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In his Computer Recreations column in the May 1985 issue of Scientific American, A. K. 
Dewdney described some of the research that I have been doing on one-dimensional cellular auto­
mata. As he mentioned, there are some interesting questions about these systems that you may be 
able to help me answer. The questions do not rely on sophisticated mathematical knowledge, but 
to make progress on them will probably take a lot of work and some clever ideas. These notes 
define some of the questions, describe what I have worked out so far about them, and suggest 
some approaches you could take to them. 

. The central issue is what kinds of structures can occur in certain simple one-dimensional cel­
lular automata. Although their basic rules are very simple, the overall behaviour of such cellular 
automata seems very complicated. I would like to be able to characterize just how complicated 
they are by identifying the structures and processes that can occur in them. 

Many cellular automata give spacetime patterns that seem very chaotic, and in which one 
cannot really identify definite persistent structures. However, there are some cellular automata 
that I have called "class 4 " in which definite localized structures occur. These cellular automata 
are comparatively rare, making up about b% of the possibilities (with t < 5 and r < 2 - see 
below). There are various kinds of structures one can look for: 

Per iodic structures. These consist of localized patterns that remain unchanged with time, 
or follow a cycle, periodically returning to the same form. Usually these and other structures 

.. occur on a background of zeroes; but for some rules the background may have another state, 
or perhaps itself be a periodic "wallpaper" pattern. 

P r o p a g a t i n g structures or "gliders". These are localized patterns that systematically 
shift across the cellular automaton lattice with time. They may have a variety of speeds. 

Glider guns. In the strictest definition, these are finite-sized patterns which periodically 
emit gliders. Including these gliders, such objects give rise to a pattern with a systematically 
increasing total size. One may in general look for structures in class 4 cellular automata that 
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increase in total size in this way, not necessarily just by emission of gliders. (Note however 
that in class 3 cellular automata such configurations are commonplace: the question is of 
interest only for class 4 cellular automata, such as those listed below.) 

Self-reproducing structures. These would be like simple mathematical idealizations of 
living systems. A finite pattern in a class 4 cellular automaton would grow with time, and 
eventually yield a copy of itself. (Trivial self-reproduction phenomena can occur in rules 
that obey a "linear superposition" principle, according to which the patterns produced from 
a particular initial state correspond to simple superpositions of patterns produced say with a 
single cell seed.) 

But ultimately the most interesting question is probably whether certain simple one-dimensional 
cellular automata are capable of "universal computation", so that they can emulate the operation 
of any computer. There is a rather complicated one-dimensional cellular automaton, with 18 
states per site (£=18) , that has been specifically constructed to imitate a universal Turing 
machine (a standard mathematical computer model), and so is capable of universal computation. 
But from empirical observations I strongly suspect that many much simpler cellular automata, 
such as those listed below, are also capable of universal computation. In no case, however, has 
this been proved. 

One can prove that a cellular automaton is capable of universal computation by showing 
that it can imitate some other system that is already known to be a universal computer. For such 
a cellular automata it must be possible to find a particular initial state that evolves just like any 
of the states of the known universal computer. 

There are various kinds of universal computers known. A good introduction to some of them 
is the book by F. S. Beckman, entitled "Mathematical Foundations of Programming", published 
by Addison-Wesley in 1981. One can minimize the amount of work needed to prove a cellular 
automaton computationally universal by choosing to show equivalence to the closest system 
already known to be a universal computer. 

One possibility might be to show equivalence to a Turing .machine. This consists of a 
memory tape divided into squares each containing one of a fixed set of symbols, together with a 
"head" or CPU which can move backwards and forwards on the tape, reading and writing sym­
bols, according to a fixed set of internal rules. I think that the simplest known universal Turing 
machine has 4 possible symbols on the tape, and 7 internal states in its head. In a cellular auto­
maton, the tape symbols should be represented by stable (or perhaps periodic) separated struc­
tures. The head would be represented by a structure consisting of a complicated sequence of site 
values, which has appropriate interactions with the tape symbol structures. The most direct tran­
scription of the simplest known Turing machine yields the cellular automaton with 18 states men­
tioned above (see A. R. Smith, "Simple computation-universal cellular spaces", Journal of Associ­
ation for Computer Machinery, volume 18, page 331 (1971)). But by allowing the tape symbols 
and the head to be represented by complicated structures, rather than just single site values, one 
should be able to imitate this Turing machine with a simpler cellular automaton. Indeed, if the 
cellular automaton is to be a universal computer, such an equivalence must always exist, but the 
necessary encoding could be extremely complicated. 

