
Complex Systems 10 (1996) 391–416

On Classes of One-dimensional Self-assembling
Automata

Kazuhiro Saitou∗

Department of Mechanical Engineering and Applied Mechanics,
University of Michigan, Ann Arbor, MI

Mark J. Jakiela†

Hunter Associate Professor of Mechanical Design,
Department of Mechanical Engineering,
Washington University, St. Louis, MO

Abstract. An abstract model of self-assembling systems is presented
where assembly instructions are written as conformational switches—
local rules that specify conformational changes of a component. The
self-assembling automaton model is defined as a sequential rule-based
machine that operates on one-dimensional strings of symbols. An
algorithm is provided for constructing a self-assembling automaton
that self-assembles an one-dimensional string of distinct symbols in
a given particular subassembly sequence. Classes of self-assembling
automata are then defined based on classes of subassembly sequences
in which the components self-assemble. For each class of subassembly
sequence, the minimum number of conformations is provided which is
necessary to encode subassembly sequences in the class. It is shown
that three conformations for each component are enough to encode
any subassembly sequences of a string with arbitrary length.

1. Introduction

1.1 Coded and uncoded self-assembly

Nature exhibits various kinds of self-assembly. One of the simplest is rain-
drops on a leaf which, when placed close enough, merge together sponta-
neously to form one big drop with a smooth, curved shape. On the other
extreme in complexity, protein molecules inside biological cells self-assemble
to reproduce cells each time they divide. These two examples represent two
types of self-assembly in nature—coded and uncoded self-assembly [20]. The

∗Electronic mail address: kazu@umich.edu.
†Electronic mail address: mjj@mecf.wustl.edu.

c© 1996 Complex Systems Publications, Inc.

392 Kazuhiro Saitou and Mark J. Jakiela

self-assembly of raindrops is an example of uncoded self-assembly, where as-
sembly of each component (in this case each raindrop) is directed simply by
minimization of potential (in this case thermodynamic) energy. Uncoded self-
assembly, therefore, works to construct only the simplest of such structures.
On the other hand, many complex structures in nature, for example, biologi-
cal cells, arise via coded self-assembly, where instructions for the assembly of
the system are built into its components. Self-assembly of biological cells, for
example, is directed by conformational changes in protein molecules realized
by energy-dissipating structures such as adenosine triphosphate.

A well-studied example of coded self-assembly in biology is the assembly
of bacteriophages, a type of virus which infect bacterial cells. It is known
that the assembly of new progeny viruses in their host cell occurs in a fixed
morphogenic pattern, indicating coded self-assembly. Biologists believe that
assembly instructions for this self-assembly of bacteriophages are written
in each component molecule in the form of conformational switches. In a
protein molecule with several bond sites, a conformational switch causes the
formation of a bond at one site to change the conformation of another bond
site. As a result, a conformational change which occurred at an assembly
step provides the essential substrate for assembly at the next step [19].

Designing artificial systems with such a built-in set of assembly instruc-
tions is of great interest from an engineering point of view. The previous
work of the authors on evolutionary design of mechanical conformational
switches [15, 16] was a first attempt toward the design of (coded) self-
assembling mechanical systems. In section 1.2, we overview some of the
other previous work on self-assembling systems.

1.2 Previous work on self-assembling systems

Coded self-assembly of bacteriophages has been studied by a number of biol-
ogists (e.g., [2, 5]), and several computational models have been developed.
In [6, 17, 18] a finite automaton model of the protein molecules which un-
dergo conformational changes during the self-assembly of bacteriophage T4
is proposed. In [1] a set of local rules that specify the conformational changes
of the component protein subunits in the self-assembly of icosahedral virus
shells is identified. Using computer simulation it is shown that the subunits
can form a closed icosahedral shell with the desired symmetry by following
the local rules.

In engineering, several approaches have been proposed on the uncoded
self-assembly of mechanical parts. In [11–13] a layered palletization technique
is developed. Parts are “palletized” via vibratory agitation on a plastic pallet
with an array of relief shapes that trap and orient the flowing parts. Assem-
bly of two parts is done by palletizing the first part, and then palletizing the
second part on top of the first part. In [21] a nonlayered palletization tech-
nique is used to integrate trapezoidal GaAs micro blocks on a Si substrate
with trapezoidal holes by dispensing these in a carrier fluid (ethanol) onto
the Si substrate. In [3] an experiment with the self-assembly of small hexag-

On Classes of One-dimensional Self-assembling Automata 393

onal parts (1 mm in diameter) by placing a quantity of them on a slightly
concave diaphragm that was agitated with a loudspeaker is discussed. In [8]
the surface tension of water is utilized to self-assemble micro parts floating on
the water surface. Self-assembly in these examples is driven by minimization
of potential energy, and no explicit assembly instructions are built into the
components.

Due to its inherent complexity, little work has been done on the coded self-
assembly of physical systems. In [14] several designs of mechanical conforma-
tional switches are suggested that are used in devices that “self-reproduce.”
These conformational switches cause a bond at one location to break a bond
existing at another location or prevent a bond from occurring at another
location. In [7] triangular parts are developed that employ switches realized
with movable magnets which allow parts to bond together to form hexagons.
The switches allow a part to be either in an active or inactive state. An acti-
vated part can bond to an inactivated part, turning the part to an activated
state. These parts are assembled in a rotating box randomizer.

1.3 Motivation

The work described in this paper was motivated by our previous work on the
evolutionary design of mechanical conformational switches [15, 16], where
two different kinds of conformational switch models are studied. In these
efforts, it was found that conformational switches can encode one or more
subassembly sequences and that the encodable subassembly sequences de-
pend on the conformational switch model employed. In particular, some
subassembly sequences cannot be encoded by a conformational switch model
no matter how many conformations are assumed. This raises the following
questions.

• Is it possible to tell whether a subassembly sequence can be encoded
by a given switch model?

• If so, how many conformations (or switch states) are necessary to en-
code a given subassembly sequence?

The relationship between subassembly sequences and conformational switch
models is analogous to that between languages and machines (models of
computation) in the theory of computation [10], with a subassembly sequence
being a language, and a conformational switch that encodes the subassembly
sequence being a machine that accepts the language. Under this view, the
stated problems can be seen as analogs of the problem of finding a class
of machines that accepts a given language, and the problem of finding the
minimum number of states of a machine that accepts a given instance of the
language.

This analogy motivated us to address the stated problems in the case of
general self-assembling systems, not in the case of our particular implementa-
tion of conformational switches. More specifically, we approach the problems

394 Kazuhiro Saitou and Mark J. Jakiela

by developing a formal model of self-assembling systems that abstracts the
built-in assembly instructions in the form of conformational switches, and by
identifying classes of self-assembling systems based on subassembly sequences
in which the components of the systems self-assemble. As an initial attempt,
an abstract representation of such a system is defined as a sequential machine
that processes one-dimensional strings of symbols, which we refer to as an
one-dimensional self-assembling automaton. This paper deals with symbolic
one-dimensional assembly because of the following.

1. It is the simplest case of assembly and hence appropriate for the initial
attempt.

2. It is easy to focus on subassembly sequences.

3. It is simple enough to generalize to complex self-assembling systems.

Before proceeding to a formal definition of a self-assembling system we discuss
two simple examples that emphasize the essential aspect of machines of this
type and illustrate how conformational switches can encode a subassembly
sequence.

2. Theory of one-dimensional self-assembling automata

2.1 Conformational switches as assembly instructions

We consider the following scenario of simple one-dimensional assembly. Sup-
pose we are given a one-dimensional component bin that initially contains
a random assortment of components. Further suppose we are given a set
of assembly instructions, or simply rules, describing which components can
bind to which other components. Let the rules be of the form a + b → ab,
which means a component a and a component b can bind together to form
an assembly ab. Assembly occurs by randomly picking two assemblies in the
bin and mating them together, it is assumed that a component is a special
case of an assembly. If one of the built-in rules fires, the two assemblies can
bind together, and the resulting assembly is returned to the bin. To keep
track of the subassembly sequences, the resulting assembly is parenthesized
when it is formed. The rule a+b → ab fires, for example, when a component
a and a component b are picked and an assembly (ab) is added to the bin
as a result. If no rules fire, the two assemblies are simply returned to the
bin. Note that the rules are assumed to be local so that a + b → ab also fires
when, for example, an assembly (ca) and an assembly (ba) are picked, which
results in forming an assembly ((ca)(ba)). This random picking continues
until no further rule firing is possible by picking any two assemblies in the
bin. To see how the above scenario abstracts the behavior of self-assembling
systems, consider a trivial example.

