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UNIVERSALITY AND COMPLEXITY IN CELLULAR AUTOMAT A 
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The Institute for Advanced Study, Princeton NJ 08540, USA 

Cellular automata are discrete dynamical systems with simple construction but complex self-organizing behaviour. Evidence 
is presented that all one-dimensional cellular automata fall into four distinct universality classes. Characterizations of the 
structures generated in these classes are discussed . Three classes exhibit behaviour analogous to limit points, limit cycles and 
chaotic attractors. The fourth class is probably capable of universal computation, so that properties of its infinite time 
behaviour are undecidable. 

1. Introduction 

Cellular automata are mathematical models for 
complex natural systems containing large numbers 
of simple identical components with local inter
actions. They consist of a lattice of sites, each with 
a finite set of possible values. The value of the sites 
evolve synchronously in discrete time steps accord
ing to identical rules. The value of a particular site 
is determined by the previous values of a neigh
bourhood of sites around it. 

The behaviour of a simple set of cellular auto
mata were discussed in ref. I, where extensive 
references were given. It was shown that despite 
their simple construction, some cellular automata 
are capable of complex behaviour. This paper 

behaviour of cellular automata. This universality 
implies that many details of the construction of a 
cellular automaton are irrelevant in determining its 
qualitative behaviour. Thus complex physical and 
biological systems may lie in the same universality 
classes as the idealized mathematical models pro
vided by cellular automata. Knowledge of cellular 
automaton behaviour may then yield rather gen
eral results on the behaviour of complex natural 
systems. 

r discusses the nature of this complex behaviour, its 
1 characterization, and classification. Based on in
.. vestigation of a large sample of cellular automata, 

Cellular automata may be considered as discrete 
dynamical systems. In almost all cases, cellular 
automaton evolution is irreversible. Trajectories in 
the configuration space for cellular automata 
therefore merge with time, and after many time 
steps, trajectories starting from almost all initial 
states become concentrated onto "attractors". 
These attractors typically contain only a very small 
fraction of possible states. Evolution to attractors 
from arbitrary initial states allows for "self
organizing" behaviour, in which structure may 
evolve at large times from structureless initial 
states. The nature of the attractors determines the 
form and extent of such structures. 

it suggests that many (perhaps all) cellular auto
mata fall into four basic behaviour classes. Cellular 
automata within each class exhibit qualitatively 
similar behaviour. The small number of classes 
implies considerable university in the qualitative 

• Work supported in part by the Office of Naval Research 
under contract number NOOOI4-80-C0657. 

The four classes mentioned above characterize 
the attractors in cellular automaton evolution. The 
attractors in classes 1, 2 and 3 are roughly anal-
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ogous respectively to the limit points, limit cycles 
and chaotic ("strange") attractors found in con
tinuous dynamical systems. Cellular automata of 
the fourth class behave in a more complicated 
manner, and are conjectured to be capable of 
universal computation, so that their evolution may 
implement any finite algorithm. 

The different classes of cellular automaton be
haviour allow different levels of prediction of the 
outcome of cellular automaton evolution from 
particular initial states. In the first class, the out
come of the evolution is determined (with proba
bility I), independent of the initial state. In the 
second class, the value of a particular site at large 
times is determined by the initial values of sites in 
a limited region. In the third class, a particular site 
value depends on the values of an ever-increasing 
number of initial sites. Random initial values then 
lead to chaotic behaviour. Nevertheless, given the 
necessary set of initial values, it is conjectured that 
the value of a site in a class 3 cellular automaton 
may be determined by a simple algorithm. On the 
other hand, in class 4 cellular automata, a particu
lar site value may depend on many initial site 
values, and may apparently be determined only by 
an algorithm equivalent in complexity to explicit 
simulation of the cellular automaton evolution. 
For these cellular automata, no effective prediction 
is possible; their behaviour may be determined 
only by explicit simulation. 

This paper describes some preliminary steps 
towards a general theory of cellular automaton 
behaviour. Section 2 below introduces notation 
and formalism for cellular automata. Section 3 
discusses general qualitative features of cellular 
automaton evolution illustrating the four behav
iour classes mentioned above. Section 4 introduces 
entropies and dimensions which characterize 
global features of cellular automaton evolution. 
Successive sections consider each of the four 
classes of cellular automata in turn. The last 
section discusses some tentative conclusions. 

This paper covers a broad area, and includes 
many conjectures and tentative results. It is not 
intended as a rigorous mathematical treatment. 

2. Notation and formalism 

a ~ t) is taken to denote the value of site 1 In a 
one-dimensional cellular automaton at time step t. 
Each site value is specified as an integer in the 
range 0 through k - I. The site values evolve by \ 
iteration of the mapping 

F is an arbitrary function which specifies the 
cellular automaton rule. 

The parameter r in eq. (2.1) determines the 
"range" of the rule: the value of a given site 
depends on the last values of a neighbourhood of 
at most 2r + I sites. The region affected by a given 
site grows by at most r sites in each direction at 
every time step; propagating features generated in 
cellular automaton evolution may therefore travel 
at most r sites per time step. After t time steps, a 
region of at most I + 2rt sites may therefore be 
affected by a given initial site value. 

The "elementary" cellular automata considered 
in ref. I have k = 2 and r = I, corresponding to 
nearest-neighbour interactions. 

An alternative form of eq. (2.1) is 

a (t) = f[ j~, (Xa V+- 1l] 
I i..J ') t J ' 

j = - r 

(2.2) 

where the (Xj are integer constants, and the function 
f takes a single integer argument. Rules specified 
according to (2.1) may be reproduced directly by 
taking (Xj = k, - j. 

The special class of additive cellular automaton • ~ 
rules considered in ref. 2 correspond to the case in • 
which f is a linear function of its argument modulo . 

-A 
k. Such rules satisfy a special additive super-
position principle. This allows the evolution of any 
initial configuration to be determined by super
position of results obtained with a few basis 
configurations, and makes possible the algebraic 
analysis of ref. 2. 

"Totalistic" rules defined in ref. I, and used in 
several examples below, are obtained by taking 
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(2.3) 

in eq. (2.2). Such rules give equal weight to all sites 
, ~ in a neighbourhood, and imply that the value of a 

site depends only on the total of all preceding 
neighbourhood site values. The results of section 3 

• . suggest that totalistic rules exhibit behaviour char

acteristic of all cellular automata. 
Cellular automaton rules may be combined by 

composition. The set of cellular automaton rules is 
closed under composition, although composition 
increases the number of sites in the neigh
bourhood. Composition of a rule with itself yields 
patterns corresponding to alternate time steps in 
time evolution according to the rule. Compositions 
of distinct results do not in general commute. 
However, if a composition F\F2 of rules generates 
a sequence of configurations with period n, then 
the rule F2F\ must also allow a sequence of 
configurations with period n. As discussed below, 
this implies that the rules F\F2 and F2F\ must yield 
behaviour of the same class. 

The configuration a; = 0 may be considered as a 
special "null" configuration ("ground state"). The 
requirement that this configuration remain invari
ant under time evolution implies 

F[O, 0, ... , 0] = 0 (2.4a) 

and 

f[O]=O. (2.4b) 

All rules satisfy this requirement if iterated at most 
• _ k times, at least up to a relabelling of the k possible 
. values. 

It is convenient to consider symmetric rules, for 

• . which 

F[a;_" . . . , a;+ r] = F[a;+" . .. , a; _r]' (2.5) 

Once a cellular automaton with symmetric rules 
has evolved to a symmetric state (in which 
an +; = an _; for some n and all i), it may sub
sequently generate only symmetric states (as-

suming symmetric boundary conditions), since the 
operation of space reflection commutes with time 
evolution in this case. 

Rules satisfying the conditions (2.4) and (2.5) 
will be termed "legal". 

The cellular automaton rules (2.1) and (2.2) may 
be considered as discrete analogues of partial 
differential equations of order at most 2r + 1 in 
space, and first order in time. Cellular automata of 
higher order in time may be constructed by allow
ing a particular site value to depend on values of 
a neighbourhood of sites on a number s of previous 
time steps. Consideration of "effective" site values 
L~: h mnaV - n) always allows equivalent first-order 
rules with k = m S - 1 to be constructed. 

The form of the function F in the time evolution 
rule (2.1) may be specified by a "rule number" [1] 

RF = L F[a; _" ... , a;+ r]kI:f ~ - r kr - jai +j . (2.6) 
{a; _ r,aj + ,} 

The function f in eq. (2.2) may similarly be 
specified by a numerical "code" 

(2r+ \)(k - \ ) 

Cf = L knf[n] . (2.7) 
n=O 

The condition (2.4) implies that both RF and Cf are 
multiples of k. 

In general, there are a total of kk(2r+ I) possible 

cellular automaton rules of the form (2.1) or (2.2). 
Of these, e r+ I(kr + \)/2 - \ are legal. The rapid growth 

of the number of possible rules with r implies that 
an exponentially small fraction of rules may be 
obtained by composition of rules with smaller r. 

A few cellular automaton rules are "reducible" 
in the sense that the evolution of sites with partic
ular values, or on a particular grid of positions and 
times, are independent of other site values. Such 
cellular automata will usually be excluded from the 
classification described below. 

Very little information on the behaviour of a 
cellular automaton can be deduced directly from 
simple properties of its rule. A few simple results 
are nevertheless clear. 
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First, necessary (but not sufficient) conditions 
for a rule to yield unbounded growth are 

F[ai _" ai - r + I ,· .. ,ai - I' 0, 0, ... ,0] # 0, 

F[O, .. . , 0, 0, ai + I , · · ·, ai + r] # 0, (2.8) 

for some set of ai . If these conditions are not 

fulfilled then regions containing nonzero sites sur
rounded by zero sites can never grow, and the 

cellular automaton must exhibit behaviour of class 
I or 2. For totalistic rules, the condition (2.8) 
becomes 

f[n] # ° (2.9) 

for some n < r. 
Second, totalistic rules for which 

(2.10) 

for all n l > n2 exhibit no "growth inhibition" and 
must therefore similarly be of class I or 2. 

One may consider cellular automata both finite 
and infinite in extent. 

