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The application of cross-entropy information processing optimizations to
artificial neural network (ANN) training can provide decreased sensitiv-
ity to accelerated learning rates as well as insights into the information
processing structure of the network. In order to assess the cross-entropy
between the desired training goal and the evolving state of network infor-
mation at each training step, the probability distributions of the network
output at each step, as well as that of the desired network output must be
available. However, if the input training data is not expressible as a closed
form function, analytic representation of the network output distribution
may be impossible, excluding the application of cross-entropy measures
to many higher-dimensional, real-world problems. In such cases the net-
work may be trained according to entropy maximization of the output
training distribution. To illustrate this, a perceptron is detailed which
estimates orthogonal basis function coefficients of a highly nonlinear set
of oceanographic data based on entropy maximization. Use of the maxi-
mum entropy cost-function obviates the need for explicit determination of
the network output probability distributions, while retaining the desirable
functionality of information-theoretic network organizations.

1. Introduction

Artificial neural networks (ANNs) constitute a class of computational
architectures capable of processing, storing, and predicting complex in-
formational systems. These networks are comprised of simple, multiply
interconnected computational units, each of which performs a summa-
tion that is then applied to a nonlinear transfer function for output. In
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order for an ANN to arrive at a computationally useful structure (in
terms of the interconnection weight-states) the network must either be
trained to recognize the relevant feature information, or have incorpo-
rated into its processing structure a rule-base which dictates the network
evolution. In this paper we focus on the former class wherein a feedfor-
ward (nonrecurrent) ANN is trained to recognize a multivariate oceanic
environmental data set. The training process is essentially a directed or-
ganization based on an error (or uncertainty) minimization which can
be recognized as a process of informational entropy minimization. In
general terms, training constitutes a minimization of cross-entropy (or
mutual information) between the distributions of the actual and desired
network outputs.

Much of the previous work connecting neural networks and informa-
tion theory simply applied the ANN as an analysis tool for classical sta-
tistical estimation. Either the ANN was employed to implement maxi-
mum entropy statistical estimation for probability distribution functions
(PDFs) based on incomplete information in constrained optimization
problems, to multidimensional spectral estimation, or to provide signal
reconstruction [1–4]. Other work applied the ideas of information the-
ory to assay the inherent effectiveness of ANN architectures in terms of
information content [5]. Another body of research explored methods to
explicitly train ANNs in the information-space of the network output
variables [7–11], instead of training based on the parametric error of the
outputs themselves, and established that such an approach can allow the
network to tolerate increased learning rates without divergence. These
information-space training scenarios are based on the minimization of
cross-entropy (mutual information content) between the desired output
distribution and the current distribution of the network output. This
requires that probability distributions for both the network output at
each training step and for the output training sets are known. While
the latter presents no difficulty, specification of the network output PDF
at each training step may be analytically intractable in cases where the
input training set PDF is not expressible in closed form.1

This situation encompasses many real-world dynamical systems
wherein the underlying physics are high-dimensional and exhibit sig-
nificant complexity. Therefore, it is of significant practical interest to
remove this restriction so that any measurable physical process can
be amenable to an ANN estimation which employs the information-

1One could argue that an analytical representation is not required, it is possible to
simply estimate the distribution at each learning step for each output unit through relative
frequency computations. However, such a computational burden is not very attrac-
tive when considering the typically intensive numerical load of an ANN with significant
complexity, as well as the introduction of additional uncertainties by virtue of the PDF
estimation.
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theoretic training measures. Following this assertion, and in contrast
to the previous body of work exploring the connections between infor-
mation theory and ANN training, the focus of this paper is to explicitly
detail application of the maximum entropy principle as the cost-function
of gradient-descent training in the information-space of the network out-
put parameters, thereby enabling the information-theoretic cost func-
tions as viable alternatives to classical parametric cost functions in cases
where the input distribution is not analytically accessible.

We proceed by demonstrating that application of cross-entropy as a
cost function in ANN training is a general case of entropy minimiza-
tion, while the entropy maximization constitutes a special case. This
distinction is made clear in section 1.1.