Example 1. Suppose our initial bin contains one component a, one com-
ponent b, and two components c (which we represent as 〈a, b, c, c〉), and our

On Classes of One-dimensional Self-assembling Automata 395

Rules: a + b --> ab, b + c --> bc

(ab) c c

(a)

(b1) (b2)

(c1) (c2)

a (bc) c

a b c c

((ab)c) c (a(bc)) c

Figure 1: One-dimensional self-assembly with no conformational
switches: abc can assemble in either order ((ab)c) or (a(bc)).

rule set contains a + b → ab and b + c → bc, as shown in Figure 1(a). As we
continue the random picking process described previously, no change occurs
to the contents of the bin until a and b are picked, or b and c are picked. If
a and b are picked, the rule a + b → ab fires and the resulting bin becomes
〈(ab), c, c〉 (Figure 1(b1)). After that, ((ab)c) is eventually formed when (ab)
and c are picked and b + c → bc fires. The resulting bin becomes 〈((ab)c), c〉
and no further rule firing is possible (Figure 1(c1)). Similarly, if b and c are
picked, the rule b + c → bc fires and the resulting bin becomes 〈a, (bc), c〉
(Figure 1(b2)). After that, (a(bc)) is formed eventually when a and (bc) are
picked and a + b → ab fires. The resulting bin becomes 〈(a(bc)), c〉, and no
further rule firing is possible (Figure 1(c2)).

In Example 1, the rules do not enforce any subassembly sequences to
assemble abc, in other words, the final bin contains either ((ab)c) or (a(bc))
depending on the order of rule firing. One can design conformational switches
that enforce abc to be assembled only in one of the given subassembly se-
quences. Since conformational switches are essentially rules of state transi-
tion of components triggered by local interaction with other components, we
can also represent them as rules of the form a + b → a′b′, which means a
component a and a component b can bind together to form an assembly a′b′,
where a′ and b′ represent different conformations of a and b after conforma-
tional changes, respectively. Again, the rules are assumed to be local, hence
for example, (ca) and (ba) can form ((ca′)(b′a)) by applying this rule.

Example 2. Suppose a component b can take two conformations b and b′,
and conformational switching between b and b′ occurs according to the rules
a + b → ab′ and b′ + c → b′c, as shown in Figure 2(a). An implementation
of such mechanical conformational switches can be found in [16]. Starting
with the same initial bin, 〈a, b, c, c〉, the random picking process eventually
picks up a and b. As a result of firing the rule a + b → ab′, the state of
the bin becomes 〈(ab′), c, c〉 (Figure 2(b)). After that, the rule b′ + c → b′c
eventually fires to form ((ab′)c). The resulting bin becomes 〈((ab′)c), c〉, and
no further rule firing is possible (Figure 2(c)). Note that conformational
change of component b after binding to a enforces abc to be assembled only

396 Kazuhiro Saitou and Mark J. Jakiela

Rules: a + b --> ab', b' + c --> b'c

(ab') c c

(a)

(b)

(c)

a b c c

((ab')c) c

Figure 2: One-dimensional self-assembly with conformational
switches: components abc can assemble only in the order ((ab)c).

in the order ((ab)c), by sending out a “signal” that indicates it has bound to
a so it is ready to bind to c. We consider that ((ab)c) and ((ab′)c) are the
same assembly.

Similarly, the rules a + b′ → ab′, b + c → b′c enforce the only possible
assembly order to be (a(bc)).

In Example 2, the rules a + b → ab′ and b′ + c → b′c can be viewed
as a representation of the subassembly sequence ((ab)c). In other words,
the subassembly sequence ((ab)c) is encoded by the conformational switches
represented by the rules a+b → ab′ and b′+c → b′c. In the following sections,
we discuss which type of conformational switches (equivalently, types of rules
which represent switches) can encode which types of subassembly sequences.

2.2 Definition of one-dimensional self-assembling automata

We define a formal model of an one-dimensional self-assembling system as
a sequential rule-based machine that operates on one-dimensional strings of
symbols. We refer to this machine as an one-dimensional self-assembling au-
tomaton. In the following, we consider a component of a one-dimensional
self-assembling automaton as an element of a finite set Σ, and an assembly
is a string in Σ+. Additionally, a component a ∈ Σ can take a finite number
of conformations represented by a, a′, a′′, a′′′ . . . , and the transition from one
conformation to another is triggered by local interactions with other compo-
nents specified by a set of assembly rules. Each component, therefore, can
be viewed as a finite automaton, hence the name self-assembling automata.
In this paper, the symbol Λ is used to represent a null string.

Definition 1. An one-dimensional self-assembling automaton (SA) is a pair
M = (Σ, R), where Σ is a finite set of components, and R is a finite set of
assembly rules of either of the forms aα + bβ → aγbδ (attaching rule) or
aαbβ → aγbδ (propagation rule), where a, b ∈ Σ and α,β, γ, δ ∈ {′}∗. It
is assumed that aΛ = a. The conformation set of a ∈ Σ is a set Qa =
{aα | α ∈ {′}∗, aα appears in R}. The conformation set of M is the union of
all conformation sets of a ∈ Σ.

On Classes of One-dimensional Self-assembling Automata 397

We will often call a string in Q+ an assembly by conformation, or simply
an assembly if there is no ambiguity with a string in Σ+.

Example 3. Using Definition 1, the self-assembling system in Example 2
can be defined as M1 = (Σ, R), where Σ = {a, b, c}, and R = {a + b →
ab′, b′ + c → b′c}. The conformation set of M1 is Q = {a, b, b′, c}.

We view an SA as having an associated component bin, with an infinite
number of slots, each of which can store an assembly (in conformation).
Initially, a finite number of the slots contain assemblies. Self-assembly of
components proceeds by selecting either a random pair of assemblies or an
assembly in the component bin, and then applying the rules in R to the
selected assembly. As a result of the rule application, assemblies are deleted
from and added to the component bin, just like assertions are deleted from
and added to working memory in rule-based inference systems. The rule
application is done according to the following procedure where a, b ∈ Σ and
α,β, γ, δ ∈ {′}∗.

1. If a pair of assemblies (x, y) = (zaα, bβu) for some z, u ∈ Σ∗ is selected,
and R contains the rule r = aα + bβ → aγbδ (r fires), delete x and y
and add zaγbδu.

2. If an assembly x = zaαbβu for some z, u ∈ Σ∗ is selected, and R contains
the rule r = aαbβ → aγbδ (r fires), delete x and add zaγbδu.

If neither of the above applies, the selected assembly is simply returned to
the component bin, leaving the bin unchanged. Note that at any point of
self-assembly, the component bin contains a finite number of nonnull strings
with finite length, since the total number of components in the initial bin
is finite and no new components are created when applying the rules to the
bin.

In order to describe the state of self-assembly at any point, there should
be a representation of the component bin which lists all current assemblies.
It is also convenient for the representation to keep a record of the sequence
in which each assembly has been assembled from its components. To define
such a representation, a few notations need to be introduced.

Let A be a finite set. A bag U over a finite set A is a list of some number
of elements in A, written as U = 〈a | a ∈ A〉. In particular, U can contain
more than one copy of elements in A. We write a ∈ U if NUMa(U) > 0,
where NUMa(U) is the number of as in U . Also, we define SEQ(A) as the
language generated by the context-free grammar ∀a ∈ A, S → (SS) | a.
Note that A ⊂ SEQ(A). A string x in SEQ(A) is a full parenthesization of a
string u = RM-PAREN(x) in A+, where RM-PAREN is a function that removes
parentheses from its argument string. We interpret the parse tree of x as
a (binary) assembly tree, that is, a representation of a pairwise assembly
sequence of u.

398 Kazuhiro Saitou and Mark J. Jakiela

Definition 2. Let Σ be a component set of an SA. A subassembly sequence
is a string in SEQ(Σ). A subassembly sequence x is basic if x contains at most
one copy of elements in Σ, that is, ∀a ∈ Σ, Na(x) ≤ 1.

Definition 3. Let M = (Σ, R) be an SA. A configuration of M is a bag
〈x | x ∈ SEQ(Q)〉, where Q is the conformation set of M . Let x ∈ SEQ(Σ) be
a subassembly sequence. A configuration Γ covers x if Γ = 〈a | a ∈ Σ〉 and
∀a ∈ Σ, Na(x) ≤ NUMa(Γ).

The sequence of self-assembly can be traced by examining the configura-
tion each time the component bin changes as a result of applying the rules
in R to the component bin. To keep track of the order of assembly, the non-
null strings newly added to the component bin are parenthesized in the new
configuration if they were added by an attaching rule.