When finite cellular automata are discussed be
low, they are taken to consist of N sites arranged 

around a circle (periodic boundary conditions). 
Such cellular automata have a finite number kN of 

possible states. Their evolution may be represented 
by finite state transition diagrams (cf. [2]), in which 
nodes representing each possible configuration are 
joined by directed arcs, with a single arc leading 

from a particular node to its successor after evo
lution for one time step. After a sufficiently long 
time (less than k N), any finite cellular automaton 

must enter a cycle, in which a sequence of 
configurations is visited repeatedly. These cycles 
represent attractors for the cellular automaton 

evolution, and correspond to cycles in the state 
transition graph. At nodes in the cycles may be 
rooted trees representing transients. The transients 
are irreversible in the sense that nodes in the tree 
have a single successor, but may have several 
predecessors. In the course of time evolution, all 

states corresponding to nodes in the trees ulti

mately evolve through the configurations repre
sented by the roots of the trees to the cycles on 
which the roots lie. Configurations corresponding 

to nodes on the periphery of the state transition 
diagram (terminals or leaves of the transient trees) _. 
are never reached in the evolution: they may occur 

only as initial states. The fraction of configurations 
which may be reached after one time step in 
cellular automaton evolution, and which are there

fore not on the periphery of the state transition 
diagram, gives a simple measure of irreversibility. 

The configurations of infinite cellular automata 
are specified by (doubly) infinite sequences of site 
values. Such sequences are naturally identified as 
elements of a Cantor set (e.g. [3]). (They differ from 

real numbers through the inequivalence of 
configurations such as .111111 ... and 1.0000 ... ). 
Cellular automaton rules define mappings from 
this Cantor set to itself. The mappings are invari

ant under shifts by virtue of the identical treatment 
of each site in eqs. (2.1) and (2.2). With natural 

measures of distance in the Cantor set, the map
pings are also continuous. The typical irre
versibility of cellular automaton evolution is mani
fest in the fact that the mapping is usually not 
injective, as discussed in section 4. 

Eqs. (2.1) and (2.2) may be generalized to several 

dimensions. For r = I, there are at least two 
possible symmetric forms of neighbourhood, con
taining 2d + I (type I) and 3d (type II) sites re
spectively; for larger r other " unit cells" are 
possible. 

3. Qualitative characterization of cellular 
automaton behaviour 

This section discusses some qualitative features 
of cellular automaton evolution, and gives empir
ical evidence for the existence of four basic classes 
of behaviour in cellular automata. Section 4 intro
duces some methods for quantitative analysis of 

cellular automata. Later sections use these meth-

- , 
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ods to suggest fundamental characterizations of 
the four cellular automaton classes. 

Fig. I shows the pattern of configurations gener
• ~ ated by evolution according to each of the 32 

possible legal totalistic rules with k = 2 and r = 2, 
• _ starting from a "disordered" initial configuration 

(in which each site value is independently chosen as 
o or 1 with probability!). Even with such a struc
tureless initial state, many of the rules are seen to 
generate patterns with evident structure. While the 
patterns obtained with different rules all differ in 
detail, they appear to fall into four qualitative 
classes: 

I) Evolution leads to a homogeneous state (real
ized for codes 0, 4, 16, 32, 36, 48, 54, 60 and 62). 

2) Evolution leads to a set of separated simple 
stable or periodic structures (codes 8, 24, 40, 56 
and 58). 

3) Evolution leads to a chaotic pattern (codes 2, 
6, 10, 12, 14, 18, 22, 26, 28, 30, 34, 38, 42, 44, 46 
and 50). 

4) Evolution leads to complex localized struc
tures, sometimes long-lived (codes 20 and 52). 

Some patterns (e.g. code 12) assigned to class 3 
contain many triangular "clearings" and appear 
more regular than others (e.g. code 10). The degree 
of regularity is related to the degree of irre
versibility of the rules, as discussed in section 7. 

Fig. 2 shows patterns generated from several 
different initial states according to a few of the 
cellular automaton rules of fig . 1. Patterns ob
tained with different initial states are seen to differ 

, ' in their details, but to exhibit the same character
istic qualitative features. (Expectional initial states 
giving rise to different behaviour may exist with 

• - low or zero probability.) Fig. 3 shows the 
differences between patterns generated by various 
cellular automaton rules from initial states 
differing in the value of a single site. 

*This sampling and many other investigations reported in 
this paper were performed using the C language computer 
program [4). Requests for copies of this program should be 
directed to the author. 

Figs. 4, 5 and 6 show examples of various sets 
of totalistic cellular automata. Fig. 4 shows some 
k = 2, r = 3 rules, fig. 5 some k = 3, r = 1 rules, 
and fig . 6 some k = 5, r = 1 rules . The patterns 
generated are all seen to be qualitatively similar to 
those of fig. I, and to lie in the same four classes . 

Patterns generated by all possible k = 2, r = 1 
cellular automata were given in ref. 1, and are 
found to lie in classes 1, 2 and 3. Totalistic k = 2, 
r = 1 rules are found to give patterns typical of all 
k = 2, r = 1 rules. In general, totalistic rules appear 
to exhibit no special simplifications, and give rise 
to behaviour typical of all cellular automaton rules 
with given k and r. 

An extensive sampling of many other cellular 
automaton rules supports the general conjecture 
that the four classes introduced above cover all 
one-dimensional cellular automata*. 

Table I gives the fractions of various sets of 
cellular automata in each of the four classes. With 
increasing k and r, class 3 becomes overwhelmingly 
the most common. Classes 1 and 2 are decreasingly 
common. Class 4 is comparatively rare, but be
comes more common for larger k and r. 

"Reducible" cellular automata (mentioned in 
section 2) may generate patterns which contain 
features from several classes. In a typical case, fixed 
or propagating "membranes" consisting of sites 
with a particular value may separate regions con
taining patterns from classes 3 or 4 formed from 
sites with other values. 

This paper concerns one-dimensional cellular 
automata. Two-dimensional cellular automata 
also appear to exhibit a few distinct classes of 
behaviour. Superficial investigations [5] suggest 

Table I 
Approximate fractions of legal totalistic cellular automaton 
rules in each of the four basic classes 

k = 2 k = 2 k = 2 k = 3 
Class r = 1 r=2 r =3 r = 1 

I 0.50 0.25 0.09 0.12 
2 0.25 0.16 0. 11 0.19 
3 0.25 0.53 0.73 0.60 
4 0 0.06 0.06 0.07 
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('od(' ', '! (1 10100) 

coc1p ~)A ( 111 010) f'",j,o fiO (1111!lO) 
•• -..c"-0 

Fig. Ic. 

Fig. I a--c Evolution of all possible legal one-dimensional totalistic cellular automata with k = 2 and r = 2. k gives the number of 
possible values for each site, and r gives the range of the cellular automaton rules. A range r = 2 allows the nearest and next-nearest 
neighbours of a site to affect its value on the next time step. Time evolution for totalistic cellular automata is defined by eqns. (2.2) 
and (2.7). The initial state is taken disordered, each site having values 0 and I with independent equal probabilities. Configurations 
obtained at successive time steps in the cellular automaton evolution are shown on successive horizontal lines. Black squares represent 
sites with value I; white squares sites with value O. All the cellular automaton rules illustrated are seen to exhibit one of four qualitative 
classes of behaviour. 

that these classes may in fact be identical to the 
four found in one-dimensional cellular automata. 

4. Quantitative characterizations of cellular 

automaton behaviour 

automaton evolution generates deviations from 
statistical randomness. In a random sequence, all 
e possible subsequences ("blocks") of length X 
must occur with equal probabilities. Deviations 
from randomness imply unequal probabilities for 
different subsequences. With probabilities p ~x) for 
the k X possible sequences of site values in a length 

This section describes quantitative statistical 
measures of order and chaos in patterns generated 
by cellular automaton evolution. These measures 
may be used to distinguish the four classes of 

behaviour identified qualitatively above. 

X block, one may define a specific "spatial set ' , 

entropy" 

Consider first the statistical properties of 
configurations generated at a particular time step 
in cellular automaton evolution. A disordered ini
tial state, in which each site takes on its k possible 
values with equal independent probabilities, is 
statistically random. Irreversible cellular 

(4.1) 

where 8(p) = I for p > 0 and 8(0) = 0, and a 

specific "spatial measure entropy" 

I kX 

s ~)(X) = -Xj~1 py) logkPYX) · (4.2) 

-. 
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k =2. 1'= 2. totaltsl. l c rule. code 10 (00 1010) 

'. 

k =G. r=:2. tolnlist. lc rille, code \'2 (001100) k -=2 . r =2 , lolnli~tlC rul e, code 12 (001100) 

k =2. r = 2. tolalistic rul e, code 2 4 (011000) k =2. p =2. l oln h st lc n!le. code 2· \ (011000) 
-:- .• • ~ "'Ii'DIj .l" - ~ -.-- -:- ••• ~ "'Ii'DIj.l" - ~ __ 

r =2. totalistic rule . codl"' 52 t 10100) k = 2. r ~ 2, lolnllst.lc nlle . cadl' 52 (1 10100) 

Fig. 2a. 
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k =2 . r = 2 , tota li stI c rule , code 12 k = G. r =2 , totali s ti C rule . code ..... , .... ...,...,...a.r-

k =2 , r "" Z, t o t a li s tI c rule . cod e 2·1 (O il 00 0) k = 2. r ",,2, t o t a li s ti C mie , code 2 4 (0 11000) 
.~ -"A~- .,~-- I • '.1!f4 - -...¥ .19' .... ..,.. 

k =2 , r =2, t ot fl h sl lC rule . ("o dE ' S2 ( 110100) 

I~-
k =2 . r =2. t o tali s li c rule , c ode 52 110100 ) 

Fig.2b. 

Fig. 2. Evolution of some cellular automata illustrated in fig . I from several disordered states. The first two initial states shown differ 
by a change in the values of two sites, the next by a change in the values of ten sites. The last state is completely different. 
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codl' 2 4 (0 1 10nO) 
.r'-

code 20 (0 10 100) 

Fig. 3. Differences modulo two between patterns generated by the time evolution of several cellular automata illustrated in fig . I with 
disordered states differing by a change in the value of a single site. 
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k =3. r I, tolltll"llc rule , code 333 (0110100) 

~ ~ VSI'-~ IY" .... ", • • ~ 
k c 3. r 1. t olttlLsllC rul(' , code 336 (0 1 101 10) k '=" J. r ""' 1. lolali s lt{' rul e. cod e 339 (0 11 0 120) 

k -"- :J . p , ] . t o tOj[ !> t lC I'ulc, cod e 34 2 (U1 I U ~ UOJ k :1. r I , tota ll s ll c rille . codt ' :14 5 (0110 2 10) k :1. 1" ""' 1. totalis ti c rllil' , cod I' 14 tl (0 110220 ) 

k < I, r = l . t o \HII ",lH' !" uk, cod e 3~) 1 (0 111000) k ~: 1. r I . t o tuJl s llC rul e, cod e 3~J4 (0 111 0 10 ) k :1. r 1. lo lltll~ 1 1(' nilI' . cod !' :I~,i (01 1 1020) 

...... ...... y .. ~ ........... ........ ~ 

k =3 . r = l, lole.listie rule, code 363 (0 111110) k =3, r = 1. tollt.listi e rule. code 368 (01 t 1120) 

Fig. 4. Examples of the evolution of typical cellular automata with k = 3 (three possible site values) and r = 1 (only nearest neighbours 
included in time evolution rules). White squares represent value 0, grey squares value I, and black squares value 2. The initial state 
is taken disordered, with each site having values 0, I and 2 with equal independent probabilities. 

