
Glider Gun Guidelines

Stephen Wolfram
The Institute for Advanced Study, Princeton NJ 08540.

(March 1985)

In his Computer Recreations column in the May 1985 issue of Scientific American, A. K.
Dewdney described some of the research that I have been doing on one-dimensional cellular auto­
mata. As he mentioned, there are some interesting questions about these systems that you may be
able to help me answer. The questions do not rely on sophisticated mathematical knowledge, but
to make progress on them will probably take a lot of work and some clever ideas. These notes
define some of the questions, describe what I have worked out so far about them, and suggest
some approaches you could take to them.

. The central issue is what kinds of structures can occur in certain simple one-dimensional cel­
lular automata. Although their basic rules are very simple, the overall behaviour of such cellular
automata seems very complicated. I would like to be able to characterize just how complicated
they are by identifying the structures and processes that can occur in them.

Many cellular automata give spacetime patterns that seem very chaotic, and in which one
cannot really identify definite persistent structures. However, there are some cellular automata
that I have called "class 4 " in which definite localized structures occur. These cellular automata
are comparatively rare, making up about b% of the possibilities (with t < 5 and r < 2 - see
below). There are various kinds of structures one can look for:

Per iodic structures. These consist of localized patterns that remain unchanged with time,
or follow a cycle, periodically returning to the same form. Usually these and other structures

.. occur on a background of zeroes; but for some rules the background may have another state,
or perhaps itself be a periodic "wallpaper" pattern.

P r o p a g a t i n g structures or "gliders". These are localized patterns that systematically
shift across the cellular automaton lattice with time. They may have a variety of speeds.

Glider guns. In the strictest definition, these are finite-sized patterns which periodically
emit gliders. Including these gliders, such objects give rise to a pattern with a systematically
increasing total size. One may in general look for structures in class 4 cellular automata that

© 1985 Stephen Wolfram. All righta reserved.

increase in total size in this way, not necessarily just by emission of gliders. (Note however
that in class 3 cellular automata such configurations are commonplace: the question is of
interest only for class 4 cellular automata, such as those listed below.)

Self-reproducing structures. These would be like simple mathematical idealizations of
living systems. A finite pattern in a class 4 cellular automaton would grow with time, and
eventually yield a copy of itself. (Trivial self-reproduction phenomena can occur in rules
that obey a "linear superposition" principle, according to which the patterns produced from
a particular initial state correspond to simple superpositions of patterns produced say with a
single cell seed.)

But ultimately the most interesting question is probably whether certain simple one-dimensional
cellular automata are capable of "universal computation", so that they can emulate the operation
of any computer. There is a rather complicated one-dimensional cellular automaton, with 18
states per site (£=18) , that has been specifically constructed to imitate a universal Turing
machine (a standard mathematical computer model), and so is capable of universal computation.
But from empirical observations I strongly suspect that many much simpler cellular automata,
such as those listed below, are also capable of universal computation. In no case, however, has
this been proved.

One can prove that a cellular automaton is capable of universal computation by showing
that it can imitate some other system that is already known to be a universal computer. For such
a cellular automata it must be possible to find a particular initial state that evolves just like any
of the states of the known universal computer.

There are various kinds of universal computers known. A good introduction to some of them
is the book by F. S. Beckman, entitled "Mathematical Foundations of Programming", published
by Addison-Wesley in 1981. One can minimize the amount of work needed to prove a cellular
automaton computationally universal by choosing to show equivalence to the closest system
already known to be a universal computer.

One possibility might be to show equivalence to a Turing .machine. This consists of a
memory tape divided into squares each containing one of a fixed set of symbols, together with a
"head" or CPU which can move backwards and forwards on the tape, reading and writing sym­
bols, according to a fixed set of internal rules. I think that the simplest known universal Turing
machine has 4 possible symbols on the tape, and 7 internal states in its head. In a cellular auto­
maton, the tape symbols should be represented by stable (or perhaps periodic) separated struc­
tures. The head would be represented by a structure consisting of a complicated sequence of site
values, which has appropriate interactions with the tape symbol structures. The most direct tran­
scription of the simplest known Turing machine yields the cellular automaton with 18 states men­
tioned above (see A. R. Smith, "Simple computation-universal cellular spaces", Journal of Associ­
ation for Computer Machinery, volume 18, page 331 (1971)). But by allowing the tape symbols
and the head to be represented by complicated structures, rather than just single site values, one
should be able to imitate this Turing machine with a simpler cellular automaton. Indeed, if the
cellular automaton is to be a universal computer, such an equivalence must always exist, but the
necessary encoding could be extremely complicated.