For two configurations Γ and Φ, we write Γ)M Φ if the configuration of
M changes from Γ to Φ as a result of applying a rule in R to the component
bin exactly once, reading “Φ is derived from Γ at one step.” Similarly, Γ)∗

M Φ
if the configuration of M changes from Γ to Φ as a result of applying the
rules in R to the component bin zero or more times, reading “Φ is derived
from Γ.” If there is no ambiguity,)M and)∗

M are often shortened to) and
)∗, respectively.

Example 4. Consider M1 in Example 3. Let Γ = 〈a, b, c, c〉 and Φ = 〈a, b, c〉.
The configurations Γ and Φ cover the subassembly sequence ((ab)c). Self-
assembly of ((ab)c) from Γ proceeds as follows:

〈a, b, c, c〉)M1 〈(ab′), c, c〉)M1 〈((ab′)c), c〉.

Given an SA as defined so far, the process of self-assembly eventually
terminates when no rule firing is possible, or runs forever due to an infinite
cycle of rule firing. It is natural to say an SA self-assembles a given string in a
given sequence if the process of self-assembly terminates, and all terminating
configurations contain the string that is assembled in the sequence. This is a
conservative definition, requiring stable and reliable production of the string
assembled in the sequence. Formally, this can be stated as in Definition 4.

Definition 4. Let M = (Σ, R) be an SA, Γ be a configuration of M , and
x ∈ SEQ(Σ) be a subassembly sequence. Γ is stable if there is no rule firing
from Γ, that is, CM (Γ) = {Γ}, where CM (Γ) = {Φ|Γ)∗

M Φ}. M terminates
from Γ if all configurations derived from Γ can derive a stable configuration,
that is, ∀Φ ∈ CM(Γ), ∃Φ1 ∈ CM(Φ), CM (Φ1) = {Φ1}. M self-assembles x
from Γ if both of the following hold.

1. M terminates from Γ.

2. ∀Φ ∈ C∗
M (Γ), ∃y ∈ Φ such that x = RM-PRIME(y), where C∗

M(Γ) is a
set of stable configurations derived from Γ, and RM-PRIME is a function
that removes the prime symbols (′) from its argument.

Example 5. M1 in Example 3 self-assembles ((ab)c) from 〈a, b, c, c〉.

On Classes of One-dimensional Self-assembling Automata 399

2.3 Constructing one-dimensional self-assembling automata

Given a basic subassembly sequence x ∈ SEQ(Σ), one can write a procedure
to construct a set of assembly rules R such that M = (Σ, R) self-assembles
x from any configuration Γ that covers x. Since x is a representation of a
binary assembly tree, such an algorithm can be written as a simple recursive
procedure. The following procedure MAKE-RULE-SET takes as input a basic
subassembly sequence x ∈ SEQ(Σ), a flag η ∈ {left, right, none}, and a rule
set R. The flag η indicates from which side the next assembly would occur,
with none indicating there is no next assembly, that is, the current assembly
is the last one. MAKE-RULE-SET(x, none, ∅) returns a pair (u,R), where u is
the final assembly (by conformation) such that RM-PRIME(u) = RM-PAREN(x)
and R is the rule set containing the assembly rules to assemble x from Γ.
In the following pseudocode, using conventions from [4], x, y, z ∈ SEQ(Σ) are
basic subassembly sequences, a, b ∈ Σ, α,β ∈ {′}∗, and u, v ∈ Q∗ where
Q = {aα | a ∈ Σ, α ∈ {′}∗}, and LEFT and RIGHT are functions that return
the symbol at the left and right ends of the argument string, respectively.

MAKE-RULE-SET(x, η, R)
1 if x = a
2 then return (a,R)
3 if x = (yz)
4 then (u,R) ← MAKE-RULE-SET(y, right,R)
5 (v,R) ← MAKE-RULE-SET(z, left,R)
6 aα ← RIGHT(u)
7 bβ ← LEFT(v)
8 if η = none
9 then R ← R ∪ {aα + bβ → aαbβ}
10 return (uv,R)
11 if η = left
12 then R ← R ∪ {aα + bβ → aINC(α)bβ}
13 (u,R) ← PROPAGATE-LEFT(u,R)
14 return (uv,R)
15 if η = right
16 then R ← R ∪ {aα + bβ → aαbINC(β)}
17 (v,R) ← PROPAGATE-RIGHT(v,R)
18 return (uv,R)

MAKE-RULE-SET recursively traverses the left and right subtrees (y and z in
line 3), and adds an attaching rule to R that assembles (yz). If a component
will be assembled from the left at the next assembly step (η = left in line 11),
propagation rules are added (by the procedure PROPAGATE-LEFT in line 13)
that propagate conformational changes through the assembly corresponding
to the left subtree. If a component will be assembled from the right at the
next assembly step (η = right in line 15), propagation rules are added (by
the procedure PROPAGATE-RIGHT in line 17) that propagate conformational

400 Kazuhiro Saitou and Mark J. Jakiela

changes through the assembly corresponding to the right subtree. If there
is no next assembly step, that is, yz is the final assembly (η = none in line
8), no propagation rules are added. The subroutines PROPAGATE-LEFT and
PROPAGATE-RIGHT are defined as follows.

PROPAGATE-LEFT(u,R)
19 if u = aα

20 then return (aINC(α), R)
21 if u = vaαbβ

22 then R ← R ∪ {aαbINC(β) → aINC(α)bINC(β)}
23 (u,R) ← PROPAGATE-LEFT(vaα , R)
24 return (ubINC(β), R)

PROPAGATE-RIGHT(u,R)
25 if u = aα

26 then return (aINC(α), R)
27 if u = aαbβv
28 then R ← R ∪ {aINC(α)bβ → aINC(α)bINC(β)}
29 (u,R) ← PROPAGATE-RIGHT(bβ v,R)
30 return (aINC(α)u,R)

INC is the “conformation incrementor” function which appends the prime
symbol (′) to its argument string such that for α ∈ {′}∗, INC(α) = α′. For
example, INC(Λ) =′ and INC(′) =′′.

Example 6. Consider Σ = {a, b, c, d} and x = ((a(bc))d). A call of MAKE-
RULE-SET(x, none, ∅) returns with (ab′′c′d,R) where R contains the following
rules: b + c → b′c, a + b′ → ab′′, b′′c → b′′c′, and c′ + d → c′d. It is clear that
an SA M = (Σ, R) self-assembles x from the configurations that cover x, for
example, 〈a, b, c, d〉 and 〈a, a, b, b, c, c, d, d〉.

Theorem 1 tells the correctness of MAKE-RULE-SET in the general case of x.
Namely, for any basic subassembly sequence x ∈ SEQ(Σ), MAKE-RULE-SET(x,
none, ∅) returns a pair (u,R), where RM-PRIME(u) = RM-PAREN(x) and R is
a set of assembly rules such that an SA (Σ, R) self-assembles x from any
configuration that covers x.

Theorem 1. MAKE-RULE-SET is correct.

Proof. We abbreviate MAKE-RULE-SET as MRS. Let x ∈ SEQ(Σ) be a basic sub-
assembly sequence. We wish to prove the following statement: MRS(x, none, ∅)
returns (u,R) such that RM-PRIME(u) = RM-PAREN(x) and M = (Σ, R) self-
assembles x from any configuration Γ that covers x. The proof is done using
mathematical induction on L(x), where L(x) = |RM-PAREN(x)|.

On Classes of One-dimensional Self-assembling Automata 401

b+c-->bc’

d+e-->d’e

c’+d’-->c’d’

R4

x4=((bc)(de))

y=(bc) z=(de) {

Figure 3: An example of Rk when k = 4 and xk = ((bc)(de)). In this
case, u = bc′ and v = d′e.

I. If L(x) = 1, x = a, a ∈ Σ. MRS(x, none, ∅) immediately returns (a,R)
(line 2), where R = ∅. Since no assembly is necessary for x, the above
statement is true.

II. Suppose the statement is true for L(x) = k. In other words, for any
xk ∈ SEQ(Σ) and L(x) = k, Mk = (Σ, Rk) self-assembles xk from any configu-
ration Γk that covers xk, where Rk is the rule set returned by MRS(xk, none, ∅).
We are going to construct Rk+1 from Rk and then show that Rk+1 is in fact
the rule set returned by MRS(xk+1, none, ∅).

Let xk = (yz), y, z ∈ SEQ(Σ), (u,Ry) = MRS(y), and (v,Rz) = MRS(z).
Without loss of generality, we can write write u = aα1

1 aα2
2 · · ·aαi

i and v =
aαi+1

i+1 aαi+2
i+2 · · ·aαk

k , where ∀i ∈ {1, . . . , k}, ai ∈ Σ, αi ∈ {′}∗. Figure 3 shows
an example of Rk when k = 4 and xk = ((bc)(de)). Note in this example
that u = bc′ and v = d′e.