.' 
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I I, "H~lh nd.:, cod., 100 (01100 100) 

,- -. -,_. !I.:t. ..... I:-.. ~l· "'''''-' .. · .... :'':.(':""u-: -.-:. .... ~ ....... ::;i,... ' .. 
... """" ... 

k ~ ,I' J. \0\" 11"[1<' nde, cod., 10·1 (0] 10]000) 
.~>:-..... ,. 

k -~. I' -:1, lottll lst.IC nile, evd e 106 (0 1 101010) 
Of • k ~ 1'<1, l o l ll h" liC nil." cude IOU (0110 11 00) 

k ~, r' J lotull s t lC nile. code l];~ (01 []OOOU) ...,. . .....:- . .. "" .......•. ~. 

k -2, r :1 \ O\ .. IISllc nile, code IlB (01110110) II :2. I" :1, 10\ "\1 .'; \1{" 1"11 1..,. eo, \, - 120 (0111100ll) t o \llil sLI< " nil.:, ('odt: i 22 (011 J 1( 10) . , 
~~"""'-'20<0...0 

Fig. 5. Examples of the evolution of typical k = 2, r = 3 cellular automata from a disordered initial state. 
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~ " r I h. 1,,1o~1"· ,."j,' "" j,. l' I ~, (IHlI)OIlUUt){l l tJ.\0J I 1"\,,II~I'" ","1 .. ,-''''< I ~ll (O(IOUOOOUUIIIHI) 

---=--:-....:--.....- _. - -,..;,.:-. -..:.,:--... -~,..':--.-XC- ",'--·"-'--'.1 '" .- r-

k ~>, r 1 \,,11111"\11" 1"lJ 1",. code !tit! \OOIH1UnooO I I GU) k ~,. " 1 , t "t "lo".t,, · 1"I , le. end.· 11:1:'> (OOOOtIOOOtll 1:10) 

k :;, r ", I , t o \ .. h~\lc nil .. , co. t" 175 ({)OOOOOOOOI~OOI k ', r _ l . l u tbhsllc n,I." ,,,,de 180 (OOOQQoOOOI2 10) 

k ~), r= 1. to\"lostic n ile , code 190 (000000000 L 230) 

Fig. 6. Examples of the evolution of typical k = 5, r = I cellular automata from a disordered initial state. Darker squares represent 
sites with larger values. 
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In both cases, the superscript (x) indicates that 
"spatial" sequences (obtained at a particular time 
step) are considered. The "set entropy" (4.1) is 

. - determined directly by the total number N(x)(X) of 

length X blocks generated (with any nonzero 
probability) in cellular automaton evolution ac-

'. cording to ' 

(4.3) 

In the "measure entropy" (4.2) each block is 

weighted with its probability, so that the result 

depends explicitly on the probability measure for 
different cellular automaton configurations, as in

dicated by the subscript J.I.. Set entropy is often 
called "topological entropy"; measure entropy is 
sometimes referred to as "metric entropy"* (e.g. 

[6]). For blocks of length I, the measure entropy 

s~<)(1) is related to the densities Pi' of sites with each 
of the k possible values i. s~x)(2) is related to the 
densities of "digrams" (blocks of length 2), and so 

on. In general, the measure entropy gives the 
average "information content" per site computed 
by allowing for correlations in blocks of sites up to 
length X. Note that the entropies (4.1) and (4.2) 
may be considered to have units of (k-ary) bits per 

unit distance. 

In the equation below, s~l stands for either set 
entropy s(x) or for measure entropy s~) . 

The definitions (4.1) and (4.2) yield immediately 

(4.4) 

The first inequality is saturated (equality holds) 
only for "equidistributed" systems, in which all 
nonzero block probabilities p~x) are equal. The 
second inequality is saturated if all possible length 
X blocks of site values occur, but perhaps with 

"The terms "set" and "measure" entropy, together with " set" 
and "measure" dimension, are introduced here to rationalize 
nomenclature. 

unequal probabilities. sp(X) = 1 only for "X
random" sequences [7], in which all F possible 
sequences of X site values occur with equal proba
bilities. In addition to (4.4) , the definitions (4.1) 
and (4.2) imply 

(4.5) 

s:;<)(X) = 0 if and only if just one length X block 
occurs with nonzero probability, so that s(x)(X) = 0 

also. As discussed below, the inequality (4.5) is 
saturated for class 1 cellular automata. 

Both set and measure entropies satisfy the 
subadditivity condition 

(XI + X2)s~l(XI + X2).:s; Xls ~l(XI) + X2s~l(X2)' 
(4.6) 

The inequality is saturated if successive blocks of 

sites are statistically uncorrelated. In general, it 
implies some decrease in s~l(X) with X (for exam

ple, s~l(2X) .:s; s ~l(X)) . For cellular automata with 
translation invariant initial probability measures, 
stronger constraints may be obtained (analogous 
to those for "stationary" processes in commu

nication theory [8]) . First, note that bounds on 
s~l(X) valid for any set of probabilities p~x) also 
apply to s(x)(X), since s(x)(X) may formally be 

reproduced from the definition (4.2) for s~x)(X) by 
a suitable (extreme) choice of the p~x). The proba-
b'I' () I Ity P x [ai' .. . ,ax] for the sequence of site values 
ai ' ... , ax is given in general by 

- p(X) [a ] (x)[ I - I,· · ·,ax- IP aXal, ... ,aX_I], (4.7) 

where p (X) [axl ai' ... ,ax _ I] denotes the conditional 
probability for a site value ax, preceded by site 

values al, . .. ,aX - I' Defining a total entropy 

and corresponding conditional total entropy 
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S~x)[axlal ' .. . , aX_I] 

= - I>(x)[a l , . .. , ax] 10gkP (x) [ax I ai ' ... , ax_ d 
:s; snal' .. . , ax] , (4.9) 

one obtains 

X-I 
Xs ~x)(X) = S~X)(X) :s; ---x- S~)(X - I) 

I 
+ - S(x)(X) X ~ . (4.10) 

Hence, 

s ~l(X) :s; s~l(X - 1) , (4.11 ) 

so that the set and measure entropies for a trans
lationally invariant system decrease monotonically 
with the block size X. One finds in addition in this 
case that 

Ll i (Xs ~l(X)) = (X + l)s ~l(X + I) - 2Xs ~l(X) 

+ (X - l)s ~l(X - I):s; 0 , (4.12) 

so that Xs~l(X) is a convex function of X. 
With the definition s(x)(O) = I , this implies that 

there exists a critical block size Xc, such that 

s(X)(X) = I , 

s(x)(X) < I, 

for X < Xc, 
(4.13) 

The significance and values of the cri tical block size 
Xc will be discussed in section 7 below. 

The entropies s(x) and s ~x) may be evaluated 

either for many blocks in a single cellular automa
ton configuration, or for blocks in an ensemble of 
different configurations. For smooth probability 
measures on the ensemble of possible initial 
configurations, the results obtained in these two 
ways are almost always the same. (A probability 
measure will be considered "smooth" if changes in 
the values of a few sites in an infinite configuration 
lead only to infinitesimal changes in the probability 
for the configuration.) The set entropy s(x) is 

typically independent of the probability measure 
on the ensemble, for any smooth measure. The 
measure entropy s ~x) in general depends on the 
probability measure for initial configurations, al- - . 

though for class 3 cellular automata, it is typically 
the same for at least a large classes of smooth _ • 
measures . Notice that with smooth measures, the 
values of s(x)(X) and s ~x)(X) are the same whether 

the length X blocks used in their computation are 
taken disjoint or overlapping. 

The entropies (4.1) and (4.2) are defined for 
infinite cellular automata. A corresponding 
definition may be given for finite cellular automata, 
with a maximum block length given by the total 
number of sites N the cellular automaton. The 
entropies s(x)(N) and s ~x)(N) are related to global 

properties of the state transition diagram for the 
finite cellular automaton . The value of s(x)(N) at a 

particular time is determined by the fraction of 
possible configurations which may be reached at 
that time by evolution from any initial 
configuration . The limiting value of s(x)(N) at large 

times is determined by the fraction of configuration 
on cycles in the state transition graph. Starting 
from an initial ensemble in which all kN 
configurations occur with equal probabilities, the 
limiting value of s ~x)(N) is equal to the limiting 
value of s(x)(N) if all transient trees in the state 

transition graph for the finite cellular automaton 
are identical , so that all configurations with non
zero probabilities are generated with the same 
probability (cf. [2]) . 

As mentioned in section 2, the configurations of 
an infinite cellular automaton may be considered 
as elements of a Cantor set. For an ensemble o( . 

disordered configurations (in which each site takes 
on its k possible values with equal independent, • 
probabilities), this Cantor set has fractal dimension 
I. Irreversible cellular automaton evolution may 
lead to an ensemble of configurations correspond
ing to elements of a Cantor set with dimension less 
than one. The limiting value of s(x)(X) as X - H I ) 

gives the fractal or " set" dimension of this set. 
Relations between entropy and dimension may 

be derived in many ways (e.g. [6, 9]). Consider a set 
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of numbers in the interval [0, I] of the real line. 
Divide this interval into k b bins of width k - b , and 
let the fraction of bins containing numbers in the 
set be N(b). For large b (small bin width), this 
number grows as k db • The exponent d is the 

' . Kolmogorov dimension (or "capacity" (cf. [8])) of 
the set. If the set contains all real numbers in the 
interval [0, I], then N(b)=kb, and d= I, as ex
pected. If the set contains only a finite number of 
points, then N(b) must tend to a constant for large 
b, yielding d = O. The classic Cantor set consists of 
real numbers in the interval [0, I], whose ternary 
decomposition contains only the digits 0 and 2. 
Dividing the interval into 3b equal bins, it is clear 
that 2b of these bins contain points in the set. The 
dimension of the set is thus log) 2. This dimension 
may also be found by an explicit recursive geo
metrical construction, using the fact that the set is 
"self-similar", in the. sense that with appropriate 
magnification, its parts are identical to the whole. 

The example above suggests that one may define 
a "set dimension" d according to 

d = lim -bl logkN(b) , 
b~ OC! 