1.1 Information measures and entropy maximization

To clarify the relationship between minimization of cross-entropy and
maximization of entropy, examine the classic definition of Shannon’s
entropy [6] which can be defined for a random variable with sample
space X = {x1, x2, . . .xN} and associated probability measure P(xn) = pn
as:

H(p) = -
N‚

n=1

pn log(pn). (1)

The measure H(p) represents the average information contained by the
random variable x that would be transferred to an observer who made
an observation of a sample value of the random variable X. It is clear
that if any of the pi were unity, then the corresponding sample xi could
be the only possible measurement outcome and no information transfer
would be possible, hence H = 0. At the other extreme, if all the xi are
equally probable, then measurement of a sample value would remove
the maximum possible uncertainty as to which of the equally-likely
values was actually measured, and this establishes an upper bound of
H = 1/N.

If we now inquire as to a “difference” in information content between
two processes with independent probability distributions, Kullback and
Leibler [12] proposed an information measure based on the Shannon
entropy that would quantify the average information for discrimination
between two distributions (denoted as p and q) as:

DKL(p : q) =‚
i

pi log Kpi

qi
O . (2)

When p and q are equivalent distributions, then D = 0 and there is no
information contained in p that q does not have. Alternatively, the “dis-
tance” or difference between the two distributions is zero. As the two
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distributions diverge, then the corresponding value of D increases. Such
cross-entropy functions are continuous, convex functions well-suited to
providing an error-metric for gradient-descent minimization algorithms.
The use of two probability distributions as expressed in equation (2)
when subjected to a minimization algorithm results in a general case
of minimization of the mutual information (cross-entropy) between the
two distributions. A special case of minimum cross-entropy arises when
one of the distributions is assumed to be uniform, which is equivalent
to maximization of the informational entropy of the nonuniform distri-
bution. That is, let the distribution q be a uniform distribution (q = U).
Then equation (2) becomes

DKL(p : U) =
N‚
i

pi log K pi

1/N
O

= log(N) -
ÊÁÁÁÁÁ
Ë
-

N‚
i

pi log(pi)
ˆ̃̃
˜̃̃
¯
= log(N) -H(p). (3)

This is an expression of Jayne’s maximum entropy principle, which
simply asserts that in the situation where one of the distributions is
uniform (say q), minimization of the cross-entropy between the two
distributions is achieved by maximization of the entropy of the other
distribution (p). Thus, the maximum entropy principle is a special case
of the general cross-entropy minimization principle.

1.2 Entropy maximization applied to artificial neural network training

In order to employ the cross-entropy information-theoretic divergence
measures as a means of error feedback for training ANNs, one must
have available the output probabilities q(Tj) associated with the target
values Tj, as well as the output probabilities p(Oj) arising from the ac-
tual network output Oj. A divergence such as D is used at each training
iteration2 in place of the conventional error measure based on f (Tj-Oj).
However, determination of p may be problematic if the input training
data are not analytically accessible. This arises from the fact that p is
a transformed version of the input training distribution after process-
ing through the network. Since the network weights are dynamically
evolving during training, one must make assumptions about the distri-
bution of the weight-states, and their transformed output through the
nonlinear activation functions. In the situation where the input training

2The use of an error-measure exactly in the form of equation (2) is not possible. This is
because it is a directed-divergence, or one-sided information measure not suitable for ANN
gradient descents. It does however illustrate the basic form of a cross-entropy measure
and it’s relation to maximum entropy. A more suitable form would be D(p : q)-D(q : p).
A detailed discussion of this issue can be found in [14].
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data are expressible in closed form, this is possible [9]. Otherwise an
analytical solution may not be possible. Therefore, the main propo-
nent of this work is to detail a method wherein explicit determination
of p is obviated, so that information-theoretic error-measures may be
applied to ANN training when the input training distributions are not
expressible in closed form. This is achieved by assuming that during
training the network output distribution is uniform (p = U), and then
maximizing the entropy of the output training distribution q as the cost
function for the backpropagation algorithm. Explicit application details
are provided in section 2.

2. Application of maximum entropy error-measure to artificial
neural network training

To demonstrate explicitly the application of the maximum entropy train-
ing in the information-space of the network output, we invoke the mul-
tilayer perceptron ANN depicted schematically in Figure 1 to learn, and
then estimate a set of nonlinear orthogonal basis function coefficients
based on sparse environmental measurements. Section 3 details the
development and application of the ANN towards this problem.

