
Tentative Design of a New A'lgebi'aie Manipulation b w y n p 

STEPHEN WOLFRAM 

ABSTRACT 

These notes discuss tentative plans for the construction of a new alge­

braic manipulation computer language, based on the (UNIX) language C. The new 

language is intended to be both fast and capable of processing very large 

intermediate expressions (whose size is limited only by available computer 

memory), as appear in many physical problems. 

fWK^- r*>r*X& M 



-1-

1. Existing Languages and Introduction 

A very large number of computer languages able to perform some manner of 

symbolic and algebraic manipulation has been constructed over the last 20 or 

so years (the first one of which I am aware was written by J. Mathews at Cal-

tech in 1959 to perform tensor algebra encountered in calculating Feynman 

diagrams for the graviton loop corrections to the photon propagator). Some 

'languages' were designed for a specific physical problem, and were abandoned 

when the problem was complete. Others were written primarily to research 

algorithms and the structure of languages, and were never applied to any un­

solved scientific problem. Still others were written in languages (often 

machine codes) which have now become obsolete. The main languages which are 

in reasonably widespread use today are summarized in Table 1. Their strengths 

and weaknesses are all very different. The earliest of the languages were 

SCHOONSHIP, ASHMEDAI and REDUCE, which were designed primarily to perform 

traces of Dirac gamma matrices as are required in the evaluation of Feynman 

diagrams. Of the three only REDUCE has been used extensively outside particle 

physics, but for the most complicated Feynman diagram calculations, SCHOONSHIP 

is almost exclusively used. REDUCE, SCHOONSHIP and ASHMEDAI may all be clas­

sified as 'low-level' algebraic manipulators: their primary function is to 

substitute polynomials into polynomials, and perform simple expansions or 

reductions on the result. However, at least SCHOONSHIP, and to some extent 

ASHMEDAI, are capable of manipulating and simplifying huge polynomials, con­

taining perhaps a million terms, in a realistic amount (~ minutes) of computer 

time. Despite its elegance, it appears that the basic structure of LISP (dis­

cussed below) is largely inappropriate and inadequate for performing such 

'heavy duty' algebra. Both REDUCE and MACSYMA are therefore limited to approaches 

• v , , ' • 



-2-

and problems in which intermediate expressions remain tolerably small (typi­

cally taking < 1 megabyte of computer memory, corresponding to polynomials 

with a few thousand terms). This is a very severe restriction on the usefulness 

of LISP-based algebraic manipulators. Probably the main reason that REDUCE 

has enjoyed such widespread popularity is its portability and comparative 

simplicity: it cannot compete with, for example, SCHOONSHIP on the size of 

problem accessible. Despite the fundamental size restrictions, MACSYMA has 

the important merit of having many complicated mathematical operations (such 

as polynomial factoring and symbolic integration) built-in. MACSYMA was orig­

inally constructed around J. Moses' symbolic integration routine SIN, which 

was largely intended as a project in artificial intelligence. Over the course, 

of 10 or so years, MACSYMA has grown considerably in sophistication and com­

plexity, and now has some 500 built-in commandsJ although many of its mathe­

matical commands have never been tested on problems much larger than those 

easily accessible to manual solution. One might hope that the sophistications 

of MACSYMA could overcome the memory space and computer time problems that 

it inevitably inherits from LISP; in some important cases, this is possible, 

but mostly the sophistications make matters worse. 

It should be noted that on many practical problems, SCHOONSHIP runs be­

tween a factor of 10 to 100 (after taking out difference between intrinsic 

computer instruction times) faster than REDUCE or MACSYMA. Thus improvements 

on the basic structure of, for example, MACSYMA can clearly be very profitable. 

Some of MACSYMA's mathematical algorithms are, nevertheless, the result, of 

much investigation, and are very efficient. The main examples of such algo­

rithms are those for forming partial fractions, for factoring univariate poly­

nomials, and for indefinite symbolic integration of elementary functions (Moses' 



-3-

hierarchy of algorithms and Risch's algorithm). In constructing a new language, 

the same algorithms would probably be used for these purposes. 

The purpose of these notes is to discuss some tentative plans for the 

design of a new algebraic manipulation language, intended to be capable of 

manipulating very large expressions and performing complicated mathematical 

operations. Its design is intended to be simple, so as to aid debugging and 

extensions, to enhance portability and to permit reasonably fast construction. 

I shall describe in some detail the structure of the intended language; almost 

nothing of it has so far been implemented, and in many cases the precise method 

of implementation has not yet been decided. 