(4.14) 

where N(b) is the number of bins which contain 
elements of the set. The bins are of equal size, and 
their total number is taken as k b• Except in partic
ularly pathological examples*, the dimension ob
tained with this definition is equal to the more 
usual Hausdorff (or "fractal") dimension (e.g. [II]) 
obtained by considering the number of patches at 
arbitrary positions required to cover the set (rather 

•. than the number of fixed bins containing elements 
of the set). 

The definition (4.14) may be applied directly to 
• . cellular automaton configurations. The k b "bins" 

may be taken to consist of cellular automaton 
configurations in which a block of b sites has a 

* Such as the set fonned from the end points of the intervals 
at each stage in the geometrical construction of the classic 
Cantor set. This set has zero Hausdorff dimension, but Kol
mogorov dimension log) 2 (9). 

particular sequence of values. The definition (4.3) 
of set entropy then shows that the set dimension is 
given by 

d(X) = lim s(X)(X). 
x~ OC! 

(4.15) 

A disordered cellular automaton configuration, in 
which all possible sequences of site values occur 
with nonzero probability (or an ensemble of such 
configurations), gives d(x) = I, as expected. Simi
larly, a homogeneous configuration, such as the 
null configuration, gives d(x) = O. 

The set of configurations which appear at large 
times in the evolution of a cellular automaton 
constitute the attractors for the cellular automa
ton. The set dimension of these attractors is given 
in terms of the entropies for configurations appear
ing at large times by eq. (4.15). 

Accurate direct evaluation of the set entropy 
s(x)(X) from cellular automaton configurations typ
ically requires sampling of many more than k X 

length X blocks. Inadequate samples yield system
atic underestimates of s(x)(X). Direct estimates are 
most accurate when all nonzero probabilities for 
length X blocks are equal. In this case, a sample of 
k b blocks yields an entropy underestimated on 
average by approximately 

(4.16) 

Unequal probabilities increase the magnitude of 
this error, and typically prevent the generation of 
satisfactory estimates of d(x) from direct simu
lations of cellular automaton evolution. (If the 
probabilities follow a log normal distribution, as in 
many continuous chaotic dynamical systems [12], 
then the exponential in eq. (4.16) is apparently 
replaced by a power [13].) 

The dimension (4.15) is given as the limiting 
exponent with which N(x)(X) increases for large X. 
In the formula (4.15), this exponent is obtained as 
the limit of logk[N(XY/X] for large X. If N(x)(X) 
indeed increases roughly exponentially with X, 
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then the alternative formula 

(4.17) 

is typically more accurate if entropy values are 
available only for small X. 

The set dimension (4.15) may be used to charac
terize the set of configurations occurring on the 
attractor for a cellular automaton, without regard 
to their probabilities. One may also define a "mea
sure dimension" d~x) which characterizes the proba
bility measure for the configurations (cf. [12]): 

d (X) = lim s(x)(X) 
p p ' 

x~ oo 

(4.18) 

It is clear that 

(4.19) 

The measure dimension d~x) is equal to the 
"average information per symbol" contained in the 
sequence of site values in a cellular automaton 
configuration. If the sequence is completely ran
dom (or "oo-random" [7]), then the probabilities 
p ~x) for all k X sequences of length X must be equal 
for all X, so that d~x) = I. In this case, there is no 
redundancy or pattern in the sequence of site 
values, so that determination of each site value 
represents acquisition of one (k-ary) bit of infor
mation. A cellular automaton configuration with 
any structure or pattern must give d~X) < I. 

In direct simulations of cellular automaton evo
lution, the probabilities p~X) for each possible length 
X block are estimated from the frequencies with 
which the blocks occur. These estimated proba
bilities are thus subject to Gaussian errors. Al
though the individual estimated probabilities are 
unbiased, the measure entropy deduced from them 
according to eq. (4.2), is systematically biased. Its 
mean typically yields a systematic underestimate of 
the true measure entropy, and with fixed sample 

size, the underestimate deteriorates rapidly with 
increasing X, making an accurate estimate of d~x) 

impossible. However, since an unbiased estimate 
may be given for any polynomial function of the -• 
p ~x), unbiased estimated upper and lower bounds 
for the measure entropy may be obtained from 
estimates for polynomials in p ~X) just larger and just 
smaller than - p ~x) logkP fx) for 0 s pfx) s I [14]. In 
this way, it may be possible to obtain more accu
rate estimates of s~X) for large X, and thus of d~x). 

The "spatial" entropies (4.1) and (4.2) were 
defined in terms of the sequence of site values in a 
cellular automaton configuration at a particular 
time step. One may also define "temporal" entro
pies which characterize the sequence of values 
taken on by a particular site though many time 
steps of cellular automaton evolution, as illustrated 
in fig. 7. With probabilities p ft) for the F possible 
sequences of values for a site at T successive time 
steps, one may define a specific temporal set en
tropy in analogy with eq. (4.1) by 

-x~ 
(0) 

11 
(b) 

-x~ 

(e) 

(4.20) 

Fig. 7. Space-time regions sampled in the computation of (a) 
spatial entropies, (b) temporal entropies and (c) patch or 
mapping entropies. In case (c), the values of sites in the 
cross-hatched area are completely determined by values in the 
black "rind". 

. . 



See captions overleaf 



Caption to color plates 

Patterns generated by the evolution of typical one-dimensional cellular automata from disordered initial 
states. Successive time steps in the evolution are shown on successive horizontal lines. Each site takes on k 
possible values; value zero is represented by black, 1 by red, 2 by green, 3 by blue, and 4 by yellow. The 
cellular automata in the first column have k = 4 while those in the second column have k = 5. In both 
cases, the range r of the cellular automaton rule is taken to be one. (I am grateful to R. Pike and J. 
Condon of Bell Laboratories for their help in preparing these figures.) 

- " 
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and a specific temporal measure entropy in anal
ogy with eq. (4.2) by 

. - I kT 

s(t)(T) - -- '\ p (/) log p It) (4.21 ) 

'. 

~ - T L., j k j • 

j~1 

These entropies satisfy relations directly analogous 
to these given in eqs. (4.3) through (4.6) for spatial 
entropies. They obey relations analogous to (4.11) 
and (4.12) only for cellular automata in "equi
librium", statistically independent of time. The 
temporal entropies (4.20) and (4.21) may be con
sidered to have units of (k-ary) bits per unit time. 

Sequences of values in particular cellular autom
aton configurations typically have little similarity 
with the " time series" of values attained by a 
particular site under cellular automaton evolution. 
The spatial and temporal entropies for a cellular 
automaton are therefore in general quite different. 
Notice that the spatial entropy of a cellular autom
aton configuration may be considered as the tem
poral entropy of a pure shift mapping applied to 
the cellular automaton configuration. 

Just as dimensions may be assigned to the set of 
spatial configurations generated in cellular autom
aton evolution, so also one may assign dimensions 
to the set of temporal sequences generated by the 
evolution. The temporal set dimension may be 
defined in analogy with eq. (4.15) by 

d (t) = lim s(t)(T) , (4.22) 
T~ co 

and the temporal measure dimension may be 
• -defined by 

• · d~) = lim s~)(T). 
T~co 

(4.23) 

If the evolution of a cellular automaton is peri
odic, so that each site takes on a fixed cycle of 
values, then 

(4.24) 

As discussed in section 6 below, class 2 cellular 
automata yield periodic structures at large times, 
so that the correspondingly temporal entropies 
vanish . 

As a generalization of the spatial and temporal 
entropies introduced above, one may consider 
entropies associated with space-time "patches" in 
the patterns generated by cellular automaton evo
lution, as illustrated in fig. 7. With probabilities 
p V'x) for the FT possible patches of spatial width 
X and temporal extent T, one may define a set 
entropy 

(4.25) 

and a measure entropy 

I k XT 

s(I;x)(T' X) = -- '\ p(t,x) log p (/,X) 
I" TL., j kj' 

j~ 1 

(4.26) 

Clearly, 

s(t) (T) = s(/;x)(T' I) 
(~) (P)" (4.27) 

I s(x)(X) = - s(l;x)(I' X) 
(P) X (P) , • 

If no relation existed between configurations at 
successive time steps then the entropies (4.25) and 
(4.26) would be bounded simply by 

(4.28) 

The cellular automaton rules introduce definite 
relations between successive configurations and 
tighten this bound. In fact, the values of all sites in 
a T x X space-time patch are determined accord
ing to the cellular automaton rules by the values in 
the "rind" of the patch, as indicated in fig. 7. The 
rind contains only X + 2r(T - I) sites (where r is 
the "range" of the cellular automaton rule, defined 
in section 2), so that 

s::;X)(T; X)::;; s(l;x)(T; X)::;; [X + 2r(T - I)] /T. 

(4.29) 
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For large T (and fixed X), therefore 

(4.30) 

If both X and T tend to infinity with T /X fixed, 
eq. (4.30) implies that the "information per site" 
s~;x)(T; X) /X in a T x X patch must tend to zero. 
The evolution of cellular automata can therefore 
never generate random space-time patterns. 

With T--+oo, X fixed, the length X horizontal 
section of the rind makes a negligible contribution 
to the entropies. The entropy is maximal if the 2r 
vertical columns in the rind are statistically inde
pendent, so that 

S(I;X)(OO' X) < 2rs(l) (00) = 2rd(t) (P) , - (P) (P), (4.31 ) 

In addition, 

(4.32) 

where the bounds are saturated for large X if the 
time series associated with different sets of sites are 
statistically uncorrelated. 

The limiting set entropy 

h = lim s(l;x)(T; X) 
T~ oo 

X~ oo 

TIX~ oo 

(4.33) 

for temporally-extended patches is a fundamental 
quantity equivalent to the set (or topological) 
entropy of the cellular automaton mapping in 
symbolic dynamics. h may be considered as a 
dimension for the mapping. It specifies the asymp
totic rate at which the number of possible histories 
for the cellular automaton ihcreases with time. The 
limiting measure entropy 

hp = lim s~;x)(T; X) 
T~ oo 

X~ oo 

TIX~ oo 

(4.34) 

gives the average amount of "new information" 
contained in each cellular automaton configur
ation, and not already determined from previous 

configurations. Eqs. (4.31) and (4.32) show that 

(4.35) 

In addition, 

(4.36) 

The basic cellular automaton time evolution rule 
(2.1) implies that the value a j of a site i at a 
particular time step depends on sites a maximum 
distance r away on the previous time step accord
ing to the function F[a j _ " ••• , a j +,]. After T time 
steps, the values of the site could depend on sites 
at distances up to rT, so that features in patterns 
generated by cellular automaton evolution could 
propagate at "speeds" up to r sites per time step. 
For many rules, however, the value of a site after 
many time steps depends on fewer initial site 
values, and features may propagate only at lower 
speeds. In general, let IIFTII denote the minimum R 

for which the value of site i depends only on the 
initial values of sites i - R, ... , i + R. Then the 
maximum propagation speed associated with the 
cellular automaton rule F may be defined as 

A+ = lim IIFTII/T. 
T~ oo 

(4.37) 

(The rule is assumed symmetric; for nonsymmetric 
rules, distinct left and right propagation speeds 
may be defined.) Clearly, 

(4.38) 

- --2rT---

---2A+ T-

t 
T 

~ 
Fig. 8. Pattern of dependence of temporal sequences on spatial 
sequences, used in the proof of inequalities between spatial and 
temporal entropies. 
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When A+ = 0, finite regions of the cellular au
tomaton must ultimately become isolated, so that 

• - d (l) - h (l) - 0 
(p) - (1') - • (4.39) 

The construction of fig . 8 shows that for any T, 

(4.40) 

In the limit T -H:I) , the construction implies 

(4.41 ) 

The ratio of temporal to spatial entropy is thus 
bounded by the maximum propagation speed in 
the cellular automaton. The relation is consistent 
with the assignment of units to the spatial and 
temporal entropies mentioned above. 