Since we can choose xk arbitrarily, any basic subassembly sequence xk+1 ∈
SEQ(Σ) with L(xk+1) = k+1 can be written as either (ak+1(yz)) or ((yz)ak+1),
where ak+1 ∈ Σ and ∀i ∈ {1, . . . , k}, ai .= ak+1. We consider these two cases
separately.

a. If xk+1 = (ak+1(yz)), Rk+1 must contain the following.

1. The rules that assemble y and z.

2. The rules that bring y and z together.

3. The rules that propagate conformational changes through y to the left.

4. The rules that bring ak+1 and (yz) together.

Figure 4 shows an example of Rk+1 when k = 4 and xk+1 = (a((bc)(de))),
constructed in this manner from the Rk shown in Figure 3.

In general, we can construct Rk+1 from Rk by replacing the attaching rule

aαi
i + aαi+1

i+1 → aαi
i aαi+1

i+1

with the attaching rule

aαi
i + aαi+1

i+1 → aINC(αi)
i aαi+1

i+1

402 Kazuhiro Saitou and Mark J. Jakiela

(1)

(2)
(3)
(4)

b+c-->bc’

d+e-->d’e

c’+d’-->c’’d’

R5

bc’’-->b’c’’

a+b’-->ab’

{
x4=((bc)(de))

y=(bc) z=(de)

x5=(a((bc)(de)))

a

}

Figure 4: An example of Rk+1 when k = 4 and xk+1 = (a((bc)(de))),
constructed from the Rk in Figure 3.

(this corresponds to condition 2), adding the propagation rules

aαi−1
i−1 aINC(αi)

i → aINC(αi−1)
i−1 aINC(αi)

i

aαi−2
i−2 aINC(αi−1)

i−1 → aINC(αi−2)
i−2 aINC(αi−1)

i−1

...

aα1
1 aINC(α2)

2 → aINC(α1)
1 aINC(α2)

2

(this corresponds to condition 3), and adding the attaching rule

ak+1 + aINC(α1)
1 → ak+1a

INC(α1)
1

(this corresponds to condition 4). Since the rules in Rk other than aαi
i +

aαi+1
i+1 → aαi

i aαi+1
i+1 are unchanged in Rk+1, Rk+1 contains all the rules that

assemble x and y separately (this corresponds to condition 1).
Now we wish to show that Rk+1 constructed as described is in fact the

same as the rule set returned by MRS(xk+1, none, ∅). Since xk+1 = (ak+1(yz)),
MRS(xk+1, none, ∅) calls MRS(ak+1, right, ∅) (line 4) which immediately returns
(ak+1, ∅), and then calls MRS((yz), lef t, ∅) (line 5). Let R̃k be the rule set
returned by MRS((yz), lef t, ∅). R̃k is the same as Rk except that R̃k contains
the rule

aαi
i + aαi+1

i+1 → aINC(αi)
i aαi+1

i+1

instead of

aαi
i + aαi+1

i+1 → aαi
i aαi+1

i+1

(line 12), and additionally contains the propagation rules added byPROPAGATE-
LEFT (line 13) which propagate conformational changes through y to the left.
After MRS((yz), lef t, ∅) returns, the rule

ak+1 + aINC(α1)
1 → ak+1a

INC(α1)
1

is added to R̃k and MRS(xk+1, none, ∅) returns. The returned rule set, there-
fore, contains exactly the same rules as in Rk+1 constructed as above.

b. If xk+1 = ((yz)ak+1), Rk+1 must contain the following.

On Classes of One-dimensional Self-assembling Automata 403

1. The rules that assemble y and z.

2. The rules that bring y and z together.

3. The rules that propagate conformational changes through z to the right.

4. The rules that bring (yz) and ak+1 together.

A discussion similar to that of part a tells that MRS(xk+1, none, ∅) returns the
rule set that contains the rules described above.

The running time of MAKE-RULE-SET depends on the shape of the parse
tree of the input (basic) subassembly sequence. The worst case behav-
ior of MAKE-RULE-SET occurs when, at every step of its recursion, either
PROPAGATE-LEFT or PROPAGATE-RIGHT is called. This is the case when new
components are added from alternate directions at every step of assembly.
The best case, on the other hand, is when there is no call of PROPAGATE-LEFT
and PROPAGATE-RIGHT; that is, at every step of assembly, new components
are added from the same direction. Theorem 2 provides the running time of
MAKE-RULE-SET in the worst, best, and average cases.

Theorem 2. Let x ∈ SEQ(Σ) be a basic subassembly sequence, and n =
L(x). The worst, best, and average running time of MAKE-RULE-SET(x, none, ∅)
is Θ(n2), Θ(n), and Θ(n log n), respectively.

Proof. Let x be an input string of MAKE-RULE-SET and x = (yz). In the worst
case scenario, new components are added from alternate directions at every
step of assembly. This implies that the input string x has totally unbalanced
subtrees at every recursive step, that is, L(y) = 1 or L(y) = n − 1. Since
PROPAGATE-LEFT and PROPAGATE-RIGHT run in Θ(n), the recurrence of the
running time of MAKE-RULE-SET is given as

T (n) = T (n − 1) + T (1) +Θ(n).

Since T (1) = Θ(1), T (n) = Θ(n2). In the best case, new components are
added from the same direction at every step of assembly. This also implies
L(y) = 1 or L(y) = n − 1 at every recursive step. Since there is no call of
PROPAGATE-LEFT and PROPAGATE-RIGHT, the running time is

T (n) = T (n − 1) + T (1) +Θ(1) = T (n − 1) +Θ(1) = Θ(n).

On average, we can expect L(y) = n/2 and hence the running time is

T (n) = 2T (n/2) +Θ(n).

In the average case, therefore, T (n) = Θ(n log n).

404 Kazuhiro Saitou and Mark J. Jakiela

2.4 Classes of one-dimensional self-assembling automata

The best running time of MAKE-RULE-SET occurs when neither PROPAGATE-
LEFT nor PROPAGATE-RIGHT are called during its execution. In this case,
therefore, the rule set R returned by MAKE-RULE-SET contains only attaching
rules, whereas R contains both attaching rules and propagation rules in other
cases. Accordingly, two classes of SA can be defined based on the presence
of propagation rules in the rule set.

Definition 5. Let M = (Σ, R) be an SA. M is class I if R contains only at-
taching rules. M is class II if R contains both attaching rules and propagation
rules.

We now define the classes of basic subassembly sequences which corre-
spond to each class of SA. The basic subassembly sequences that corre-
spond to the best running time (class I SA) are those in which the direc-
tion from which new components are added does not alter during the entire
self-assembly process. On the other hand, the direction must alter at least
once in the basic subassembly sequences that correspond to the worst and
average running time (class II SA). Classes of such subassembly sequences
are described more precisely in the rest of the paper.

Definition 6. An assembly template is a string t ∈ SEQ({p}). An instance
of t on a finite set Σ is a subassembly sequence x ∈ SEQ(Σ) obtained by
replacing each p in t by some a ∈ Σ. If x is an instance of t, t is an assembly
template of x.

Example 7. Two strings t1 = ((pp)(pp)) and t2 = ((p(pp))p) are assembly
templates. Let Σ = {a, b, c, d}. The basic subassembly sequences x1 =
((ab)(cd)) and x2 = ((b(ad))c) are instances of t1 and t2 on Σ, respectively.

Definition 7. An assembly grammar is a context-free grammar with a lan-
guage that is a subset of SEQ({p}). The class I assembly grammar GI is
defined by the following production rules:

S → (LR)

L → (Lp) | p
R → (pR) | p.

The assembly templates in L(GI) have the structure

(((· · · ((pp)p) · · ·)p)(p(· · · (p(pp)) · · ·)))

whose parse tree is shown in Figure 5. Each of the left and right subtrees
is a linear assembly tree, which specifies self-assembly proceeding in one
direction. The parse trees of the assembly templates in SEQ({p}) are general
binary trees with no special structures.

On Classes of One-dimensional Self-assembling Automata 405

pp
p

p p
p

p p

Figure 5: Parse tree of an assembly template generated by GI.

Example 8. The assembly template t1 in Example 7 can be generated by
GI, for example, through the following derivation:

S ⇒ (LR) ⇒ ((Lp)R) ⇒ ((pp)R) ⇒ ((pp)(pR)) ⇒ ((pp)(pp))

and hence t1 ∈ L(GI).