Analytical results for physical problems are usually useful only if they 

are reasonably simple. In other cases, only numerical results are profitable, 

and can usually be derived most easily by purely numerical techniques. (There 

are, however, some areas in which it is useful to obtain complicated interme­

diate analytical results so as to ease later numerical analysis.) Despite 

the simplicity of many final analytical results, intermediate expressions gen­

erated in the course of obtaining them may be incredibly large and complicated. 

The evaluation of complex Feynman diagrams in particle physics is one of the 

most spectacular examples of such a case. The final analytical forms for most 

interesting higher-order diagrams depend on only a few parameters, and have 

in final answer typically less than ten terms (and hence may be written on one 

line). On the other hand, at intermediate stages in the calculation, literally 

millions of terms may be generated, nearly all of which eventually cancel out 

to leave the final simple result. This phenomenon may well be a signal that 

present methods for Feynman diagram calculation are wasteful and unnecessarily 

complicated: such a possibility is one of the major motivations for obtaining 

analytical results, since patterns in these could help to reveal better methods. 



-4-

In (most) present implementations of REDUCE and MACSYMA, all parts of 

an expression being processed must be stored in memory locations which can 

be addressed using 18 bits; the maximum active region of memory is therefore 

usually under 1 megabyte. This technical restriction can in principle be 

lifted, but all indications are that the CPU time to process much larger ex­

pressions (as necessary for Feynman diagram calculations) would be totally 

unrealistic. The basic reason for this inadequacy probably lies with the way 

in which expressions are naturally stored by LISP, and attendant memory man­

agement problems. The method of storage is based on binary trees. For example, 

the expression 

x2 + 3 x y + y2 + 1/4 (1) 

is typically stored as in Fig. 1. Each node represents one word of computer 

memory. The first half of the word contains a 'pointer' which consists of 

the absolute address of the next node on the left-hand branch down the tree, 

and the second half for the right hand branch (if the branches lead to symbols, 

then at the node is a pointer to a region of memory which describes the prop­

erties of the symbols). Figure 1 is clearly not a very natural way to repre­

sent (1). A much simpler and more direct representation is afforded by use 

of an n-any tree, as illustrated in Fig. 2. (This representation is similar 

to that used by SCHOONSHIP.) Here the nodes may consist of many contiguous 

words of memory: an operator (e.g., +) is stored at each node, together with 

pointers to each of its arguments. One might expect that the management of 

such semicontiguously-used memory was more difficult than for entirely scattered 

LISP-like usage. However, it will turn out that by arranging to signal imme­

diately when a region of memory can be overwritten, such a storage scheme may 

easily be controlled. 



-5-

A fundamental and oft-advertised feature of LISP is its widespread use 

of recursive functions. For example, the factorial function might naturally 

be defined in a LISP-based language by f 

FAC(x): = if x = 1 then 1 else x*FAC(x-l). (2) 

In a nonrecursive language such as FORTRAN, factorial would be defined iter-

atively by 

FAC(x): = (f:l, for 1:1 thru x do f:f*i,f). (3) 

Such an iterative definition is unnatural in LISP, and can only be given rather 

indirectly in it. The definition (2) may well be the more elegant, but it is 

almost inevitable that it is both slower and more wasteful of memory then (3). 

Every time the function FAC is entered in (2), the value of the program counter 

(sequence control register), which gives the return address, and perhaps sev­

eral other registers, must be saved on a stack. There are rather few cases 

in doing practical algebra where recursion is necessary or desirable; that 

recursion should be the functional basis for a language intended primarily 

to perform algebra seems unnecessarily restrictive. The new language to be 

described below will include recursion only in a somewhat secondary manner. 

• ' — I VI 



-6-

Name 

REDUCE 

MACSYMA 

SCHOONSHIP 

ASHMEDAI 

(CAMAL 

Base Language 

LISP 

LISP 

COMPASS 

FORTRAN 

Author 

A. Hearn (Stanford/Utah) 

J. Moses, etc. (MIT) 

M. Veltman (CERN/Utrecht) 

M. Levine (Caltech/Carnegie-Mellon) 

A. Norman (Cambridge U.)) 

Table 1: Major existing general algebraic manipulation languages in appro; 

imate order of their usage. 

* CDC 6000 series assembly language, 



-7-

Fig. 1: The binary tree which represents the expression (1) in LISP, 

Fig. 2: An n-ary tree representation of the expression (1) similar to that 

intended for the new language. 