The corresponding inequalities for mapping en
tropies are: 

d~;i) :-s; h (p) :-s; 2A + d~l ' 
h (p) :-s; 2rdV) . 

( 4.42) 

The quantity A+ defined by eq. (4.37) gives the 

maximum speed with which any feature in a cellu
lar automaton may propagate. With many cellular 
automaton rules, however, almost all "features" 
propagate much more slowly. To define an appro
priate maximum average propagation speed, con
sider the effect after many time steps of changes in 

the initial state. Let G (Ix - x ' l; t) denote the 
probability that the value of a site at position x ' is 
changed when the value of a site at position x is 

, -changed t time steps before. The form of 

G(lx - x ' l; t) for various cellular automaton rules 

•. is suggested by fig. 3. G(lx - x ' l; t) may be consid
ered as a Green function for the cellular automaton 
evolution . For large t, G(lx - x ' l; t) typically van
ishes outside a "cone" defined by Ix - x ' i = X+t. X+ 
may then be considered as a maximum average 
propagation speed . In analogy with eqs. (4.41) and 
(4.42), one expects 

(4.43) 

Mapping and temporal entropies thus vanish for 
cellular automata with zero maximum average 
propagation speed . Cellular automata in class 2 
have this property. 

The maximum average propagation speed X+ 
specifies a cone outside which G(lx - x ' l; t) almost 
always vanishes. One may also define a minimum 
average propagation speed L , such that 

G(lx - x ' l; t) > 0 for almost any Ix - x ' i < L . 
The Green function G(lx - x ' l; t) gives the 

probability that a particular site is affected by 
changes in a previous configuration. The total 
effect of changes may be measured by the "Ham
ming distance" H(t) between configurations before 
and after the changes, defined as the total number 
of site values which differ between the 
configurations after t time steps. (H(t) is anal
ogous to Lyapunov exponents for continuous dy
namical systems.) Changing the values of initial 
sites in a small region, H(t) may be given as a space 
integral of the Green function, and for large t 

obeys the inequality 

H(t) / t :-s; 2X+ , (4.44) 

to be compared with the result (4.43) obtained 
above. 

The definitions and properties of dimension 
given above suggests that the behaviour these 
quantities determines the degree of " chaotic" be
haviour associated with cellular automaton evo
lution . "Spatial chaos" occurs when di;l > 0, and 
" temporal chaos" when dV) > O. Temporal chaos 
requires a nonzero maximum average propagation 
speed for features in cellular automaton patterns, 
and implies that smail changes in initial conditions 
lead to effects ever-increasing with time. 

5. Class 1 cellular automata 

Class I cellular automata evolve after a finite 
number of time steps from almost all initial states 
to a unique homogeneous state, in which all sites 
have the same value. Such cellular automata may 
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be considered to evolve to simple "limit points" in 
phase space; their evolution completely destroys 
any information on the initial state. The spatial 
and temporal dimensions for such attractors are 
zero. 

Rules for class 1 cellular automata typically take 
the function F of eq. (2.1) to have the same value 
for almost all of its k(2r + I) possible sets of argu
ments. 

Some exceptional configurations in finite class 1 
cellular automata may not evolve to a homoge
neous state, but may in fact enter non-trivial 
cycles. The fraction of such exceptional 
configurations appears to decrease very rapidly 
with the size N, suggesting that for infinite class 
I cellular automata the set of exceptional 
configurations is always of measure zero in the set 
of all possible configurations. For (legal) class 1 
cellular automata whose usual final state has 
Gi = n, n#-O (such as code 60 in fig. 1), the null 
configuration is exceptional for any size N, and 
yields Gi = O. 

6. Class 2 cellular automata 

Class 2 cellular automata serve as "filters" which 
generate separated simple structures from particu
lar (typically short) initial site value sequences*. 
The density of appropriate sequences in a particu
lar initial state therefore determines the statistical 
properties of the final state into which it evolves. 
(There is therefore no unique large-time (invariant) 
probability measure on the set of possible 
configurations.) Changes of site values in the initial 
state almost always affect final site values only 
within a finite range, typically of order r. The 
maximum average propagation speed I+ defined in 
section 4 thus vanishes for class 2 cellular auto
mata. The temporal and mapping (but not spatial) 
dimensions for such automata therefore also 
vanish. 

"They are thus of direct significance for digital image pro
cessing. 

Although I = 0 for all class 2 cellular automata, 
A is often nonzero. Thus exceptional initial state 
may exist, from which, for example, unbounded 
growth may occur. Such initial states apparently ' 
occur with probability zero for ensembles of (spa
tially infinite) cellular automata with smooth 
probability measures. ,-

The simple structures generated by class 2 cellu
lar automata are either stable, or are periodic, 
typically with small periods. The class 2 rules with 
codes 8, 24, 40 and 56 illustrated in fig. 1 all 
apparently exhibit only stable perisistent struc
tures. Examples of class 2 cellular automata which 
yield periodic, rather than stable, persistent struc
tures include the k = 2, r = 1 cellular automaton 
with rule number 108 [1], and the k = 3, r = 1 
totalistic cellular automaton with code 198. The 
periods of persistent structures generated in the 
evolution of class 2 cellular automata are usually 
less than k!. However, examples have been found 
with larger periods. One is the k = 2, r = 3 total
istic cellular automata with code 228, in which a 
persistent structure with period 3 is generated. 

The finiteness of the periods obtained at large 
times in class 2 cellular automata implies that such 
systems have d/2) = h(p) = 0, as deduced above from 
the vanishing of I+. The evolution of class 2 
cellular automata to zero (temporal) dimension 
attractors is analogous to the evolution of some 
continuous dynamical systems to limit cycles. 

The set of persistent structures generated by a 
given class 2 cellular automaton is typically quite 
simple. For some rules, there are only a finite 
number of persistent structures. For example, for 
the code 8 and code 40 rules of fig. 1, only the' • 
sequence 111 (surrounded by 0 sites) appears to be 
persistent. For code 24, 111 and 1111 are both , . 
persistent. Other rules yield an infinite sequence of 
peristent structures, typically constructed by a 
simple process. For example, with code 56 in fig . 
1, any sequence of two or more consecutive 1 sites 
is persistent. 

In general, it appears that the set of persistent 
structures generated by any class 2 cellular autom
aton corresponds to the set of words generated 
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by a regular grammar. A regular grammar [15- 18] 
(or "sofic system" [19]) specifies a regular 
language, whose legal works may be recognized 

--by a finite automaton, represented by a finite state 
transition graph. A sequence of symbols (site val
ues) specifies a particular traversal of the state 

" transition graph. The traversal begins at a special 
"start" node; the symbol sequence represents a 
legal word only if the traversal does not end at 
an absorbing "stop" node. Each successive symbol 
in the sequence causes the automaton to make a 
transition from one state (node) to one of k others, 
as specified by the state transition graph. At each 
step, the next state of the automaton depends only 
on its current state, and the current symbol read, 
but not on its previous history. 

The set of configurations (symbol sequences) 
generated from al1 possible initial configurations 
by one time step of cel1ular automaton evolution 
may always be specified by a regular grammar. To 
determine whether a particular configuration a(l ) 

may be generated after one time step of cel1ular 
automaton evolution, one may attempt to con
struct an explicit predecessor a (0) for it. Assume 
that a predecessor configuration has been found 
which reproduces al1 site values up to position i. 
Definite values aJO) for al1 j s i - r are then deter
mined. Several of the total of k 2r sequences of 

values a~~r + ' " . . , a ~~r+' may be possible. Each 
sequence may be specified by an integer 
q = LJ~o kja~~r+j+l" An integer IjJj between 0 and 
2k 2r may then be defined, with the qth binary bit in 
IjJj equal to one if sequence q is al1owed, and 0 
otherwise. Each possible value of IjJ may be consid-

•. ered to correspond to a state in a finite automaton. 
IjJ = 0 corresponds to a "stop" state, which is 
reached if and only if a(l) has no predecessors. 

• -Possible values for a~~r + ' are then found from IjJj 
and the value of a~~ ,. These possible values then 
determine the value of IjJ j+ ,. A finite state transi
tion graph, determined by the cel1ular automaton 
rules, gives the possible transitions IjJj-+ljJj + ,. 
Configurations reached after one time step of 
cel1ular automaton evolution may thus be recog
nized by a finite automaton with at most 2k 2r states. 

The set of such configurations is thus specified by 
a regular grammar. 

In general, if the value of a given site after I steps 
of cel1ular automaton evolution depends on m 
initial site values, then the set of configurations 
generated by this evolution may be recognized by 
a finite automaton with at most 2km states. The 
value of m may increase as 2rl, potential1y re
quiring an infinite number of states in the recog
nizing automaton, and preventing the specification 
of the set of possible configurations by a regular 
grammar. However, as discussed above, the value 
of m for a class 2 cel1ular automaton apparently 
remains finite as 1-+ 00 . Thus the set of 
configurations which may persist in such a cel1ular 
automaton may be recognized by a finite automa
ton, and are therefore specified by a regular gram
mar. The complexity of this grammar (measured 
by the minimum number of states required in the 
state transition graph for the recognizing automa
ton) may be used to characterize the complexity of 
the large time behaviour of the cel1ular automaton. 

Finite class 2 cel1ular automata usual1y evolve to 
short period cycles containing the same persistent 
structures as are found in the infinite case. The 
fraction of exceptional initial states yielding other 
structures decreases rapidly to zero as N increases. 