A second and perhaps better possibility is to show equivalence to a standard digital com­
puter. This was the approach used to show that the two-dimensional cellular automaton known as
the "Game of Life" is capable of universal computation. One should be able to follow the outline
of this proof quite closely. One needs to identify objects in the cellular automaton that act as
wires (which carry signals), memories, logical gates, and probably a clock. For the rules discussed
below, various of these objects have been found. But more are needed. Memories correspond to
isolated periodic structures. Signals are propagated by gliders, which move periodically across the
cellular automaton. These should interact with each other, and with memories, to implement vari­
ous logical functions (such as "and", "nand", etc.). Given "gates" corresponding to various logi­
cal functions, one must find out how to arrange initial conditions for the cellular automaton to
emulate an arbitrary digital circuit. Glider guns will probably also be needed to act as sources of

signals, and clocks.
For some further details on these questions, and on cellular automata in general, you can

look at some of my published papers. Two that were written for a reasonably general audience
are:

"Cellular automata", Los Alamos Science (Fall 1983) (available from Los Alamos National
Laboratory, Los Alamos, NM 87545)
"Cellular automata as models of complexity", Nature, volume 311, page 419 (October 4,
1984).

Somewhat more technical papers are:
"Statistical mechanics of cellular automata", Reviews of Modern Physics, volume 55, page
601 (July 1983)
"Universality and complexity in cellular automata", Physica D, volume 10, page 1 (1984).

The latter reference has also appeared in a book entitled "Cellular automata", edited by D.
Farmer, T. Toffoli and S. Wolfram, published by North Holland/Elsevier (1984).
A somewhat more technical paper, describing in particular some of the algorithms discussed below
is:

"Computation theory of cellular automata", Communications in Mathematical Physics,
volume 96, page 15 (1984).

Cellular automaton rules
Here are some class 4 cellular automaton rules to look for various kinds of structures in.

Each of these rules is, I suspect, capable of universal computation, but it would be very interest­
ing to prove this.
1. i = 3 , r = l , totalistic rule code 357:

a diversity of periodic structures have been found, and I have recently found one rather
complicated glider.

2. it =2 , r =2, totalistic rule code 20:
periodic and propagating structures are known, but no glider gun has been found, and
interactions between the structures have not been studied.

3. k=3, r = l , totalistic rule code 792: periodic and propagating structures are known, but no
glider gun has been found.

4. k =2 , r =3, totalistic rule code 88 (Park's rule):
periodic and propagating structures, together with a glider gun, have been found. These
must now be assembled to make a universal computer.

5. k =2 , r =1 , rule number 193:
periodic and propagating structures have been found, and some of their interactions have
been studied. In the other rules, the "background" consists of cells in state 0. Here there is
a rather elaborate "wallpaper" background, with period 14 horizontally and 7 vertically.

Notes

-' Tables and illustrations of the structures found in these rules are given at the end.
All phenomena should be investigated on lattices large enough that edge effects are
irrelevant.
The values of k given specify the number of possible states (labelled say 0 through k-1) in
the cellular automata. Different states can be represented by different colours or characters.
The values of r give the "range" of the cellular automaton rule. When r = l, the new state
of a particular cell depends only on its immediate neighbours to the left and right. When
r =2 , it also depends on the next neighbours on each side, and so on.

The "totalistic" rule codes used in cases 1 through 3 are defined in my September 1984
Scientific American article. "Totalistic" rule codes are defined in my September 1984
Scientific American article. For example, the k =2, r = 2 cellular automaton with code 20
(case 2 above) has the following rule. First, find the numerical sum of the states of a site,
and its two neighbours on the left and on the right. If thir- sum (whose maximum value is 5)
is exactly 2 or 4, then make the new cell have state 1; otherwise make it have state 0.
Remember that the sum is of old cell states; new states that have just been computed must
be kept separate.

The rule for case 5 is of a different kind. First find the binary equivalent of 193: this is
11000001. Then the t th digit (starting from 0 on the right) gives the new state of a cell
when the binary number formed by the three old cell states is exactly i. So if the three cells
are 000, 110 or 111, the new cell has states 1; otherwise it has state 0.