Figure 1. Schematic of the multilayer perceptron ANN.
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The ANN is trained with the “backpropagation” gradient-descent
algorithm [13]. However, a departure from the conventional parametric
output-domain error gradient is that we employ the maximum entropy
expression as the representation of the divergence of the actual output
from the desired one. In the backpropagation algorithm, the metric
employed to effect the weight modifications is the error ei of the network
output Oi at the ith unit, with respect to the target value Ti. This error
is used to calculate the effective gradient dj of the weight modification
term. In order to apply backpropagation in the information-theoretic
plane, the classical parametric euclidian error e = (Ti -Oi), is replaced
with the information-theoretic cross-entropy e = D(p : q) between the
actual and target distributions. Here however, we assume that the
network output distribution p is not available, and so in accordance
with Laplace’s principle of insufficient reason, we assign the uniform
distribution to the distribution p. The error-metric then equates to
the maximum entropy expression of the output training distribution:
e = log(N) - qi log(qi). Details of the ANN computational algorithms
are presented in the appendix.

3. Application to a nonlinear oceanographic estimation problem

To illustrate the efficacy of the maximum entropy error-metric in or-
ganizing a neural network for which a closed form expression of the
output PDF is not possible, the multilayer perceptron ANN is trained
to learn a nonlinear transformation from an input set of environmen-
tally sensed data, to a set of orthogonal basis function series expansion
coefficients which can reconstruct a depth-dependent profile of acoustic
wave celerity in a complex oceanic environment. In the ocean, acous-
tic energy is the communication and remote-sensing medium of choice.
This is largely due to the opacity of sea water to electromagnetic ra-
diation. The significant ionic conductivity and particulate suspension
concentration of sea water limit all wavelengths of electromagnetic ra-
diation to have 1/e amplitude attenuation length scales on the order of
tens of meters or less. In contrast, acoustic energy is capable of travers-
ing ocean-basin scales (thousands of km) at detectable amplitudes. This
is primarily a result of the unique acoustic wave-guiding properties of
the ocean from a stable “sound-axis channel,” essentially a minimum
in the acoustic wave celerity bracketed at deeper and shallower depths
by greater sound speeds. This is analogous to the refractive index cross-
section of graded-index fiber optic cables. As a result of the strong
coupling between the refractive index of the acoustic energy and prop-
agation characteristics of the sound waves in the ocean, the vertical
(depth-dependent) distribution of the acoustic sound speed is the pri-
mary environmental variable that a sonar operator/designer would like
to accurately model. Unfortunately, access to accurate spatiotemporal
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Figure 2. Representative SSPs for the ANN training data.

sampling of the oceanic sound speed is logistically and economically
expensive, as well as often physically dangerous. Therefore, we have
implemented an ANN to predict sound speed profiles (SSPs) based on
sparse environmental input.

The ANN training data are based on a sample of 65 representative
SSPs sampled over a period of one year from a near-shore coastal re-
gion off the coast of North Carolina. The region is some 10 to 30
nautical miles off the New River/Camp Legeune area, specifically, it can
be defined by the area contained within 33–34Î N and 76–77Î W. This
is a complex coastal ocean environment where the water is a compos-
ite of the Gulfstream, continental inflow from the nearby rivers, and
nonGulfstream coastal water masses. Figure 2 displays the 65 repre-
sentative SSPs and clearly exhibits a large variance in modal shapes and
distributions.

The model used to represent the SSP data is an expansion of orthog-
onal functions Fi(z) about the background (mean) SSP:

c(z) = co(z) +
M‚

i=1

ai Fi(z) (4)

where co(z) is the mean SSP, and M is the number of modal functions.
A powerful method of obtaining such functions from a given data set
is to use empirical orthogonal functions (EOFs) introduced in [15] (see
also [16, 17]). The EOFs are defined as the eigenvectors of the real and
symmetric matrix of correlation coefficients. They are termed empirical
since they are constructed entirely from the statistics of the data, and
orthogonal because the eigenvalues form a diagonal matrix, ensuring
statistical independence between the eigenvectors. In the present case
the correlation is one of sound speed between profiles. However, since
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Figure 3. First seven EOFs extracted from the 65 representative SSPs.

the expansion functions sought are those for sound speed perturbation,
one can remove the mean from each of the correlation coefficients and
deal with EOFs of the covariance matrix. Therefore, the EOFs satisfy

R F = LF (5)

with eigenvalues Lij - lidij where d is a Kronecker delta function and
where the entries of the covariance matrix are explicitly given by

Rij =
1

NSSP

NSSP‚
n=1

[cn(zi) - co(zi)][cn(zj) - co(zj)] (6)

with NSSP the number of SSPs in the data set, and i and j are the depth
indices. The covariance, eigenvalue, and eigenvector matrices are there-
fore computable directly from the data, leaving the specification of ex-
pansion coefficients (ai in equation (4)) to complete the model.