7. Class 3 cellular automata 

Evolution of infinite class 3 cel1ular automata 
from almost al1 possible initial states leads to 
aperiodic ("chaotic") patterns. After sufficiently 
many time steps, the statistical properties of these 
patterns are typically the same for almost all initial 
states. In particular, the density of nonzero sites 
typically tends to a fixed nonzero value (often 
close to 11k). In infinite cellular automata, 
"equilibrium" values of statistical quantities are 
approached roughly exponentially with time, and 
are typical1y attained to high accuracy after a very 
few time steps. For a few rules (such as the k = 2, 
r = I rule with rule number 18 [20]), however, 
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"defects" consisting of small groups of sites may 

exist, and may execute approximate random walks, 
until annihilating, usually in pairs. Such processes 

-- lead to transients which decrease with time only as 
t - 1/2. 

Fig. I showed examples of the patterns gener-
-. ated by evolution of some typical class 3 cellular 

automata from disordered initial states. The pat
terns range from highly irregular (as for code 10), 

to rather regular (as for code 12). The most 
obvious regularity is the appearance of large trian
gular " clearings" in which all sites have the same 

value. These clearings occur when a " fluctuation" 

in which a sequence of consequence of consecutive 

sites have the same value, is progressively de

stroyed by the effects of other sites. The rate at 
which " information" from other sites may " flow" 

into the fluctuation , and thus the slope of the 

boundaries of the clearing, may range from I lk to 
r sites per time step. The qualitative regularity of 

patterns generated by some class 3 rules arises from 

the high density of long sequences of correlated site 

values, and thus of triangular clearings. In general , 
however, it appears that the density of clearings 
decreases with their size n roughly as (J - no Different 

cellular automata appear to yield a continuous 

range of (J values. Those with larger (J yield more 

regular patterns, while those with smaller (J yield 
more irregular patterns. No sharp distinction ap

pears to exist between class 3 cellular automata 

yielding regular and irregular patterns. 
The first column in fig . 9 shows patterns ob

tained by evolution with typical class 3 cellular 

automaton rules from initial states containing a 
• _single nonzero site. Unbounded growth, leading to 

an asymptotically infinite number of nonzero sites, 
is evident in all cases. Some rules are seen to give 

C -highly regular patterns, others lead to irregular 
patterns. 

The regular patterns obtained with rules such as 
code 2 are asymptotically self-similar fractal curves 

(cf. [II]). Their form is identical when viewed at 

different magnifications, down to length scales of 

order r sites. The total number of nonzero sites in 

such patterns after t time steps approaches t d; 

where d gives the fractal dimension of the pattern. 

Many class 3 k = 2 rules generate a similar pattern, 

illustrated by codes 2 and 34 in fig. 9, with 

d = log2 3 ~ 1.59. Some rules yield self-similar pat
terns with other fractal dimensions (for example, 

code 38 yields d ~ 1.75), but all self-similar pat

terns have d < 2, and lead to an asymptotic density 
of sites which tends to zero as t d - 2• 

Rule such as code 10 are seen to generate 

irregular patterns by evolution even from a single 
site initial state. The density of nonzero sites in 

such patterns is found to tend asymptotically to a 
nonzero value; in some, but not all, cases the value 

is the same as would be obtained by evolution from 

a disordered initial state. The patterns appear to 
exhibit no large-scale structure. 

Cellular automata contain no intrinsic scale 
beyond the size of neighbourhood which appears 

in their rules. A configuration containing a single 
nonzero site is also scale invariant, and any pattern 

obtained by evolution from it with cellular autom
aton rules must be scale invariant. The regular 

patterns in fig . 9 achieve this scale invariance by 
their self-similarity. The irregular patterns pre

sumably exhibit correlations only over a finite 
range, and are therefore effectively uniform and 
scale invariant at large distances. 

The second and third columns in fig. 11 shows 
the evolution of several typical class 3 cellular 

automata from initial states with nonzero sites in 

a small region . In some cases (such as code 12), the 
regular fractal patterns obtained with single non

zero sites are stable under addition of further 
nonzero initial sites. In other cases (such as code 2) 
they are seen to be unstable. The numbers of rules 

yielding stable and unstable fractal patterns are 
found to be roughly comparable. 

Many but not all rules which evolve to regular 
fractal patterns from simple initial states generate 

more regular patterns in evolution from disordered 

initial states. Similarly, many but not all rules 

which produce stable fractal patterns yield more 

regular patterns from disordered initial states. For 
example, code 42 in figs. I and 9 generates 

stable fractal patterns from simple initial state, but 
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Fig. 10. Evolution of spatial measure entropies sj;"(X) as a 
function of time for evolution of the class 3 cellular automaton 
with code 12 illustrated in fig. 1 from a disordered initial state. 
The irreversibility of cellular automaton evolution results in a 
decrease of the entropies with time. Rapid relaxation to an 
"equilibrium" state is nevertheless seen. 

leads to an irregular patterns under evolution from 
a disordered state. (Although not necessary for 
su\:h behaviour, this rule possesses the additivity 
property mentioned in section 2.) 

The methods of section 4 may be used to analyse 
the general behaviour of class 3 cellular automata 
evolving from typical initial states, in which all 
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sites have nonzero values with nonzero probability. 
Class 3 cellular automata apparently always ex
hibit a nonzero minimum average propagation 
speed ,c. Small changes in initial states thus " 
almost always lead to increasingly large changes in 
later states. This suggests that both spatial and o. 

temporal dimensions d~l and d~) should be non
zero for all class 3 cellular automata. These dimen
sions are determined according to eqs. (4.15), 
(4.18), (4.22) and (4.23) by the limiting values of 
spatial and temporal entropies. 

A disordered or statistically random initial state, 
in which each site takes on its k possible values 
with equal independent probabilities, has maximal 
spatial entropy s~l(X) = 1 for all block lengths X. 
Fig. 10 shows the behaviour of s~X)(X) as a function 
of time for several block lengths X in the evolution 
of a typical class 3 cellular automaton from a 
disordered (maximal entropy) initial state. The 
entropies are seen to decrease for a few time steps, 
and then to reach "equilibrium" values. The "equi
librium" values of s~)(X) for class 3 cellular auto
mata are typically independent of the probability 
measure on the ensemble of possible initial states, 
at least for "smooth" measures. The decrease in 
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Fig. 11. Evolution of (a) spatial and (b) temporal measure entropies s~Xl(X) and s~'(T) obtained at equilibrium by evolution of several 
class 3 cellular automata illustrated in fig . 1, as a function of the spatial and temporal block lengths X and T. The entropies are 
evaluated for the region indicated in figs. 7(a) and 7(b). The limit of sj;"(X) as X -HIJ is the spatial measure dimension of the attractor 
for the system; the limit of s~)(T) as T - (IJ is the temporal measure dimension. 
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entropy with time manifests the irreversible nature 
of the cellular automaton evolution. The decrease 
is found to be much greater for class 3 cellular 

" automata which generate regular patterns (with 
many triangular clearings) than for those which 
yield irregular patterns. The more regular patterns 

'. 
require a higher degree of self-organization, with 
correspondingly greater irreversibility, and larger 

entropy decrease. 
As discussed in section 4, the dependence of 

s~:l(X) on X measures spatial correlations in cellu
lar automaton configurations. s~l(X) therefore 
tends to a constant if X is larger than the range of 
any correlations between site values. In the pres
ence of correlations, s~l(X) always decreases with 
X. Available data from simulations provide re
liable accurate estimates for s~l(X) only for 
0::;; X ;5 8. Fig. II shows the behaviour of the 
equilibrium value of s~)(X) as a function of X over 
this range for several typical class 3 cellular auto
mata. For rules which yield irregular patterns the 
equilibrium value of s~)(X) typically remains ~ 0.9 
for X ;5 8. s~x)(X) at equilibrium typically decreases 
much more rapidly for class 3 cellular automata 
which generate more regular patterns. At least for 
small X, s~x)(X) for such cellular automata typically 
decreases roughly as X-~ with rJ ~ 0.1 . 

The values of the spatial set entropy s(x)(X) 
provide upper bounds on the spatial measure 
entropy s ~<)(X) . The distribution of nonzero proba
bilities p~x) for possible length X blocks is typically 
quite broad, yielding an s~x)(X) significantly smaller 
than s(x)(X). Nevertheless, the general behaviour of 
s~<)(X) with X usually roughly follows s(x)(X), but 

- - with 'a slight X delay. 
As discussed in section 4, the set entropy s(x)(X) 

attains its maximum value of 1 if and only if all k X 

.. sequences of length X appear (with nonzero proba
bility) in evolution from some initial state. Notice 
that if s(x)(X) = I after one time step, then 
s(x)(X) = 1 at any time. In general, s(x)(X) takes on 

value 1 for blocks up to some critical length Xc 
(perhaps infinite), as defined in eq. (4.13). 

Since a block of length X is completely deter
mined by a sequence of length X + 2r in the 

previous configuration, any predecessors for the 
block may in principle be found by an exhaustive 
search of all k H2r possible length X + 2r se
quences. The procedure for progressive construc
tion of predecessors outlined in section 6 provides 
a more efficient procedure [21]. The critical block 
length Xc is determined by the minimum number of 
nodes in the finite automaton state transition 
graph visited on any path from the "start" to 
"stop" node. The state transition graph is deter
mined by the set of transition rules IJ'j-+lJ'j+ !' 
Starting with length I blocks, these transition rules 
may be found by considering construction of all 
possible progressively longer blocks, but ignoring 
blocks associated with values IJ'j for which the 
transition rules have already been found. If Xc is 
finite, the "stop" node IJ' = 0 is reached in the 
construction of length Xc blocks. Alternatively, the 
state transition graph may be found to consist of 
closed cycles, not including IJ' = O. In this case, Xc 
is determined to be infinite. Since the state transi
tion graph contains at most 2k 2r nodes, the value of 
Xc may be found after at most this many tests. The 
procedure thus provides a finite algorithm for 
determining whether all possible arbitrarily long 
sequences of site values may be generated by evo
lution with a particular cellular automaton rule. 

Table II gives the critical block lengths Xc for the 
cellular automata illustrated in fig. 1. Class 3 
cellular automata with smaller Xc tend to generate 
more regular patterns. Those with larger Xc pre
sumably give systematically larger entropies and 
their evolution is correspondingly less irreversible. 