We can interpret L(GI) and SEQ({p}) as sets of assembly templates with
different numbers of changes in the direction of self-assembly. Let x be a
subassembly sequence that is an instance of an assembly template t. If t ∈
L(GI), the direction of self-assembly does not alter during the self-assembly
of x. If t ∈ SEQ({p})\L(GI), the direction of self-assembly alters at least once
during the self-assembly of x. Based on these observations, we claim that for
any basic subassembly sequence with an assembly template in L(GI), there
exists a corresponding class I SA, and for any basic subassembly sequence
with an assembly template in SEQ({p}) \L(GI), there exists a corresponding
class II SA. In the following proofs, we abbreviate MAKE-RULE-SET as MRS,
and D(t) as the depth of the parse tree of t.

Theorem 3. For any basic subassembly sequence x that is an instance of an
assembly template t ∈ L(GI), there exists a class I SA which self-assembles
x from a configuration that covers x.

Proof. Let x ∈ SEQ(Σ). By Theorem 1, it suffices to show that the rule
set returned by MRS(x, none, ∅) contains no propagation rules. If D(t) = 0,
x = a ∈ Σ. Therefore, MRS(x, none, ∅) immediately returns (a, ∅) (line 2).
If D(t) ≥ 1, let ml and mr be the depth of the left and right subtree of t,
respectively. Without loss of generality we can write t = (lmlrmr) where li =
(li−1p) for i = 1, . . . ,ml, ri = (pri−1) for i = 1, . . . ,mr, and l0 = r0 = p. Let
yi and zj be substrings of x that correspond to li and rj , respectively. In this
case, MRS(x, none, ∅) recursively calls MRS(yml , right, ∅) and MRS(zmr , lef t,R1)
(lines 4 and 5), where R1 is the rule set returned by MRS(yml , right, ∅). Let
R2 be the rule set returned by MRS(zmr , lef t,R1). Since no propagation rules
are added to R2 before MRS(x, none, ∅) returns in line 10, it suffices to show
that neither R1 nor R2 contain propagation rules. We consider these two
cases separately.

406 Kazuhiro Saitou and Mark J. Jakiela

A. To prove R1 contains no propagation rules, we wish to show that
for any n ≥ 0, the rule set R̃n returned by MRS(yn, right, ∅) contains no
propagation rules. We will prove the statement using mathematical induction
on n.

i. If n = 0, y0 = a0 ∈ Σ. Since MRS(a0, right, ∅) returns (a0, ∅), no
propagation rules are in R̃0.

ii. Suppose for some k > 0, MRS(yk, right, ∅) returns with the rule set
R̃k which contains no propagation rules. Since yk+1 = (ykak) where ak ∈ Σ,
MRS(yk+1, right, ∅) recursively calls MRS(yk, right, ∅) and MRS(ak, lef t, R̃k). By
the inductive hypothesis, no propagation rules are in R̃k. Also, MRS(ak, lef t,
R̃k) returns (ak, R̃k) since ak ∈ Σ. After these calls return, the condition in
line 15 is satisfied and an attaching rule is added to R̃k (line 16). Let this new
rule set be R̂. PROPAGATE-RIGHT(ak, R̂) is then called (line 17), which returns
(a′

k, R̂). Therefore, MRS(yk+1, right, ∅) returns with the rule set R̃k+1 = R̂,
which contains no propagation rules (line 18).

B. To prove R2 contains no propagation rules, we wish to show that
for any n ≥ 0, the rule set R̃n returned by MRS(zn, lef t,R0) contains no
propagation rules, where R0 is a rule set containing no propagation rules.
Mathematical induction on n similar to part A tells the statement holds.

Theorem 4. For any basic subassembly sequence x that is an instance of
an assembly template t ∈ SEQ({p}) \ L(GI), there exists a class II SA which
self-assembles x from a configuration that covers x.

Proof. Let x ∈ SEQ(Σ). By Theorem 1, it suffices to show that the rule set
returned by MRS(x, none, ∅) contains at least one propagation rule. Since

{s|s ∈ SEQ({p}), D(s) ≤ 2} = {p, (pp), ((pp)p), (p(pp)), ((pp)(pp))} ⊂ L(GI)

we consider D(t) ≥ 3. Let ml and mr be the depth of the left and right subtree
of t, respectively. Without loss of generality, we can write t = (llml

rr
mr

)
where lli = (lli−1l

r
i−1) for i = 1, . . . ,ml, rr

i = (rl
i−1r

r
i−1) for i = 1, . . . ,mr,

lri , r
l
i ∈ SEQ({p}), and ll0 = rr

0 = p. Then ∃j ∈ {1, . . . ,ml}, L(lrj) ≥ 2, or
∃j ∈ {1, . . . ,mr}, L(rl

j) ≥ 2, since otherwise t ∈ L(GI). We consider these
two cases separately.

A. Suppose ∃j ∈ {1, . . . ,ml}, L(lrj) ≥ 2. Let yl
j , yr

j and yl
j+1, be sub-

strings of x that correspond to llj , lrj , and llj+1. Let R0 be a rule set con-
taining no propagation rules. It suffices to show that the rule set returned
by MRS(yl

j+1, right,R0) contains at least one propagation rule. Since yl
j+1 =

(yl
jy

r
j), MRS(yl

j+1, right,R0) recursively calls MRS(yl
j , right,R0) and MRS(yr

j ,
lef t,R1) (lines 4 and 5), where R1 is the rule set returned by MRS(yl

j , right,R0).
Let (vr

j , R2) be a return value of MRS(yr
j , lef t,R1), where RM-PRIME(vr

j) =
RM-PAREN(yr

j). Since L(yr
j) ≥ 2, |vr

j | ≥ 2. After MRS(yr
j , lef t,R1) returns, the

condition in line 13 is satisfied and an attaching rule is added to R2 (line
16). Let this new rule set be R̂2. PROPAGATE-RIGHT(vr

j , R̂2) is then called

On Classes of One-dimensional Self-assembling Automata 407

(line 17). Since |vr
j | ≥ 2, the condition in line 27 is satisfied and at this

point, a propagation rule is added to R̂2. Therefore, the rule set returned by
MRS(yl

j+1, right,R0) contains at least one propagation rule.

B. Suppose ∃j ∈ {1, . . . ,mr}, L(rl
j) ≥ 2. A discussion similar to part A

tells that the rule set returned by MRS(zr
j+1, lef t,R0) contains at least one

propagation rule.
In addition to Theorems 3 and 4, we can say that class I SA is not

“powerful” enough to encode any class II basic subassembly sequences.

Corollary 1. For any class II basic subassembly sequence x, there exist no
class I SA which self-assembles x from a configuration that covers x.

Proof. By Theorem 4, there exists a class II SA MII = (Σ, RII) which self-
assembles x from a configuration that covers x. Since the conformational
changes realized by a propagation rule cannot be realized by using only at-
taching rules, there are no rule sets containing only attaching rules which is
equivalent to RII.

It is important to point out that Theorem 4 and Corollary 1 state that a
class II basic subassembly sequence x (i.e., strings “outside” L(GI)) cannot
be stably and reliably self-assembled as defined in Definition 4 without prop-
agation rules. A class I SA can produce x, with some probability, in some
(not all) of its terminating configurations.

2.5 Minimum conformation self-assembling automata

In this section, we provide the minimum number of conformations neces-
sary to encode a given subassembly sequence based on the classes of basic
subassembly sequences introduced in section 2.4. Since the number of con-
formations may vary for each component, we simply define the number of
conformations of an SA to be the maximum number of conformations of all
components.

Definition 8. Let M be an SA. M is an SA with n conformations if

n = max
aα∈Q

|α|,

where Q is the conformation set of M .

Definition 9. The class II assembly grammar GII is defined by the following
production rules:

S → (L0R0)

L0 → (L0R1) | R1

R0 → (L1R0) | L1

L1 → (L1p) | p
R1 → (pR1) | p.

408 Kazuhiro Saitou and Mark J. Jakiela

p

p
p

p p

p
p

p p

p
p

p p p p
p

p
p

p
p

p
p

p

p

p
p

Figure 6: Parse tree of an assembly template generated by GII.

Note that L(GI) ⊂ L(GII) ⊂ SEQ({p}). The assembly templates in L(GII)
have the structure

((((· · · ((R1R1)R1) · · ·)R1)(L1(· · · (L1(L1L1)) · · ·))))

where L1 and R1 are strings of the forms ((· · · ((pp)p) · · ·)p) and (p(· · · (p(pp))
· · ·)), respectively. The corresponding parse tree is shown in Figure 6. The
parse tree in Figure 6 can be obtained from the parse tree in Figure 5, by
replacing leaves at the right branches of the left subtree by a linear assembly
tree, and vice versa. Let x be a subassembly sequence and t is an assembly
template of x. If t ∈ L(GII) \ L(GI), the direction of self-assembly alters
exactly once, and if t ∈ SEQ({p}) \ L(GII), the direction of self-assembly
alters more than once during the self-assembly of x.