Accordingly, the SSP model may be interpreted as consisting of the
covariance matrix representing the statistics of the sound speed per-
turbations, the eigenvectors representing the independent modes of the
sound speed perturbations, and the expansion coefficients coupling the
various modes to the environmental conditions appropriate to the SSP
being modeled. The task at hand is efficient and accurate prediction
of the EOF expansion coefficients (and therefore the SSP) by the ANN
based on sparse real-time measurements characterizing the state of the
oceanic boundary conditions.

Figure 3 plots the first seven EOFs for the SSP data set. Each EOF is
scaled by the square root of its eigenvalue, thus weighting the amplitude
of each EOF corresponding to its strength in contributing to the sound
speed perturbation, and providing a dimension of (m/s). The first five
modes (in terms of strength) are labeled in the figure, and account for
the bulk of the data variance. The strength of each of the modes in
contributing to sound speed variation is quantified by the magnitude
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of the respective eigenvalues, it is therefore simple to sum the energy
in each successive mode from which it is revealed that use of the first
five modes will account for 99.03 percent of the energy in sound speed
variations. Based on this information, it is determined sufficient to
truncate the expansion of equation (4) at M = 5.

To provide a set of EOF expansion coefficients which the neural net-
work requires for training, the EOF coefficients are computed for the
representative SSP data by a five-parameter model fit by least-squares
residuals. The problem is this: given an observed SSP from the 65 rep-
resentative profiles, and the first five EOFs computed from the observed
data set, what are the five EOF expansion coefficients that best fit the
observed data? Since we have chosen to include only five EOFs in the
SSP estimates, the sound speed variation Dc(z) is computed from the
EOF expansion coefficients ai by:ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ

Dc(z1)
Í
Í
Í
Í

Dc(zN)

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
=

ÈÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÍÎ

F11 F21 F31 F41 F51
Í Í Í Í Í
Í Í Í Í Í
Í Í Í Í Í
Í Í Í Í Í

F1N F2N F3N F4N F5N

˘̇̇
˙̇̇
˙̇̇
˙̇̇
˙̇̇
˙̇̇
˙̇̇
˙̇̇
˚

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
a1
a2
a3
a4
a5

ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
(7)

from which it is clear that the number of sampled depths in the profile
(Nz = 21) exceeds the number of parameters to be estimated (M = 5),
resulting in an overdetermined set of linear equations. That is, there
will not exist an exact solution vector a. In this case it is appropriate
to implement a least-squares approximation to the desired solution by
a five-parameter model. The objective is to identify the best solution
in the least-squares sense for the vector a that comes closest to satisfy-
ing equation (5) simultaneously. The five-parameter model is therefore
defined as:

Dĉ(z) =
5‚

i=1

âi Fi(z) (8)

where Dĉ(z) is the estimated SSP variation computed with the estimated
EOF expansion coefficients âi. The best estimates of the five parame-
ters are implemented by minimization of the residuals: [Dc(z) - Dĉ(z)]2

where Dc(z) is the sound speed variation of the observed profile data
with respect to the mean SSP. This set of best-fit expansion coefficients
âi is then used as the output training data for the ANN.