For additive cellular automata (such as code 42 
in fig . 1 and table II), all possible blocks of any 
length X may be reached, and have exactly k 2r 

predecessors of length X + 2r. In this case, there
fore, evolution from a disordered initial state gives 
s(x)(X) = I for all X (hence Xc = CIJ). The equality 
of the number of predecessors for each block 
implies in addition in this case that s~x)(X) = I, at 
least for evolution from disordered initial states. 
Hence for additive cellular automata 

(7.1) 



28 S. Wolfram / Universality and complexity in cellular automata 

Table II 
Values of critical block length Xc for legal totalistic 
k = 2, r = 2 cellular automata as illustrated in fig. I. For 
X < Xc> all k X possible blocks of X site values appear 
with nonzero probability in configurations generated 
after any number of time steps in evolution from disor
dered initial states, while for X;:.: Xc, some blocks are 
absent, so that the spatial set entropy s(x)(X) < I 

Code Xc Code Xc 

2 5 32 3 
4 12 34 5 
6 7 36 12 
8 12 38 7 

10 36 40 12 
12 5 42 00 

14 5 44 5 
16 5 46 5 
18 5 48 5 
20 36 50 5 
22 12 52 22 
24 7 54 12 
26 12 56 7 
28 5 58 12 
30 3 60 5 

The configurations generated by additive cellular 
automata are thus maximally chaotic. 

In general cellular automata evolving according 
to eq. (2.1) yield s(x)(X) = I for all X, so that 
d(x) = I, ifF is an injective (one-to-one) function of 
either its first or fast argument (or can be obtained 
by composition of functions with such a property). 
This may be proved by induction. Assume that all 
the blocks of length X are reachable, with prede
cessors of lengths X + 2r. Then form a block of 
length X + I by adding a site at one end. To obtain 
all possible length X + I blocks, the value a' of this 
additional site must range over k possibilities. Any 
predecessors for length X + I blocks must be 
obtained by adding a (X + 2r + I)-th site (with 
value a) at one end. For all length X + I blocks to 
be reachable, all values of a' must be generated 
when a runs over its k possible values, and the 
result follows . Notice that not all length X + I 
blocks need have the same (nonzero) number of 
predecessors; so that the measure entropy s~)(X) 
may be less than the set entropy s(x)(X). 

While injectivity of the rule function F for a 

cellular automaton in its first or last arguments is 
sufficient to give d(x) = I, it is apparently not 

necessary. A necessary condition is not known. 
In section 6 it was shown that the set of " 

configurations obtained by cellular automaton 
evolution for a finite number of time steps from . 
any initial state could be specified by a regular < 

grammar. In general the complexity of the gram
mar may increase rapidly with the number of time 
steps, potentially leading at infinite time to a set 
not specifiable by a regular grammar. Such behav
iour may generically be expected in class 3 cellular, 
for which the average minimum propagation speed 

X>O. 
As discussed in section 4, one may consider the 

statistics of temporal as well as spatial sequences of 
site values. The temporal aperiodicity of the pat
terns generated by evolution of class 3 cellular 
automata from almost all initial states suggests 
that these systems should have nonvanishing tem
poral entropies s~)(T) and nonvanishing temporal 
dimensions d~). Once again, the temporal entropies 
for blocks starting at progressively later times 
quickly relax to equilibrium values. Notice that the 
dimension d(~) obtained from the large T limit of 
the s~)(T) is always independent of the starting 
times for the blocks. This is to be contrasted with 
the spatial dimensions d~l, which depend on the 
time at which they are evaluated. Just as for spatial 
entropies, it found that the equilibrium temporal 
entropies are essentially independent of probability 
measure for initial configurations. 

The temporal entropies s~lT) decrease slowly 
with T. In fact, it appears that in all cases 

(7.2) 

The ratio s (Z)(Z)/s(~(Z) is, however, typically much ' • 
smaller than its maximum value (4.38) equal to the 
maximum propagation speed ,1+. Notice that the 
value of ,1+ determines the slopes of the edges of 
triangular clearings in the patterns generated by 
cellular automaton evolution. 

At least for the class 3 cellular automata in fig. 
I which generate irregular patterns, the equi-



S. Wolfram I Universality and complexity in cellular automata 29 

~~( "" "'~ 

'1 
~'l~;< ~ "- "" . 

, ~ { :;I-

, . , 

Fig. 12. Examples of the evolution of a class 4 cellular automaton (totalistic code 20 k = 2, r = 2 rule) from several disordered initial 
states. Persistent structures are seen to be generated in a few cases. The evolution is truncated after 120 time steps. 

librium set entropy s(r)(T) = I for all T;:S 8 for 
which data are available. Note that the result 
s(t)(T) = I holds for all T for any additive cellular 

~ . automaton rule. One may speculate that class 3 
cellular automata which generate apparently irreg
ular patterns form a special subclass, characterized 
by temporal dimension d (t) = 1. 

For class 3 cellular automata which generate 
more regular patterns, s(t)(T) appears to decrease, 
albeit slowly, with T. Just as for spatial sequences, 
one may consider whether the temporal sequences 

which appear form a set described by a regular 
grammar. For the particular case of the k = 2, 
r = I cellular automaton with rule number 18, 
there is some evidence [21] that all possible tempo
ral sequences which contain no 11 subsequences 
may appear, so that N (t)(T) = FT where FT is the 
Tth Fibonacci number (FT = FT_ I + FT- 2, 

Fo = FI = 1). This implies that N(tiT) ~ (pr (¢ = 
(J5 + 1)/2 ~ 1.618) for large T, suggesting a 
temporal set dimension d (t) = log2 ¢ ~ 0.694. 
In general, however, the set of possible temporal 
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sequences is not expected to be described by a 
regular grammar. 

The nonvanishing value of the average minimum 
propagation speed L for class 3 cellular automata, 
suggests that in all cases the value of a particular 
site depends on an ever-increasing number of 
initial site values. However, the complexity of the 
dependence is not known. The value of a site after 
t time steps can always be specified by a table with 
an entry for each of k 2).+ / relevant initial sequences. 

Nevertheless, it is possible that a finite state autom
aton, specified by a finite state transition graph, 
could determine the value of sites at any time 

The behaviour of finite class 3 cellular automata 
with additive rules was analysed in some detail in 

ref. 2. It was shown there that the maximal cycle 
length for additive cellular automata grows on 
average exponentially with the size N of the cellular 
automaton. Most cycles were found to have max
imallength, and the number of distinct cycles was 
found also to grow on average exponentially with 
N. The lengths of transients leading to cycles was 
found to grow at most linearly with N. The 
fraction of states on cycles was found on average 
to tend a finite limit. 

For most class 3 cellular automata, the average 
cycle length grows quite slowly with N, although in 
some cases, the absolute maximum cycle length 
appears to grow rapidly. The lengths of transients 
are typically short for cellular automata which 
generate more regular patterns, but often become 
very long as N increases for cellular automata 
which generate more irregular patterns. The frac
tions of states on cycles are typically much larger 
for finite class 3 cellular automata which generate 
irregular patterns than for those which generate 
more regular patterns. This is presumably a 
reflection of the lower irreversibility and larger 

*Each site in this cellular automaton can take on one of two 
possible values; the time evolution rule involves nine site (type 
II) neighbourhoods. If the values of less than 2 or more than 
3 of the eight neighbours of a particular site are nonzero then 
the site takes on value 0 at the next time step; if 2 neighbouring 
sites are nonzero the site takes the same value as on the previous 
time steps; if exactly 3 neighbouring sites are nonzero, the site 
takes on value I. 

attractor dimension found for the former case in 
the infinite size limit. 

8. Class 4 cellular automata 

Fig. 12 shows the evolution of the class 4 
cellular automaton with k = 2, r = 2 and code 
number 20, from several disordered initial 
configurations. In most cases, all sites are seen to 
"die" (attain value zero) after a finite time. How
ever, in a few cases, stable or periodic structures 
which persist for an infinite time are formed. In 
addition, in some cases, propagating structures are 
formed. Fig. 13 shows the persistent structures 
generated by this cellular automaton from all 
initial configurations whose nonzero sites lie in a 

region of length 20 (reflected versions of the last 
three structures are also found). Table III gives 
some characteristics of these structures. An im
portant feature, shared by other class 4 cellular 
automata, is the presence of propagating struc
tures. By arranging for suitable reflections of these 
propagating structures, final states with any cycle 
lengths may be obtained. 

The behaviour of the cellular automata illus
trated in fig. 13, and the structures shown in fig. 14 
are strongly reminiscent of the two-dimensional 
(essentially totalistic) cellular automaton known as 

the "Game of Life"* (for references see [1]) . The 
Game of Life has been shown to have the im
portant property of computational universality. 
Cellular automata may be viewed as computers, in 
which data represented by initial configurations is 
processed by time evolution. Computational uni- · 
versality (e.g. [15-18]) implies that suitable initi:-' 
configurations can specify arbitrary algorithm . ~ 
procedures. The system can thus serve as a genen 
purpose computer, capable of evaluating a_ 
(computable) function. Given a suitable encoding, 
the system may therefore in principle simulate any 
other system, and in this sense may be considered 
capable of arbitrarily complicated behaviour. 

The proof of computational universality for the 
Game of Life [22] uses the existence of cellular 
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Fig. 13. Persistent structures found in the evolution of the class 4 cellular automaton illustrated in fig . 12 from initial states with 
nonzero sites in a region of 20 or less sites. Reflected versions of the last three structures are also found. Some properties of the 
structures are given in table III. These structures are almost sufficient to provide components necessary to demonstrate a universal 
computation capability for this cellular automaton. 

X=5 
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15 

20 
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Fig. 14. Fraction of configurations in the class 4 cellular 
automaton of figs. 12 and 13 which evolve to the null 

• -configuration after T time steps, from initial states with nonzero 
sites in a region of length less than X (translates of 
configurations are not included). The asymptotic "halting 
probability" is around 0.93; 7% of initial configurations gener
ate the persistent structures of fig. 13 and never evolve to the 
null configuration. 

automaton structures which emulate components 
(such as "wires" and "NAND gates") of a stan
dard digital computer. The structures shown in fig. 
14 represent a significant fraction of those neces
sary. A major missing element is a configuration 

(dubbed the " glider gun" in the Game of Life) 
which acts like a clock, and generates an infinite 
sequence of propagating structures. Such a 
configuration would involve a finite number of 
initial nonzero sites, but would lead to unbounded 
growth, and an asymptotically infinite number of 
nonzero sites. There are however indications that 
the required initial configuration is quite large, and 
is very difficult to find. 

These analogies lead to the speculation that class 
4 cellular automata are characterized by the capa
bility for universal computation. k = 2, r = 1 cellu
lar automata are too simple to support universal 
computation; the existence of class 4 cellular auto
mata with k = 2, r = 2 (cf. figs. 12 and 13) and 
k = 3, r = I suggests that with suitable time evo
lution rules even such apparently simple systems 
may be capable of universal computation. 