Example 9. The assembly template t2 in Example 7 cannot be generated by
GI but can be generated by GII, for example, through the following derivation:

S ⇒ (L0R0) ⇒ ((L0R1)R0) ⇒ ((pR1)R0) ⇒ ((p(pR1))R0)

⇒ ((p(pp))R0) ⇒ ((p(pp))p)

and hence t2 ∈ L(GII) \ L(GI). An assembly template t3 = (p((p(pp))p)) ∈
SEQ({p}) cannot be generated by GII and hence t3 ∈ SEQ({p}) \ L(GII).

The minimum number of conformations of SA that are necessary to self-
assemble a given basic subassembly sequence x depends on whether x is an
instance of an assembly template in L(GI), L(GII) \ L(GI), or SEQ({p}) \
L(GII). Since any attaching rules produced by MAKE-RULE-SET requires at
most two conformations for each component, the minimum number is two if
x is an instance of an assembly template in L(GI). The proof is very similar
to that of Theorem 3.

Theorem 5. For any basic subassembly sequence x that is an instance of
an assembly template t ∈ L(GI), there exists a class I SA M with two
conformations which self-assembles x from a configuration Γ that covers x.
For L(x) ≥ 3, M is an SA with the minimum number of conformations which
self-assembles x from Γ.

On Classes of One-dimensional Self-assembling Automata 409

Proof. Let x ∈ SEQ(Σ) and R be the rule set returned by MRS(x, none, ∅).
For the first part, we wish to show the following statement: R contains only
attaching rules of the form aα + bβ → aγbδ such that |α|, |β|, |γ|, |δ| < 2,
where a, b ∈ Σ and α,β, γ, δ ∈ {′}∗. If D(t) = 0, x = a ∈ Σ. Therefore,
MRS(x, none, ∅) immediately returns (a, ∅) (line 2), hence the statement holds.
If D(t) ≥ 1, without loss of generality we can write t = (lmlrmr) where li =
(li−1p) for i = 1, . . . ,ml, ri = (pri−1) for i = 1, . . . ,mr, and l0 = r0 = p. Let
yi and zj be substrings of x that correspond to li and rj , respectively. In this
case, MRS(x, none, ∅) recursively calls MRS(yml , right, ∅) and MRS(zmr , lef t,R1)
(lines 4 and 5), where R1 is the rule set returned by MRS(ym−1, right, ∅). Let
R2 be the rule set returned by MRS(zmr , lef t,R1). Since there are no INC in
the attaching rule added to R2 in line 9, it suffices to show that the statement
holds for both R1 and R2. We consider these two cases separately.

A. To prove that the statement holds for R1, we wish to show that for any
n ≥ 0, the statement holds for the rule set R̃n returned by MRS(yn, right, ∅).
We prove this using mathematical induction on n.

i. If n = 0, y0 = a0 ∈ Σ. Since MRS(a0, right, ∅) returns (a0, ∅), the
statement holds for R̃0 = ∅.

ii. Suppose for some k > 0, MRS(yk, right, ∅) returns with the rule set
R̃k for which the statement is true. Since yk+1 = (ykak) where ak ∈ Σ,
MRS(yk+1, right, ∅) recursively calls MRS(yk, right, ∅) and MRS(ak, lef t, R̃k). By
the inductive hypothesis, the statement is true for R̃k. Also, MRS(ak, lef t, R̃k)
returns (ak, R̃k) since ak ∈ Σ. After these calls return, the condition in line
15 is satisfied and an attaching rule aα

k−1 + ak → aα
k−1a

′
k is added to R̃k. Let

this new rule set be R̂. Since the statement holds for R̃k, |α| < 2. Therefore,
the statement also holds for R̂. PROPAGATE-RIGHT(ak, R1) is then called (line
17), which returns (a′

k, R1). Therefore, MRS(yk+1, right, ∅) returns with the
rule set R̃k+1 = R̂ for which the statement holds.

B. To prove that the statement holds for R2, we wish to show that for any
n ≥ 0, the statement holds for the rule set R̃n returned by MRS(zn, lef t,R0),
where R0 is a rule set for which the statement holds. Mathematical induction
on n similar to part A tells that this is the case.

Since at least two conformations are necessary for any x with L(x) ≥ 3,
M is an SA with the minimum number of conformations which self-assembles
x from Γ.

The “conformation incrementor” INC used in MAKE-RULE-SET simply ap-
pends the prime symbol (′) to its argument string each time it is called.
The number of conformations of a component, therefore, could be very
large depending on how many times INC is called for the component before
MAKE-RULE-SET returns. Alternatively, we can use a “modulo n” conforma-
tion incrementor INCn such that

INCn(α) =

{
α′ if |α| < n
Λ if |α| = n.

410 Kazuhiro Saitou and Mark J. Jakiela

For example, INC2(Λ) =′ and INC2(′) = Λ. Using this notation, we can write
INC as INC∞. Running MAKE-RULE-SET with INCn, instead of INC∞, produces
assembly rules with at most n conformations for a component. Such rules,
however, are no longer guaranteed to self-assemble the components in a given
subassembly sequence. In particular, there could be more than one conflict-
ing propagation rule that specifies different conformational changes for the
same two adjacent components. In order to show that MAKE-RULE-SET run
with INCn instead of INC∞ is correct, therefore, it suffices to show that no
such conflicts among propagation rules are possible. There are two cases
to be considered. First, if the rule set R contains at most one propagation
rule for each two adjacent components, no conflict is possible. Therefore,
the statement is true for the smallest possible n, that is, n = 2. This is the
case if the subassembly sequence x is an instance of an assembly template
t ∈ L(GII) \ L(GI), when the direction of self-assembly alters exactly once.
Second, if R contains more than one propagation rule for the same two ad-
jacent components, n must be large enough to cause no conflicts among the
propagation rules. This corresponds to the case where x is an instance of
t ∈ SEQ({p}) \ L(GII), when the direction of self-assembly alters more than
once. In the following proof, GL and GR are the assembly grammars defined
by the production rules S → (Sp) | p and S → (pS) | p, respectively.

Theorem 6. For any basic subassembly sequence x that is an instance of
an assembly template t ∈ L(GII) \ L(GI), there exists a class II SA M with
two conformations which self-assembles x from a configuration Γ that covers
x. And M is an SA with the minimum number of conformations which
self-assembles x from Γ.

Proof. Let x ∈ SEQ(Σ), and R be the rule set returned by MAKE-RULE-SET(x,
none, ∅). For the first part, we wish to show that for any two adjacent
components ab in x, R contains at most one propagation rule of the form
aαbβ → aγbδ, where α,β, γ, δ ∈ {′}∗, a, b ∈ Σ, and ab is a substring in
RM-PAREN(x). Without loss of generality, we can write t = (llml

rr
mr

) where
lli = (lli−1l

r
i−1) for i = 1, . . . ,ml, rr

i = (rl
i−1r

r
i−1) for i = 1, . . . ,mr, lri ∈ L(GR),

rl
i ∈ L(GL), and ll0 = rr

0 = p. Then ∃j ∈ {1, . . . ,ml}, L(lrj) ≥ 2, or ∃j ∈
{1, . . . ,mr}, L(rl

j) ≥ 2, since otherwise t ∈ L(GI). We consider these two
cases separately.

A. Suppose ∃j ∈ {1, . . . ,ml}, L(lrj) ≥ 2. Let yl
j , yr

j and yl
j+1, be substrings

of x that correspond to llj , lrj and llj+1. Let ab be an arbitrary substring of
RM-PAREN(yl

j+1), and R0 be a rule set containing no propagation rules. Since
yl

j+1 and yr
j+1 do not overlap, ab is not a substring of RM-PAREN(yr

j+1). It
suffices, therefore, to show the following statement: the rule set returned
by MRS(yl

j+1, right,R0) contains at most one propagation rule of the form
aαbβ → aγbδ, where α,β, γ, δ ∈ {′}∗.