A second and perhaps better possibility is to show equivalence to a standard digital com­
puter. This was the approach used to show that the two-dimensional cellular automaton known as 
the "Game of Life" is capable of universal computation. One should be able to follow the outline 
of this proof quite closely. One needs to identify objects in the cellular automaton that act as 
wires (which carry signals), memories, logical gates, and probably a clock. For the rules discussed 
below, various of these objects have been found. But more are needed. Memories correspond to 
isolated periodic structures. Signals are propagated by gliders, which move periodically across the 
cellular automaton. These should interact with each other, and with memories, to implement vari­
ous logical functions (such as "and", "nand", etc.). Given "gates" corresponding to various logi­
cal functions, one must find out how to arrange initial conditions for the cellular automaton to 
emulate an arbitrary digital circuit. Glider guns will probably also be needed to act as sources of 



signals, and clocks. 
For some further details on these questions, and on cellular automata in general, you can 

look at some of my published papers. Two that were written for a reasonably general audience 
are: 

"Cellular automata", Los Alamos Science (Fall 1983) (available from Los Alamos National 
Laboratory, Los Alamos, NM 87545) 
"Cellular automata as models of complexity", Nature, volume 311, page 419 (October 4, 
1984). 

Somewhat more technical papers are: 
"Statistical mechanics of cellular automata", Reviews of Modern Physics, volume 55, page 
601 (July 1983) 
"Universality and complexity in cellular automata", Physica D, volume 10, page 1 (1984). 

The latter reference has also appeared in a book entitled "Cellular automata", edited by D. 
Farmer, T. Toffoli and S. Wolfram, published by North Holland/Elsevier (1984). 
A somewhat more technical paper, describing in particular some of the algorithms discussed below 
is: 

"Computation theory of cellular automata", Communications in Mathematical Physics, 
volume 96, page 15 (1984). 

Cellular automaton rules 
Here are some class 4 cellular automaton rules to look for various kinds of structures in. 

Each of these rules is, I suspect, capable of universal computation, but it would be very interest­
ing to prove this. 
1. i = 3 , r = l , totalistic rule code 357: 

a diversity of periodic structures have been found, and I have recently found one rather 
complicated glider. 

2. it =2 , r =2, totalistic rule code 20: 
periodic and propagating structures are known, but no glider gun has been found, and 
interactions between the structures have not been studied. 

3. k=3, r = l , totalistic rule code 792: periodic and propagating structures are known, but no 
glider gun has been found. 

4. k =2 , r =3, totalistic rule code 88 (Park's rule): 
periodic and propagating structures, together with a glider gun, have been found. These 
must now be assembled to make a universal computer. 

5. k =2 , r =1 , rule number 193: 
periodic and propagating structures have been found, and some of their interactions have 
been studied. In the other rules, the "background" consists of cells in state 0. Here there is 
a rather elaborate "wallpaper" background, with period 14 horizontally and 7 vertically. 

Notes 

-' Tables and illustrations of the structures found in these rules are given at the end. 
All phenomena should be investigated on lattices large enough that edge effects are 
irrelevant. 
The values of k given specify the number of possible states (labelled say 0 through k-1) in 
the cellular automata. Different states can be represented by different colours or characters. 
The values of r give the "range" of the cellular automaton rule. When r = l, the new state 
of a particular cell depends only on its immediate neighbours to the left and right. When 
r =2 , it also depends on the next neighbours on each side, and so on. 



The "totalistic" rule codes used in cases 1 through 3 are defined in my September 1984 
Scientific American article. "Totalistic" rule codes are defined in my September 1984 
Scientific American article. For example, the k =2, r = 2 cellular automaton with code 20 
(case 2 above) has the following rule. First, find the numerical sum of the states of a site, 
and its two neighbours on the left and on the right. If thir- sum (whose maximum value is 5) 
is exactly 2 or 4, then make the new cell have state 1; otherwise make it have state 0. 
Remember that the sum is of old cell states; new states that have just been computed must 
be kept separate. 