There are important limitations on predictions 
which may be made for the behaviour of systems 
capable of universal computation. The behaviour 
of such systems may in general be determined in 
detail essentially only by explicit simulation of 
their time evolution. It may in general be predicted 
using other systems only by procedures ultimately 
equivalent to explicit simulation. No finite algo-
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Table III 
Persistent structures arising from initial configurations with length less than 20 
sites in the class 4 totalistic cellular automaton with k = 2, r = 2 and code number 
20, illustrated in figs. 12, 13 and 14. r/>(X) gives the fraction of initial 
configurations with nonzero sites in a region less than X sites in length which 
generate a particular structure. When an initial configuration yields multiple 
structures, each is included in this fraction . 

Period Minimal predecessor r/>(IO) r/>(20) 

2 10010111 (151) 0.027 0.024 
9R lOll lOll (187) 0.012 0.0061 

10111101 (189) 0.014 0.0075 
22 11000011 (195) 0.018 0.017 
9L 11011101 (221) 0.012 0.0061 
IR 1001111011 (635) 0.0020 0.00066 
IL 1101111001 (889) 0.0020 0.00066 
38 11110100100101111 (125231) 0 2.9 x 10- 5 

4 10010001011011110111 (595703) 0 7.6 x 10- 6 

4 10010101001010110111 (610999) 0 7.6 x 10- 6 

4 10011000011111101111 (624623) 0 7.6 x 10- 6 

rithm or procedure may be devised capable of 
predicting detailed behaviour in a computationally 
universal system. Hence, for example, no general 
finite algorithm can predict whether a particular 
initial configuration in a computationally universal 
cellular automaton will evolve to the null 
configuration after a finite time, or will generate 
persistent structures, so that sites with nonzero 
values will exist at arbitrarily large times. (This is 
analogous to the insolubility of the halting prob
lem for universal Turing machines (e.g. [15- 18]).) 

Thus if the cellular automaton of figs. 12 and 13 is 
indeed computationally universal, no finite algo
rithm could predict whether a particular initial 
state would ultimately "die", or whether it would 
ultimately give rise to one of the persistent struc
tures of fig . 13. The result could not be determined 
by explicit simulation, since an arbitrarily large 
time might elapse before one of the required states 
was reached . Another universal computer could 
also in general determine the result effectively only 
by simulation, with the same obstruction. 

If class 4 cellular automata are indeed capable of 
universal computation, then their evolution in
volves an element of unpredictability presumably 
not present in other classes of cellular automata. 

Not only does the value of a particular site after 
many time steps potentially depend on the values 
of an increasing number of initial site values; in 
addition, the value cannot in general be determined 
by any "short-cut" procedure much simpler than 
explicit simulation of the evolution. The behaviour 
of a class 4 cellular automaton is thus essentially 
unpredictable, even given complete initial informa
tion: the behaviour of the system may essentially be 
found only by explicitly running it. 

Only infinite cellular automata may be capable 
of universal computation; finite cellular automata 
involve only a finite number of internal states, and 
may therefore evaluate only a subset of all com
putable functions (the "space-bounded" ones). 

The computational universality of a system im- : • 

plies that certain classes of general predictions for 
its behaviour cannot be made with finite algo-, , 
rithms. Specific predictions may nevertheless often 
be made, just as specific cases of generally non
computable function may often be evaluated. 
Hence, for example, the behaviour of all 
configurations with nonzero sites in a region of 
length 20 or less evolving according to the cellular 

automaton rules illustrated ih figs. 12 and 13 has 
been completely determined. Fig. 14 shows the 
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fraction of initial configurations which evolve to 
the null state within T time steps, as a function of 
T, for various sizes X of the region of nonzero sites. 

-- For large X and large T, it appears that the fraction 
of configurations which generate no persistent 

'. structures (essentially the "haIting probability") is 
approximately 0.93 . It is noteworthy that the 
curves in fig. 14 as a function of T appear to 
approach a fixed form at large X. One may specu
late that some aspects of the form of such curves 
may be universal to all systems capable of universal 
computation. 

The sets of persistent structures generated by 
class 4 cellular automata typically exhibit no sim
ple patterns, and do not appear to be specified, for 
example, by regular grammars. Specification of 
persistent structures by a finite procedure is neces
sarily impossible if class 4 cellular automata are 
indeed capable of universal computation. Strong 
support of the conjecture that class 4 cellular 
automata are capable of universal computation 
would be provided by a demonstration of the 
equivalence of systematic enumeration of all per
sistent structures in particular class 4 cellular auto
mata to the systematic enumeration of solutions to 
generally insoluble Diophantine equations or word 
problems. 

Although one may determine by explicit con
struction that specific cellular automata are capa
ble of universal computation, it is impossible to 
determine in general whether a particular cellular 
automaton is capable of universal computation. 
This is a consequence of the fact that the structures 
necessary to implement universal computation 

- -may be arbitrarily complicated. Thus, for example, 
the smallest propagating structure might involve 

• an arbitrarily long sequence of site values. 
For class I, 2 and 3 cellular automata, 

fluctuations in statistical quantities are typically 
found to become progressively smaller as larger 
numbers of sites are considered. Such systems 

*This feature allows practical simulation of such cellular 
automata to be made more efficient by storing information on 
the evolution of the specific sequences of sites which occur with 
larger probabilities (cf. [23]). 

therefore exhibit definite properties in the "infinite 
volume" limit. For class 4 cellular automata, it 
seems likely that fluctuations do not decrease as 
larger number of sites are considered, and no 
simple smooth infinite volume limit exists. Im
portant qualitative effects can arise from special 
sequences appearing with arbitrarily low proba
bilities in the initial state. Consider for example the 
class 4 cellular automaton illustrated in figs. 12 and 
13. The evolution of the finite sequences in this 
cellular automaton shown in fig. 12 (and many 
thousands of other finite sequences tested) suggests 
that the average density of nonzero sites in 
configurations of this cellular automaton should 
tend to a constant at large times. However, in a 
sufficiently long finite initial sequence, there should 
exist a subsequence from which a "glider gun" 
structure evolves. This structure would generate an 
increasing number of nonzero sites at large times, 
and its presence would completely change the 
average large time density. As a more extreme 
example, it seems likely that a sufficiently long (but 
finite) initial sequence should evolve to behave as 
a self-reproducing "organism", capable of even
tually taking over its environment, and leading to 
completely different large time behaviour. Very 
special, and highly improbable, initial sequences 
may thus presumably result in large changes in 
large time properties for class 4 cellular automata. 
These sequences must appear in a truly infinite 
(typical) initial configuration. Although their den
sity is perhaps arbitrarily low, the sequences may 
evolve to structures which come to dominate the 
statistical properties of the system. The possibility 
of such phenomena suggest that no smooth infinite 
volume exists for class 4 cellular automata. 

Some statistical results may be obtained from 
large finite class 4 cellular automata, although the 
results are expected to be irrelevant in the truly 

infinite volume limit. The evolution of most class 
4 cellular automata appears to be highly 
irreversible* . This irreversibility is reflected in the 
small set of persistent structures usually generated 
as end-products of the evolution. Changes in small 
regions of the initial state may affect many sites at 
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large times. There are however very large 
fluctuations in the propagation speed, and no 
meaningful averages may be obtained. It should be 
noted that groups of class 4 cellular automata with 
different rules often yield qualitatively similar be
haviour, and similar sets of persistent structures, 
suggesting further classification. 

The frequency with which a particular structure 
is generated after an infinite time by the evolution 
of a universal computer from random (disordered) 
input gives the "algorithmic probability" PA [24] 
for that structure. This algorithmic probability has 
been shown to be invariant (up to constant multi
plicative factors) for a wide class of universal 
computers. In general, one may define an "evo
lutionary probability" PE(t) which gives the proba
bility for a structure to evolve after t time steps 
from a random initial state. Complex structures 
formed by cellular automata will typically have 
evolutionary probabilities which are initially small, 
but later grow. As a simple example, the proba
bility for the sequence which yields a period 9 
propagating structure in the cellular automaton of 
figs . 12 and 13 begins small, but later increases to 
a sufficiently large value that such structures are 
almost always generated from disordered states of 
2000 or more sites. In a much more complicated 
example, one may imagine that the probability for 
a self-reproducing structure begins small , but later 
increases to a substantial value. Structures whose 
evolutionary probability becomes significant only 
after a time > T may be considered to have 
"logical depth" [25] T. 

9. Discussion 

Cellular automata are simple in construction, 
but are capable of very complex behaviour. This 
paper has suggested that a considerable univer
sality exists in this complex behaviour. Evidence 
has been presented that all one-dimensional cellu
lar automata fall into four basic classes. In the first 
class, evolution from almost all initial states leads 
ultimately to a unique homogeneous state. The 

second class evolves to simple separated structures. 
Evolution of the third class of cellular automata 
leads to chaotic patterns, with varying degrees of 
structure. The behaviours of these three classes of~j. 

cellular automata are analogous to the limit points, 
limit cycles and chaotic ("strange") attractors . 
found in continuous dynamical systems. The 
fourth class of cellular automata exhibits still more 
complicated behaviour, and its members are con
jectured to be capable of universal computation. 

Even starting from disordered or random initial 
configurations, cellular automata evolve to gener
ate characteristic patterns. Such self-organizing 
behaviour occurs by virtue of the irreversibility of 
cellular automaton evolution . Starting from al
most any initial state, the evolution leads to attrac
tors containing a small subset of all possible states. 
At least for the first three classes of cellular auto
mata, the states in these attractors form a Cantor 
set, with characteristic fractal and other dimen
sions. For the first and second classes, the states in 
the attractor may be specified as sentences with a 
regular grammar. For the fourth class, the attrac
tors may be arbitrarily complicated, and no simple 
statistical characterizations appear possible. 

The four classes of cellular automata may be 
distinguished by the level of predictability of their 
"final" large time behaviour given their initial 
state. For the first class, all initial states yield the 
same final state, and complete prediction is trivial. 
In the second class, each region of the final state 
depends only on a finite region of the initial state; 
knowledge of a small region in the initial state thus 
suffices to predict the form of a region in the final 
state. In the evolution of the third class of cellular: • 
automata, the effects of changes in the initial state 
almost always propagate forever at a finite speed. 
A particular region thus depends on a region of the 
initial state of ever-increasing size. Hence any 
prediction of the "final" state requires complete 
knowledge of the initial state. Finally, in the fourth 
class of cellular automata, regions of the final state 
again depend on arbitrarily large regions of the 
initial state. However, if cellular automata in the 
class are indeed capable of universal computation, 
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then this dependence may be arbitrarily complex, 
and the behaviour of the system can be found by 
1,10 procedure significantly simpler than direct sim
~Iation. No meaningful prediction is therefore 
possible for such systems. 
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