Since yl
j+1 = (yl

jy
r
j), MRS(y

l
j+1, right,R0) recursively calls MRS(yl

j , right,R0)
and MRS(yr

j , lef t,R1) (lines 4 and 5), where R1 is the rule set returned by

On Classes of One-dimensional Self-assembling Automata 411

MRS(yl
j , right,R0). Let (vr

j , R2) be a return value of MRS(yr
j , lef t,R1), where

RM-PRIME(vr
j) = RM-PAREN(yr

j). Since lrj ∈ L(GR) and L(GR) ⊂ L(GI), only
attaching rules are required to assemble yr

j , and hence R2 contains no prop-
agation rules. Since L(yr

j) ≥ 2, |vr
j | ≥ 2. After MRS(yr

j , lef t,R1) returns,
the condition in line 13 is satisfied and an attaching rule is added to R2

(line 16). Let this new rule set be R̂2. PROPAGATE-RIGHT(vr
j , R̂2) is then

called (line 17). Since |vr
j | ≥ 2, the condition in line 27 is satisfied and when

PROPAGATE-RIGHT(vr
j , R̂2) returns, exactly one propagation rule of the form

aαbβ → aαb(INC(β)) is added to R̂2 for each substring ab of RM-RAREN(yr
j).

Since this is the only time the propagation rules are added, the statement
holds.

B. Suppose ∃j ∈ {1, . . . ,mr}, L(rl
j) ≥ 2. Let ab be an arbitrary substring

of RM-PAREN(zr
j+1). A discussion similar to part A tells that the rule set

returned by MRS(zr
j+1, lef t,R0) contains at most one propagation rule of the

form aαbβ → aγbδ for each substring ab of RM-RAREN(zl
j).

MAKE-RULE-SET(x, none, ∅) run with INC2 causes no conflict among prop-
agation rules, since R contains at most one propagation rule for any two
adjacent components in x. By Theorems 1 and 4, therefore, there exists a
class II SA M with two conformations which self-assembles x from Γ. Since
L(GI) ⊂ L(GII), Theorem 5 tells at least two conformations are necessary
and therefore, M is an SA with minimum conformation which self-assembles
x from Γ.

Example 10. Consider Σ = {a, b, c, d} and x = ((a(bc))d). The subassem-
bly sequence x is an instance of t2 = ((p(pp))p) in Example 7. From Ex-
ample 9, t2 ∈ L(GII) \ L(GI). A call of MAKE-RULE-SET(x, none, ∅) run with
INC2 returns with (abc′d,R) where R contains the following rules: b+c → b′c,
a + b′ → ab, bc → bc′, and c′ + d → c′d. It is clear that M = (Σ, R) is an SA
with two conformations which self-assembles x from the configurations that
cover x, for example, 〈a, b, c, d〉 and 〈a, a, b, b, c, c, d, d〉.

In the case where a basic subassembly sequence x is an instance of an as-
sembly template in SEQ({p})\L(GII), we claim that only three conformations
are necessary to encode an arbitrary x. This might sound counter-intuitive
since we are claiming that only three conformations can encode basic sub-
assembly sequences with arbitrary (possibly very large) sizes. The proof of
this claim is based on the observation that there are only two kinds of prop-
agation rules; the rules which propagate conformational changes to the left,
and the rules which propagate conformational changes to the right, and that
for any given two adjacent components these two kinds of propagation rules
always fire in alternative order. As in the previous case, we will prove this
statement by showing that MAKE-RULE-SET run with INCn causes no con-
flicts among propagation rules of the same adjacent components in the case
of n = 3. To do this, we define a concept called a n-conformation transi-
tion cycle. Then, we prove that no such conflicts among propagation rules

412 Kazuhiro Saitou and Mark J. Jakiela

are possible for INCn if there exists a n-conformation transition cycle. Fi-
nally, we show that there exists a three-conformation transition cycle. Since
our focus is on conformational propagation between two arbitrary adjacent
components, it is convenient to introduce several notations first.

A conformational transition rule is a rule of the form α · β → γ · δ, where
α,β, γ, δ ∈ {′}∗. Let r be a propagation rule and ρ be a conformational
transition rule. We write ρ = TRN(r) if ρ = α ·β → γ · δ and r = aαbβ → aγbδ

where a, b ∈ Σ. For two conformational transition rules ρ1 and ρ2, we write
ρ1

n
! ρ2 if one of the following holds.

• ρ1 = α ·β → INCn(α) ·β and ρ2 = INCn(INCn(α)) ·β → INCn(INCn(α)) ·
INCn(β).

• ρ1 = α · β → α · INCn(β) and ρ2 = α · INCn(INCn(β)) → INCn(α) ·
INCn(INCn(β)).

In addition, we say that two conformational transition rules ρ1 = α1 · β1 →
γ1 · δ1 and ρ2 = α2 · β2 → γ2 · δ2 are conflicting if (α1,β1) = (α2,β2) and
(γ1, δ1) .= (γ2, δ2).

Definition 10. A n-conformation transition cycle is a finite sequence of
nonconflicting conformational transition rules 〈ρ1, ρ2, . . . , ρm〉 such that for
i = 1, 2, . . . ,m − 1, ρi

n
! ρi+1, and ρm

n
! ρ1.

Corollary 2. Let x ∈ SEQ(Σ) be a basic subassembly sequence that is an
instance of an assembly template t ∈ SEQ({p})\L(GII). Let R be the rule set
returned by MAKE-RULE-SET(x, η, ∅) run with INC∞. There exists a substring
ab of RM-PAREN(x) such that R contains more than one propagation rule for
ab. For any two propagation rules r1, r2 ∈ R of ab, TRN(r1)

∞
! TRN(r2) if r2

fires after r1 and no propagation rules of ab fires between r1 and r2.

Proof. Let α,β ∈ {′}∗. During the self-assembly of x, the direction of self-
assembly alters more than once since otherwise t ∈ L(GII) \ L(GI). This
implies that there exists at least one substring ab of RM-PAREN(x) such that
R contains more than one propagation rule of the form aαbβ → aγbδ.

If r1 is added to R by PROPAGATE-LEFT in line 22, we can write r1 as r1 =
aαbβ → aINC∞(α)bβ. We are going to show that r2 must then be added to R by
PROPAGATE-RIGHT. Let us suppose r2 is added to R by PROPAGATE-LEFT. This
implies that PROPAGATE-LEFT is called twice in the two consecutive assembly
steps. This then implies that two components are added from the left in the
two consecutive assembly steps, since PROPAGATE-LEFT is called when the
component at the next assembly step is added from the left. If this is the
case, however, the second call of PROPAGATE-LEFT returns in line 20, without
adding any propagation rules to R. This is a contradiction. Therefore, r2

must be added to R by PROPAGATE-RIGHT. Since r1 = aαbβ → aINC∞(α)bβ and
no propagation rules of ab fire between r1 and r2, r2 must be of the form
r2 = aINC∞(INC∞(α))bβ → aINC∞(INC∞(α))bINC∞(β). Hence TRN(r1)

∞
! TRN(r2).

On Classes of One-dimensional Self-assembling Automata 413

If r1 is added to R by PROPAGATE-RIGHT in line 29, we can write r1 as
r1 = aαbβ → aαbINC∞(β). Similar discussion shows that r2 must be added to
R by PROPAGATE-RIGHT, and r2 must be of the form r2 = aαbINC∞(INC∞(β)) →
aINC∞(α)bINC∞(INC∞(β)). Hence in this case also, TRN(r1)

∞
! TRN(r2).

Corollary 3. Let n ≥ 3. For any basic subassembly sequence x which is an
instance of an assembly template t ∈ SEQ({p}) \ L(GII), there exists a class
II SA with n conformations which self-assembles x from a configuration that
covers x if there exists a n-conformation transition cycle.

Proof. Let x ∈ SEQ(Σ). From Theorem 1, it suffices to show that MAKE-RULE-
SET run with INCn, is correct. Let R∞ and Rn be the rule sets returned by
MAKE-RULE-SET(x, none, ∅) run with INC∞ and with INCn, respectively. We
know that R∞ and Rn contain exactly the same attaching rules since n ≥ 3
and that attaching rules increment conformation of a component at most
twice. Let 〈r1

∞, r2
∞, . . . , rk

∞〉 be a sequence of propagation rules for two adja-
cent components ab, as produced by MAKE-RULE-SET(x, none, ∅) with INC∞.
Also, let 〈r1

n, r
2
n, . . . , rl

n〉 be a sequence of propagation rules for ab, as pro-
duced by MAKE-RULE-SET(x, none, ∅) with INCn, where l ≤ k. By definition
of INCn, ri

∞ corresponds to rimodl
n for i = 1, 2, . . . , k. From Corollary 2,

therefore, TRN(rimodl
n) n

! TRN(r(i+1)modl
n) for i = 1, 2, . . . , k − 1. Since there

exists a n-conformation transition cycle, TRN(ri
n) and TRN(rj

n) are not con-
flicting for any i, j ∈ {1, 2, . . . l}. Since this holds for propagation rules of
any two adjacent components, Rn contains the rules which assemble x from
a configuration that covers x.

