global dynamics of CA are determined by the 
possible states reached in their evolution. To charac­
terize such states one may ask whether a particular 
string of n site values can be generated after evolution 
for t steps from any (length n + 2.\ t) initial string. 
Since candidate initial strings can be tested in 0 (t) 
time, this problem is in the class NP. When the CA is 
a universal computer, the problem is in general NP­
complete, and can presumably be answered essentially 
only by testing all 0 (k" + 2At) candidate initial 

FIG. 1. Seven examples of patterns generated by repeated application of various simple cellular automaton rules. The last 
four are probably computationally irreducible, and can be found only by direct simulation. 
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strings. 15 In the limit t -+ 00, it is in general undecid­
able whether particular strings can appear. 16 As a 
consequence, the entropy or dimension of the limiting 
set of CA configurations is in general n)t finitely com­
putable. 

Formal languages describe sets of states generated 
by CA. 17 The set that appears after t steps in the evo­
lution of a one-dimensional CA forms a regular formal 
language: each possible state corresponds to a path 
through a graph with aU) < 2kRI nodes. If, indeed, the 
length of computation to determine whether a string 
can occur increases exponentially with t for computa­
tionally irreducible CA, then the "regular language 
complexity" aU) should also increase exponentially, in 
agreement with empirical data on certain class-3 CA,17 
and reflecting the "irreducible computational work" 
achieved by their evolution. 

Irreducible computations may be required not only 
to determine the outcome of evolution through time, 
but also to find possible arrangements of a system in 
space. For example, whether an x x x patch of site 
values occurs after just one step in a two-dimensional 
CA is in general NP-complete.18 To determine wheth­
er there is any complete infinite configuration that sat­
isfies a particular predicate (such as being invariant 
under the CA rule) is in general undecidable l8 : It is 
equivalent to finding the infinite-time behavior of a 
universal computer that lays down each row on the lat­
tice in turn. 

There are many physical systems in which it is 
known to be possible to construct universal computers. 
Apart from those modeled by CA, some examples are 
electric circuits, hard-sphere gases with obstructions, 
and networks of chemical reactions. 19 The evolution 
of these systems is in general computationally irreduci­
ble, and so suffers from undecidable and intractable 
problems. Nevertheless, the constructions used to 
find universal computers in these systems are arcane, 
and if computationally complex problems occurred 
only there, they would be rare . It is the thesis of this 
paper .that such problems are in fact common.20 Cer­
tainly there are many systems whose properties are in 
practice studied only by explicit simulation or exhaus­
tive search: Few computational shortcuts (often stated 
in terms of invariant quantities) are known. 

Many complex or chaotic dynamical systems are ex­
pected to be computationally irreducible, and their 
behavior effectively found only by explicit simulation. 
Just as it is undecidable whether a particular initial 
state in a CA leads to unbounded growth, to self­
replication, or has some other outcome, so it may be 
undecidable whether a particular solution to a differen­
tial equation (studied say with symbolic dynamics) 
even enters a certain region of phase space, and 
whether, say, a certain n-body system is ultimately 
stable. Similarly, the existence of an attractor, say, 

with a dimension above some value, may be undecid­
able. 

Computationally complex problems can arise in 
finding eigenvalues or extremal states in physical sys­
tems. The minimum energy conformation for a poly­
mer is in general NP-complete with respect to its 
length. 21 Finding a configuration below a specified en­
ergy in a spin-glass with particular couplings is similar­
ly NP-complete. 22 Whenever the stationary state of a 
physical system such as this can be found only by 
lengthy computation, the dynamic physical processes 
that lead to it must take a correspondingly long time. 5 

Global properties of some models for physical sys­
tems may be undecidable in the infinite-size limit Oike 
those for two-dimensional CA). An example is 
whether a particular generalized Ising model (or sto­
chastic multidimensional CA23 ) exhibits a phase tran­
sition. 

Quantum and statistical mechanics involve sums 
over possibly infinite sets of configurations in systems. 
To derive finite formulas one must use finite specifica­
tions for these sets. But it may be undecidable wheth­
er two finite specifications yield equivalent configura­
tions. So, for example, it is undecidable whether two 
finitely specified four-manifolds or solutions to the 
Einstein equations are equivalent (under coordinate 
reparametrization).24 A theoretical model may be con­
sidered as a finite specification of the possible behavior 
of a system. One may ask for example whether the 
consequences of two models are identical in all cir­
cumstances, so that the models are equivalent. If the 
models involve computations more complicated than 
those that can be carried out by a computer with a 
fixed finite number of states (regular language), this 
question is in general undecidable. Similarly, it is 
undecidable what is the simplest such model that 
describes a given set of empirical data. 25 

This paper has suggested that many physical systems 
are computationally irreducible, so that their own evo­
lution is effectively the most efficient procedure for 
determining their future. As a consequence, many 
questions about these systems can be answered only by 
very lengthy or potentially infinite computations. But 
some questions answerable by simpler computations 
may still be formulated. 

This work was supported in part by the U. S. Office 
of Naval Research under Contract No. N00014-80-C-
0657. I am grateful for discussions with many people, 
particularly C. Bennett, G . Chaitin, R. Feynman, 
E. Fredkin, D. Hillis, L. Hurd, 1. Milnor, N. Packard, 
M. Perry, R. Shaw, K. Steiglitz, W. Thurston, and 
L. Yaffe. 

iFor a more informal exposition see: S. Wolfram, Sci. 
Am. 251 , 188 (1984) . A fuller treatment will be given else-
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