Some other rules

Here are some more class 4 cellular automaton roles to look at:

£ = 5 , r = l , totalistic code 53955: background of l 's.

£ = 5 , r = l , totalistic code 522809355: period 2 background.

£ = 5 , r = l , totalistic code 55135.

£ = 4 , r = l , totalistic code 1004600.

£ = 2 , r = 2 , totalistic code 52.

Search procedures

I know of two basic methods that can used to search for structures in one-dimensional cellu­
lar automata. The first is simply to test each possible initial configuration in turn, and observe its
fate. The second is to use an algorithm (described below) that can systematically find all struc­
tures with a particular period in a given cellular automaton.

It is not very easy to find complicated structures in cellular automata. Systematic methods
tend to take very much computer time. The tables given below each took many hours of CPU
time on a reasonably fast computer (I mostly used a Ridge 32 - comparable in speed to a larger
VAX). For example, the glider in the first table took about two days of CPU time to find. But I
was making the computer do all the work. And I suspect that if I had spent enough time studying
the patterns that the cellular automaton makes, then I would have been able to go a long way
towards constructing interesting structures myself, without having to make the computer just
search through all the possibilities. I think it is probably best to combine experimentation with
some thinking, and some systematic computer searching.

When one does an exhaustive search of all possible initial configurations, say up to some
given size, the same structures will be produced many times. One can tell that a definite structure
has been produced by seeing whether the configurations produced are periodic in time. Then one
must find out whether the structure has been produced before. This can be slightly tricky,
because one may catch it at different points in its cycle on different occasions. One must also
take account of gliders, which repeat themselves, but shifted over. My program always looks only
at a "window" on the cellular automate,: whose edges are just r cells away from the edges of the
patterns produced, and which shift when the pattern shifts. Another problem is that some initial
configurations may evolve to several separated structures, each of which has been seen before.
One needs to make the program recognize these structures. One awkward case involves compo­
sites with gliders going in opposite directions, or gliders together with periodic structures. In these
cases, the pattern never becomes periodic as a whole, even though its parts do.

The procedure just described can be used in principle to find all the structures that a partic­
ular cellular automaton can generate. One can test each possible initial configuration in turn. Or
one can try initial configurations at random.

An alternative procedure is to use a systematic algorithm that finds all possible structures
with a particular period in a given cellular automaton. Of course, as the tables show, some of the
structures can have a pretty long period, and this algorithm really becomes impractical for any­
thing but quite short periods. I will first describe how this algorithm works for finding
configurations that are stable under a cellular automaton rule, and so remain unchanged from one
time step to the next.

1. Write down the state obtained by applying the cellular automaton rule to each possible
block of 2 r + l cell states. Then discard those blocks in which the state of the centre cell
changes. Only those blocks that remain are allowed to appear in the blocks that remain.
Now one must simply find out what configurations (if any) can be made by stringing these
allowed blocks together, with the blocks overlapping by 2r sites. For efficiency, it is good at
this point to make a table that specifies which block can follow which other block in a
configuration. (Such tables are equivalent to what are known as a "deBruijn" graph.) Thus
for example, 101 can be followed only by 010 and Oil (though one or both of these may not
be among the set of blocks for which the centre cell is mapped to itself).

2. Now construct a " t ree" of all the possible strings of blocks. Assume that in the "back­
ground", all cells have state 0. Then start with the block that represents the background
(e.g. 000 for an r = l rule). Let this block be the root of a tree. Then make branches to
nodes corresponds to the allowed blocks that can follow this block. Continue this procedure
until (a) no allowed blocks can follow the current block, or (b) the background block is
reached again. In case (b), the sequence of blocks on the path starting at the root
corresponds to a periodic configuration in the cellular automaton (the actual configuration
can be read off from the sequence of centre cell states in the blocks).

To look for structures with period p greater than one, just form blocks of length 2rp + 1
that represent the effect of p applications of the cellular automaton rule, then use the algorithm
outlined above. This algorithm can also be used to search for gliders of a predetermined speed:
make the blocks give the results of the cellular automaton rule shifted by the approprite amount.

Epilogue

That is about all I can tell you about these questions. The rest is up to you. If you find
something interesting, please do send me a letter, at the address given above, and send a copy to
A. K. Dewdney, care of Scientific American.