Corollary 4. There exists a three-conformation propagation cycle.

Proof. In this proof, we write the prime symbol (′) as p. Consider a sequence
of conformational transition rules 〈r1, r2, r3, r4, r5, r6〉 where

r1 = Λ · Λ→ p · Λ r2 = pp · Λ→ pp · p r3 = pp · pp → Λ · pp
r4 = p · pp → p · Λ r5 = p · p → pp · p r6 = Λ · p → Λ · pp.

By Definition 10, the above sequence is a three-conformation propagation
cycle, since INC3(Λ) = p, INC3(p) = pp, and INC3(pp) = Λ.

Theorem 7. For any basic subassembly sequence x that is an instance of
an assembly template t ∈ SEQ({p}) \ L(GII), there exists a class II SA M
with three conformations which self-assembles x from a configuration Γ that
covers x. And M is an SA with the minimum number of conformations which
self-assembles x from Γ.

Proof. The first part follows from Corollaries 3 and 4. We prove the second
part by showing that there exists no class II SA with two conformations
which self-assembles x from Γ. Since INC2(INC2(α)) = α for α ∈ {′}∗, any

two conformational transition rules ρ1 and ρ2 are conflicting if ρ1
2
! ρ2. By

Corollary 2, therefore, running MAKE-RULE-SET with INC2 always causes at
least one conflict among propagation rules, since t ∈ SEQ({p}) \ L(GII).

414 Kazuhiro Saitou and Mark J. Jakiela

Example 11. Consider Σ = {a, b, c, d, e} and x = (a((b(cd))e)). The sub-
assembly sequence x is an instance of t3 = (p((p(pp))p)) in Example 9, and
t3 ∈ SEQ({p}) \ L(GII). A call of MAKE-RULE-SET(x, none, ∅) run with INC3

returns with (ab′c′′d′′e,R) where R contains the following rules: c + d → c′d,
b+ c′ → bc′′, c′′d → c′′d′ d′ + e → d′′e, c′′d′′ → cd′′, bc → b′c, and a+ b′ → ab′.
It is clear that M = (Σ, R) is an SA with three conformations which self-
assembles x from the configurations that cover x, for example, 〈a, b, c, d, e〉
and 〈a, b, b, c, d, d, e, e〉.

3. Discussion and future work

In this paper, an abstract model of self-assembling systems is presented,
where assembly instructions of components are written as conformational
switches—local rules that specify conformational changes of a component.
The model, called self-assembling automaton, is a sequential rule-based ma-
chine that operates on one-dimensional strings of symbols. An algorithm is
provided to construct a self-assembling automaton which self-assembles an
one-dimensional string of distinct symbols in a given particular subassem-
bly sequence. Classes of self-assembling automata are then defined based on
classes of subassembly sequences in which the components self-assemble. For
each class of subassembly sequences, the minimum number of conformations
necessary to encode subassembly sequences of the class are provided. In par-
ticular, it is shown that three conformations for each component are enough
to encode any subassembly sequence of a string with arbitrary length.

There are a number of extensions that should be incorporated into the
theory of one-dimensional self-assembling automata presented in this paper.

• Classes of SA based on nonbasic subassembly sequences. The current
definition of classes of SA is based on the classes of subassembly se-
quences of an one-dimensional string of distinct symbols, which are
referred to as basic subassembly sequences. Many self-assembling sys-
tems in nature, however, often involve self-assembly of identical com-
ponents. Therefore, the definition of SA based on classes of nonbasic
subassembly sequences would be desirable.

• Detaching rules. Most biochemical reactions are bidirectional; if the
reaction a + b → ab is possible, the reverse reaction ab → a + b is also
possible. Hence the current definition of SA should be extended such
that the rule set can also contain detaching rules; rules of the form
aαbβ → aα + bβ. Accordingly, the definition of self-assembly must be
modified.

• Self-assembly in higher dimensions. Since the classification of SA pre-
sented in this paper is based on subassembly sequences, it can also be
applied to self-assembly in higher dimensions. However, there are no
concepts of geometry and topology since the classes are only developed
for one-dimensional self-assembly. These concepts, as discussed in [9]

On Classes of One-dimensional Self-assembling Automata 415

for example, must be incorporated in order to extend SA to higher
dimensions.

Acknowledgments

This work was partially supported by the National Science Foundation with
a Presidential Young Investigator’s grant (DDM-9058415) to the second au-
thor. Matchable funds for this grant had been provided by Schlumberger
Inc. These sources of support are gratefully acknowledged. The authors
would also like to acknowledge the valuable comments on the draft of this
manuscript by the anonymous reviewers.

References

[1] B. Berger, P. W. Shor, L. Tucker-Kellog, and J. King, “Local Rule-based
Theory of Virus Shell Assembly,” in Proceedings of the National Academy of
Science, USA, 91 (1994) 7732–7736.

[2] S. Casjens and J. King, “Virus Assembly,” Annual Review of Biochemistry,
44 (1975) 555–604.

[3] M. B. Cohn, C.-J. Kim, and A. P. Pisano, “Self-assembling Electrical Net-
works: An Application of Micromachining Technology,” in Transducers ’91:
1991 Sixth International Conference on Solid-State Sensors and Actuators
(Institute of Electrical and Electronics Engineers, San Francisco, CA, 1991).

[4] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms
(The MIT Press/McGraw-Hill, Cambridge, MA/New York, 1989).

[5] R. A. Crowther, E. V. Lenk, Y. Kikuchi, and J. King, “Molecular Reorgani-
zation in the Hexagon to Star Transition of the Baseplate of Bacteriophage
T4,” Journal of Molecular Biology, 116 (1977) 489–523.

[6] N. S. Goel and R. L. Thompson, Computer Simulations of Self-organization
in Biological Systems, (Croom Helm, London, 1988).

[7] K. Hosokawa, I. Shimoyama, and H. Miura, “Dynamics of Self-assembling
Systems: Analogy with Chemical Kinetics,” Artificial Life, 1 (1994) 413–427.

[8] K. Hosokawa, I. Shimoyama, and H. Miura, “Two-dimensional Micro-self-
assembly using the Surface Tension of Water,” Sensors and Actuators, A:
Physical, 57 (1996) 117–125.

[9] K. Lindgren, C. Moore, and M. G. Nordahl, “Complexity of Two-dimensional
Patterns,” Journal of Statistical Physics, to appear.

[10] J. C. Martin, Introduction to Language and the Theory of Computation
(McGraw-Hill, New York, 1991).

[11] P. H. Moncevicz, “Orientation and Insertion of Randomly Presented Parts
using Vibratory Agitation,” master’s thesis, Department of Mechanical Engi-
neering, Massachusetts Institute of Technology, 1991.

416 Kazuhiro Saitou and Mark J. Jakiela

[12] P. H. Moncevicz and M. J. Jakiela, “Method and Apparatus for Automatic
Parts Assembly,” United States Patent 5,155,895, October 20, 1992.

[13] P. H. Moncevicz, M. J. Jakiela, and K. T. Ulrich, “Orientation and Insertion
of Randomly Presented Parts using Vibratory Agitation,” in Proceedings of
the ASME Third Conference on Flexible Assembly Systems, A. H. Soni, edi-
tor, (The American Society of Mechanical Engineers, DE-Vol. 33, New York,
September, 1991).

[14] L. S. Penrose, “Self-reproducing Machines,” Scientific American, 200 (1959)
105–114.

[15] K. Saitou and M. J. Jakiela, “Automated Optimal Design of Mechanical Con-
formational Switches,” Artificial Life, 2 (1995) 129–156.

[16] K. Saitou and M. J. Jakiela, “Subassembly Generation via Mechanical Con-
formational Switches,” Artificial Life, 2 (1995) 377–416.

[17] R. L. Thompson and N. S. Goel, “A Simulation of T4 Bacteriophage Assembly
and Operation,” BioSystems, 18 (1985) 23–45.

[18] R. L. Thompson and N. S. Goel, “Movable Finite Automata (MFA) Models
for Biological Systems I: Bacteriophage Assembly and Operation,” Journal of
Theoretical Biology, 131 (1988) 351–385.

[19] J. D. Watson, N. H. Hopkins, J. W. Roberts, J. A. Steitz, and A. M. Weiner,
Molecular Biology of the Gene (Benjamin/Cummings, Menlo Park, CA, 1987).

[20] G. M. Whitesides, “Self-assemblying Materials,” Scientific American, Septem-
ber, 1995, 146–149.

[21] H. J. Yeh and J. S. Smith, “Fluidic Self-assembly of GaAs Microstructures
on Si Substrates,” Sensors and Materials, 6 (1994) 319–332.