The rule for case 5 is of a different kind. First find the binary equivalent of 193: this is 
11000001. Then the t th digit (starting from 0 on the right) gives the new state of a cell 
when the binary number formed by the three old cell states is exactly i. So if the three cells 
are 000, 110 or 111, the new cell has states 1; otherwise it has state 0. 

Some other rules 

Here are some more class 4 cellular automaton roles to look at: 

£ = 5 , r = l , totalistic code 53955: background of l 's. 

£ = 5 , r = l , totalistic code 522809355: period 2 background. 

£ = 5 , r = l , totalistic code 55135. 

£ = 4 , r = l , totalistic code 1004600. 

£ = 2 , r = 2 , totalistic code 52. 

Search procedures 

I know of two basic methods that can used to search for structures in one-dimensional cellu­
lar automata. The first is simply to test each possible initial configuration in turn, and observe its 
fate. The second is to use an algorithm (described below) that can systematically find all struc­
tures with a particular period in a given cellular automaton. 

It is not very easy to find complicated structures in cellular automata. Systematic methods 
tend to take very much computer time. The tables given below each took many hours of CPU 
time on a reasonably fast computer (I mostly used a Ridge 32 - comparable in speed to a larger 
VAX). For example, the glider in the first table took about two days of CPU time to find. But I 
was making the computer do all the work. And I suspect that if I had spent enough time studying 
the patterns that the cellular automaton makes, then I would have been able to go a long way 
towards constructing interesting structures myself, without having to make the computer just 
search through all the possibilities. I think it is probably best to combine experimentation with 
some thinking, and some systematic computer searching. 

When one does an exhaustive search of all possible initial configurations, say up to some 
given size, the same structures will be produced many times. One can tell that a definite structure 
has been produced by seeing whether the configurations produced are periodic in time. Then one 
must find out whether the structure has been produced before. This can be slightly tricky, 
because one may catch it at different points in its cycle on different occasions. One must also 
take account of gliders, which repeat themselves, but shifted over. My program always looks only 
at a "window" on the cellular automate,: whose edges are just r cells away from the edges of the 
patterns produced, and which shift when the pattern shifts. Another problem is that some initial 
configurations may evolve to several separated structures, each of which has been seen before. 
One needs to make the program recognize these structures. One awkward case involves compo­
sites with gliders going in opposite directions, or gliders together with periodic structures. In these 
cases, the pattern never becomes periodic as a whole, even though its parts do. 

The procedure just described can be used in principle to find all the structures that a partic­
ular cellular automaton can generate. One can test each possible initial configuration in turn. Or 
one can try initial configurations at random. 



An alternative procedure is to use a systematic algorithm that finds all possible structures 
with a particular period in a given cellular automaton. Of course, as the tables show, some of the 
structures can have a pretty long period, and this algorithm really becomes impractical for any­
thing but quite short periods. I will first describe how this algorithm works for finding 
configurations that are stable under a cellular automaton rule, and so remain unchanged from one 
time step to the next. 

1. Write down the state obtained by applying the cellular automaton rule to each possible 
block of 2 r + l cell states. Then discard those blocks in which the state of the centre cell 
changes. Only those blocks that remain are allowed to appear in the blocks that remain. 
Now one must simply find out what configurations (if any) can be made by stringing these 
allowed blocks together, with the blocks overlapping by 2r sites. For efficiency, it is good at 
this point to make a table that specifies which block can follow which other block in a 
configuration. (Such tables are equivalent to what are known as a "deBruijn" graph.) Thus 
for example, 101 can be followed only by 010 and Oil (though one or both of these may not 
be among the set of blocks for which the centre cell is mapped to itself). 