I have printed up a set of six colour postcards of cellular automaton patterns. They are
available from me at $2 (US) for each set. But I will certainly send a free set to anyone who finds
an interesting new cellular automaton structure. And if enough of these are found, I will make a
catalogue of them later this year. If you would like a copy of this, please send me a note.

Good luck!

Tables of structures

Structures with periods followed by L or R are left and right-moving gliders, respectively. Glider
guns are indicated by G.

A code for the shortest initial configuration ("seed") that yields each structure is given. The code
consists in the sequence of cell states for the configuration, treated as digits of a base £ number,
and given as a decimal number. (So, for example, configuration 29 with £ = 3 is 102 = 3s+2.)

period

48
19
19
26
41L
41R

seed

28
7795
8083

1706588
4803890
12269314

Structures found for the £ = 3 , r ==1 rule with code 357. (Searched up to size 14.)

period

2
9R
1
22
9L
1R
1L
38
4
4
4

seed

151
187
189
195
221
635
889

125231
595703
610999
624623

Structures found for the £ =2 , r = 2 rule with code 20. (Searched up to size 21.)

period

1
20
3R
3L
16
3L
3R
3R
3L
12
32L
32R
6R
6L

seed

4
5

101
113
1625
4187
4561
5252
5540
12031
35996
40424
141872
148424

Structures found for the £ = 3 , r = 1 rule with code 792. (Searched up to size 11.)

period

3
1R
1L
2
2
1
3R
3L

238G
34
3L
3R

seed

7
207
243
1631
3295
3579
6591
7135
7167

1704415
57307736539103
69268037164555

Structures found for the £ = 2 , r = 3 rale with code 88, by James Park of Princeton University.
(All possible structures with periods up to 3 are now known; those not listed in the table have the
form 110100000111101111111101000(1101111111011101111000)*1110111111111011111 where the
starred sequence can be omitted or repeated any number of times.)

Structures found for the £ = 3 , r = 1 rule with code 357. (All nonzero sites shown black.) Can you
find other gliders? Or a glider gun?

It

ff 81$

>»

ii

s

>*&

Structures found for the £ = 2 , r = 2 rule with code 20. Can you find a glider gun?

Structures found for the £ = 3 , r = 1 rule with code 792. (All nonzero sites shown black.) Can you
find a glider gun?

•h
KM

'b%
KM

M
M

iW

%
\%

t%
\%

\C
\\%

*<\s%
».%

%
\ ,.». ,.%

'.\%
\».s%

,.s%
s

,.vsi.s
,.%

tV
\ ,rt«.

m
W

K
W

ftK
M

H
W

M

V

a a. •>
J

Q

8 «>
| u

J

3
*

J

* V

9

<M

|| u

n
 II

-v V

X
3

*
j

£ "O

a 9
,2 2 9 u

9

*
J

(4
a o

-3
1 V

B

o

en

 >
,

3 B

>.
V

:•)

£ <—*
5 «-.
S.
&

9

£ •_ o

£•
V

> n
 >̂

V

-a
•*»
«
.2
u

•.
ft.

<
M

m
M

<
M

<
m

m
m

.<
m

<
M

M
m

m

V

> a o
 V

u
 a C

a, O

cu
8 B

8:'
1 6
-a

*-»
'?
"3
« II k»

ef I -»« V

N
J

a 9
£ en
6 M

*«> O

E E
£

o .•£

A glider gun found for the £ = 2 , r = 3 rule with code 88, by James Park.

Interaction between some structrures in the £ = 2 , r = 3 rule with code 88. The structures on the
sides absorb all gliders that hit them. And in the centre, two simple initial structures combine
with gliders from the two glider guns to create a new glider gun. (Picture courtesy of James
Park.)

am

s^§^ njsii iiiis^i &SS«SS®s
8
20

4
15 s =

4
36

l^iSS ii i^iK
8
30

s = 21
42

s = 12

Structures found in the £ = 2 , r = l rule with number 193 by Doug Lind, a mathematician at the
University of Washington in Seattle. Can you find gliders (or "particles") with other speeds? The
values of > give the speeds of those shown here.

Interactions between structures in the £ = 2 , r = 1 rule with number 193. What are all the possi­
ble interaction processes? Can one assemble a universal computer using them?