3.1 Artificial neural network implementation details: Training sets

The input training data will be limited by the measurement resources
available in the geographic area. We assume that the measurements
available are: (1) time quantified as a day-of-year in the interval [1
through 365]; (2) ocean bottom temperature; (3) sea surface tempera-
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Figure 4. The three dominant refracted acoustic paths (eigenrays).

ture; and (4) acoustic time-of-flight (TOF) between two bottom mounted
transducers. Further, to conform to the average depth of the ocean area
under consideration the bottom depth is taken as 300 m and the sensor
separation as 5000 m. Computation of acoustic eigenrays from the
mean and representative SSPs reveal that three acoustic paths dominate
the sensor-to-sensor multipath structure for much of the year: (1) a
refracted direct path designated as [1V 0], the 1V indicating an upper
vertexing ray, and the 0 referring to no bottom vertexes or reflections; (2)
a surface reflected ray [1 0]; and (3) a surface-bottom-surface reflected
path [2 1]. Figure 4 depicts the three refracted acoustic ray paths. The
acoustic TOF for each of the three dominant eigenrays is computed via
integration of the inverted SSP values over the propagation path of the
eigenray for each of the 65 representative SSPs as follows:

TOF = ‡ ds
c(s)

(9)

where s is the ray path connecting the source and receiver sensors. The
generic sonar model [18] was implemented in calculating acoustic TOFs.

The objective of the network implementation is to predict the EOF
expansion coefficients of equation (4). These are the coefficients of
sound speed variation quantified by the EOFs with respect to the mean
SSP. Accordingly, the mean values of temperature and TOF for each
acoustic path contribute only a bias term to the respective input feature
vectors, therefore, these mean values are removed from the input tem-
perature and TOF data. The complete set of input parameters available
is a vector of length six consisting of the day of year, two tempera-
ture variations (one at the sea surface and one at the sea floor), and
three acoustic TOF variations. The time parameter should conform to
a cyclic function of period 1 year. Therefore, the time is parameterized
as: time-of-year = sin(2p day-of-year/365). The temperature variations
were extracted from the observed data (with the mean removed) at the
surface and bottom points. The magnitude of the temperature vari-
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Figure 5. Input training data for the ANN.

Figure 6. Input training data for the ANN.

ations fell within ±6Î C. The multipath TOFs were computed by the
generic sonar model for each of the 65 SSPs. The mean SSP was used to
compute the mean TOF for each acoustic ray path, which was removed
from the 65 training set TOFs to produce the TOF variations (DTOF).
The magnitude of the TOF variations was less than 0.04. Based on the
small magnitude of these variations, the DTOFs were scaled by a factor
of 100 to span the interval ±4.

Figure 5 plots the time-of-year parameter and temperature variations
versus the day-of-year for the 65 SSPs of the network input training
set. Figure 6 presents the scaled DTOFs for each of the dominant
multipaths, notice that TOFs are not available for all acoustic paths for
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Figure 7. Output training data for the ANN.

every training set. Figures 5 and 6 constitute the complete set of network
input training data available to the network, and clearly indicate that a
closed-form analytical function to represent these complex data would
be difficult if not impossible.

The network output training set consists of the five EOF coefficients
associated with each of the 65 observed SSPs. The EOF coefficients
were solved as a five-parameter linear least-squares fit of the EOF basis
functions to the 65 observed SSPs. Owing to the large variance of the
low order EOFs, the resulting magnitude of coefficients was in the range
of [-0.1 to 0.15]. To avoid training the network to these small target
values, the EOFs were scaled by 0.01, resulting in the coefficients being
scaled by a factor of 100. Figure 7 plots the five EOF coefficients and
constitutes the network output training set (target values).

3.2 Artificial neural network implementation details: Network architecture

Having identified the ANN input and output data in section 3.1, the
basic input/output requirements of the ANN have been defined. Ac-
cordingly, the ANN accommodates six input units in the input layer,
three for the acoustic TOFs between the sea-floor mounted transducers,
one each for the sea-floor and surface temperatures, and one for the day
of the year. The output layer consists of five units, one each for the
predicted EOF expansion coefficients âi. There are two “hidden” layers
to perform the nonlinear mapping transformation, with 22 neurons in
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each layer. The activation function for the hidden layer neurons is a
hyperbolic tangent, while the output layer units employ a simple linear
scaling with a unit derivative: FS(Xi) = Xi. This allows the output to
produce values outside the ±1 output range of the hyperbolic tangent
activation functions of the hidden layers. The backpropagation algo-
rithm uses a fixed momentum parameter of l = 0.9 and a learning rate
of h = 0.0015.