2. Now construct a " t ree" of all the possible strings of blocks. Assume that in the "back­
ground", all cells have state 0. Then start with the block that represents the background 
(e.g. 000 for an r = l rule). Let this block be the root of a tree. Then make branches to 
nodes corresponds to the allowed blocks that can follow this block. Continue this procedure 
until (a) no allowed blocks can follow the current block, or (b) the background block is 
reached again. In case (b), the sequence of blocks on the path starting at the root 
corresponds to a periodic configuration in the cellular automaton (the actual configuration 
can be read off from the sequence of centre cell states in the blocks). 

To look for structures with period p greater than one, just form blocks of length 2rp + 1 
that represent the effect of p applications of the cellular automaton rule, then use the algorithm 
outlined above. This algorithm can also be used to search for gliders of a predetermined speed: 
make the blocks give the results of the cellular automaton rule shifted by the approprite amount. 

Epilogue 

That is about all I can tell you about these questions. The rest is up to you. If you find 
something interesting, please do send me a letter, at the address given above, and send a copy to 
A. K. Dewdney, care of Scientific American. 

I have printed up a set of six colour postcards of cellular automaton patterns. They are 
available from me at $2 (US) for each set. But I will certainly send a free set to anyone who finds 
an interesting new cellular automaton structure. And if enough of these are found, I will make a 
catalogue of them later this year. If you would like a copy of this, please send me a note. 

Good luck! 



Tables of structures 

Structures with periods followed by L or R are left and right-moving gliders, respectively. Glider 
guns are indicated by G. 

A code for the shortest initial configuration ("seed") that yields each structure is given. The code 
consists in the sequence of cell states for the configuration, treated as digits of a base £ number, 
and given as a decimal number. (So, for example, configuration 29 with £ = 3 is 102 = 3s+2.) 

period 

48 
19 
19 
26 
41L 
41R 

seed 

28 
7795 
8083 

1706588 
4803890 
12269314 

Structures found for the £ = 3 , r ==1 rule with code 357. (Searched up to size 14.) 

period 

2 
9R 
1 
22 
9L 
1R 
1L 
38 
4 
4 
4 

seed 

151 
187 
189 
195 
221 
635 
889 

125231 
595703 
610999 
624623 

Structures found for the £ =2 , r = 2 rule with code 20. (Searched up to size 21.) 

period 

1 
20 
3R 
3L 
16 
3L 
3R 
3R 
3L 
12 
32L 
32R 
6R 
6L 

seed 

4 
5 

101 
113 
1625 
4187 
4561 
5252 
5540 
12031 
35996 
40424 
141872 
148424 

Structures found for the £ = 3 , r = 1 rule with code 792. (Searched up to size 11.) 



period 

3 
1R 
1L 
2 
2 
1 
3R 
3L 

238G 
34 
3L 
3R 

seed 

7 
207 
243 
1631 
3295 
3579 
6591 
7135 
7167 

1704415 
57307736539103 
69268037164555 

Structures found for the £ = 2 , r = 3 rale with code 88, by James Park of Princeton University. 
(All possible structures with periods up to 3 are now known; those not listed in the table have the 
form 110100000111101111111101000(1101111111011101111000)*1110111111111011111 where the 
starred sequence can be omitted or repeated any number of times.) 



Structures found for the £ = 3 , r = 1 rule with code 357. (All nonzero sites shown black.) Can you 
find other gliders? Or a glider gun? 
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Structures found for the £ = 2 , r = 2 rule with code 20. Can you find a glider gun? 

Structures found for the £ = 3 , r = 1 rule with code 792. (All nonzero sites shown black.) Can you 
find a glider gun? 
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A glider gun found for the £ = 2 , r = 3 rule with code 88, by James Park. 

Interaction between some structrures in the £ = 2 , r = 3 rule with code 88. The structures on the 
sides absorb all gliders that hit them. And in the centre, two simple initial structures combine 
with gliders from the two glider guns to create a new glider gun. (Picture courtesy of James 
Park.) 
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Structures found in the £ = 2 , r = l rule with number 193 by Doug Lind, a mathematician at the 
University of Washington in Seattle. Can you find gliders (or "particles") with other speeds? The 
values of > give the speeds of those shown here. 



Interactions between structures in the £ = 2 , r = 1 rule with number 193. What are all the possi­
ble interaction processes? Can one assemble a universal computer using them? 