Implementation of the maximum entropy error-metric proceeds by
assuming the network output distribution to be uniform, p = U, and
then minimizing the cross-entropy between the uniform distribution
and the desired target distribution q. Therefore, the maximum entropy
error-metric is used directly in the backpropagation algorithm as the
entity to be minimized. This is achieved through computation of the
effective gradient (dj = (∂Oi/∂Xi)ej) where the error-metric is expressed
as: e = log(N) - qi log(qi). We see that the term log(N) represents the
maximum entropy of this information-theoretic error-metric, as H(q) is
a strictly nonnegative, monotonic, convex function of q. Therefore, e
can be expressed as: e = Hmax -H(q), and the network trained by the
normalized error-metric:

ej = 1 -
H(qj)
Hmax

. (10)

Equation (10) expresses the maximum entropy error-metric utilized in
the ANN of Figure 1 to learn the mapping of the environmental oceano-
graphic data input to the estimated EOF expansion coefficients output.

4. Artificial neural network results

The ANN was trained for 250 training cycles under gradient-descent
directed by the maximum entropy error-metric. Each training cycle
consists of repeatedly presenting the 65 training sets 10 times to the
ANN input/output, thereby resulting in a total of 2500 training steps for
the five outputs. The convergence characteristics of the ANN training
can be examined by plotting the error-metric e versus the training cycles
as shown in Figure 8. The values of e in Figure 8 have been normalized
to a maximum of 1. It can be observed that the ANN converges to a
stable point.

To verify that the gradient-descent solution was indeed a valid one,
we examine the root mean square (RMS) error of the five predicted
EOF coefficients for each of the 65 training sets. That is, after the
network is trained as depicted in Figure 8, each of the 65 training sets
is presented as input to the ANN, which then estimates the five EOF
coefficients for each training input. The RMS error of the five estimated
EOF coefficients from the values used as training output for each of the
training sets are shown in Figure 9.
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Figure 8. Temporal evolution of the ANN maximum entropy error-metric.

Figure 9. RMS error of the five predicted EOF expansion coefficients for each of
the 65 training sets.

The mean of the RMS errors over the 65 training sets was 0.19.
Given that the output training set EOF coefficients have a dynamic range
amplitude of approximately 20, this average RMS error corresponds to
roughly 1% accuracy in prediction of the EOF coefficients, indicating
that the network did indeed reach a pragmatic organization. One could
argue that a 1% accuracy may not be sufficient for a specified level
of environmental reconstruction of the SSPs. However, the focus of
this paper is not to develop an ANN architecture and implementation
that solves the problem at hand with the utmost in fidelity, rather, we
are concerned with demonstrating the utility of the maximum entropy
error-metric as a strategy for ANN training in the information-theoretic
domain without explicit determination of the network output PDF at
each training step.

Complex Systems, 11 (1997) 289–307



Maximum Entropy: A Special Case of Minimum Cross-entropy 303

5. Conclusions

Training artificial neural networks (ANNs) in the information-theoretic
error domain is useful since it can accommodate increased learning rates
without divergence, and may offer insights into the inherent information
processing performance of the ANN structure. Such error-measures are
generally cross-entropy measures denoted as D(p : q). They quantify a
distance measure of dissimilarity between the probability distributions
of the output and the target values, and provide a measure of the ineffi-
ciency of assuming that the distribution is q when the true distribution
is p. That is, the principle of minimum cross-entropy is a generalization
that applies in cases when one wishes to estimate an unknown distri-
bution p, given the a priori distribution q that estimates p, in addition
to some known constraints. The principle states that, of the distribu-
tions q that satisfy the constraints, the one with the least cross-entropy⁄i pi log[pi/qi] should be chosen. Minimization of D physically means,
reducing the “distance” or “divergence” between the statistics of p and
q. Minimizing cross-entropy is equivalent to maximizing entropy when
the unknown distribution is assumed uniform. Therefore, the principle
of maximum entropy states that if the unknown distribution must be
assumed uniform after all available information has been applied, and in
accordance with the existing constraints, then of all the distributions p
that satisfy the constraints, the one with the largest entropy⁄i pi log(pi)
should be chosen.

In the general case of cross-entropy measures, the synthesis of infor-
mation-theoretic error measures applied directly to the network organi-
zation of ANNs in the network output and target probability domains
would require that both distributions of the network output at each
training step and the target values be known. In the situation where
the network training data are not expressible in a closed form, it may
be impractical or impossible to explicitly express the distribution of the
network output. Therefore, it is desirable to implement the special case
of entropy maximization, wherein the tacit expression of the network
probability distribution function (PDF) is not required at each learning
step. In this manner, the emerging subdiscipline of information-theoretic
error measures for ANN optimizations may be expanded to include the
pragmatic application of ANN estimation to many real-world, high
dimensional problems.

In this paper, we demonstrated the use of maximum entropy error-
metric on a nonlinear oceanographic estimation problem, thereby obvi-
ating the requirement for knowledge of the ANN output distributions.
A multilayer perceptron ANN was trained via the backpropagation
gradient-descent algorithm under the direction of entropy maximiza-
tion of the network target PDFs to learn a nonlinear transformation
from an input set of sparsely sampled environmental data, to a set of
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orthogonal expansion coefficients of the vertical sound speed profiles
(SSPs). The network converged to a stable solution, and verifies the
usefulness of the maximum entropy information-theoretic error mea-
sure as an alternative to the standard network output parametric error
minimizations.

Appendix

A. Computational details of the artificial neural network

Consider the ANN depicted in Figure 1, it is comprised of two suc-
cessive layers of individual information-processing units, referred to as
neurons, with complete cross-neuron interconnections between adjacent
layers. The interconnections are simply numerical weights wij between
the ith and jth neurons. Each weight is multiplied by the output of the
ith neuron, and is then presented as one of the multiinputs to the jth
unit. Each weight is modified during the training process to produce a
minimum error output from the network. The input-layer receives the
network stimulus and serves as a multiplexer to the first “hidden-layer”
of neurons. Successive neural layers propagate the incrementally pro-
cessed stimuli until the network output-layer is reached. Each neuron is
a nonlinear processor which takes the weighted sum of the multiinputs
xj: Xi = ⁄wijxj and then processes this value by a (typically sigmoidal)
activation function FS(Xi) to produce the neuron output signal Oi as
depicted in Figure 10.

In order to organize the network (adjust the weight-states), the back-
propagation gradient-descent algorithm is employed based on a set of
training data. In the backpropagation algorithm, the metric employed
to effect the weight modifications is the error ei of the network out-
put Oi at the ith unit, with respect to the target value Ti. This error
is used to calculate the effective gradient dj of the weight modification
term. The effective gradient has two distinct definitions depending on

Figure 10. An artificial neuron computational schematic.
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whether or not a target value is available for a particular unit. In the
case of network output units, for which a target is known, dj is defined
as the error of the jth unit times the derivative of the activation function
evaluated at the output value of the ith unit. That is, dj = (∂Oi/∂Xi)ej
where Xi represents the ith unit input to the activation function. When
the unit resides in a hidden or input-layer, a target value is not available
for computation of the network error e. Therefore, the definition is
modified such that the product of cumulative effective gradients from
the next layer and the interconnection weights are “backpropagated”
to these units. In other words: di = (∂Oi/∂Xi)⁄j djwij. In the case of the
conventional euclidian metric, the sign of d is determined by the simple
arithmetic difference between the target and output, so that the direction
of the gradient-descent is controlled by feedback from the comparison of
the target versus output difference. However, the cross-entropy metrics
involving logarithmic functions are strictly nonnegative, and therefore
would not allow for d to change its sign in response to the target versus
output differences changing sign, thereby resulting in a loss of feedback
control in the weight change algorithm. To remedy this situation, the
calculation of the effective gradient with the cross-entropy error-metrics
is multiplied by ±1, depending on the sign of the target-output differ-
ence. That is, the value of d is specified by: di = di signum(Ti - Oi).
Having determined the error gradient, the weight adjustment at the nth
training step is given by the well-known Widrow–Hoff delta rule [13],
namely,

wij(n) = wij(n - 1) + hdjOi = wij(n - 1) + Dwij(n)

where h is the learning rate.
In regions of the error surface where large gradients exist, the d terms

may become inordinately large. The resulting weight modifications will
also be large leading to extensive oscillations of the network output,
preventing convergence to the true error minimum. The learning co-
efficient could be set to an extremely small value to counteract this
tendency; however, this would drastically increase the training time. To
avoid this situation, the weight modification can be given a “memory”
so that it will no longer be subject to abrupt changes. That is, the weight
change algorithm is specified by:

Dwij(n) = hdjOi + l[Dwij(n - 1)]

where l is the momentum parameter.
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