
Dynamics of a Time-outs
Management System

Vincenzo De Florio

Chris Blondia

University of Antwerp,
Department of Mathematics and Computer Science,
Performance Analysis of Telecommunication Systems Group,
Middelheimlaan 1, 2020 Antwerp, Belgium
and
Interdisciplinary Institute for BroadBand Technology,
Gaston Crommenlaan 8, 9050 Ghent-Ledeberg, Belgium

We call “time-out” a software entity that postpones a function call by
a given amount of time expressed as local clock ticks. The subject of
this paper is a simple software system managing lists of time-outs. We
briefly describe that system and discuss its dynamics. We show some
experimental results that prove the emergence of complex behaviors.

1. Introduction

A useful tool for distributed systems development is a time-outs man-
ager. A time-outs manager is a software system that manages lists of
“timeouts,” that is, objects that postpone a certain function call by a
given amount of time. This feature may prove to be useful, as it allows
transforming time-based events into nontime-based ones. A typical ex-
ample is a time-out that on expiring sends an alarm message to the client
process. A multiple selection statement such as the C language’s switch
can then be used to deal with both classes of events.

The focus of this paper is on a time-outs manager that had been
designed to facilitate the development of some fault-tolerant applica-
tions for European projects TIRAN [1] and DepAuDE [2]. Our time-
outs manager maintains a list of time-out objects ordered by ticks-to-
expiration as described in [3]. When the specified amount of time elapses
for the top of the list, its function is executed and the object is either
thrown out of the list or renewed (in this second case, the time-out is
said to be cyclic). A custom process checks periodically for the expira-
tion of entries and executes the corresponding functions. This period
constitutes a trade-off between performance overhead and maximum
function call delay.

A key prerequisite for a correct behavior of our system is that the
functions associated with the time-outs do not interfere “too much”

Complex Systems, 16 (2006) 209–223; � 2006 Complex Systems Publications, Inc.

210 V. De Florio and C. Blondia

with the time-outs manager. If this is not the case, which happens,
for example, when the time-out function is long lasting and very CPU
intensive, then there is competition. This paper describes the dynamics
of our time-outs manager in the presence of such competition and the
consequential emergence of complex behaviors as another example of
complexity arising from simple initial conditions.

In this paper section 2 introduces the time-outs manager, section 3
presents the dynamics aspects of our system, and conclusive remarks
are given in section 4.

2. A time-outs management system

This section briefly describes the architecture of our time-outs manager.
Such a system may be regarded as a client-server application in which
the client issues requests according to a well-defined protocol while a
server process fulfills those requests by registering, updating, modifying,
or purging entries in a time-out list, also executing the corresponding
time-out functions. Let us call such functions alarms.

2.1 The architecture of the time-outs manager

Figure 1 portrays the architecture of our time-outs manager. Here we
describe its main algorithmic steps.

(1) The client process sends requests to the time-out list manager.

(2) The time-out list manager accordingly updates the time-out list with the
server-side protocol described in section 2.2.

(3) Each time a time-out reaches its deadline, a request for execution of the
corresponding alarm is sent to a task called the alarm scheduler.

(4) The alarm scheduler allocates an alarm request to the first available pro-
cess out of those in a circular list of alarm processes, possibly waiting
until one of them becomes available.

Figure 2 shows the sequence diagram corresponding to the initializa-
tion of the system and the management of the first time-out request.

The presence of an alarm scheduler and of the circular list of alarm
processes can have great consequences on performance and on the ability
of our system to fulfill real-time requirements. These aspects are dealt
with in section 3. Our system may also operate in a simpler mode:
without the two above mentioned components and with the time-out
list manager taking care of alarm execution.

The time-outs management class appears to the user as a couple of
new types and a library of functions. Table 1 provides an idea of the
client-side protocol of our tool.

Complex Systems, 16 (2006) 209–223

Dynamics of a Time-outs Management System 211

Figure 1. Architecture of the time-out management system.

Client
Time-outs

Alarm[]i

Alarm
schedulerList manager

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

Spawn TLM

Spawn Alarm scheduler

Spawn Alarm executors

Begin with
list management...

Continue...

Wait for an
alarm request...

Wait for a request
for execution...

TIME-OUT: execute ()a

Select index j

Alert Alarm[j]

Alarm[] calls ()j a

Continue...

Continue...

Continue...

Continue...

Figure 2. Sequence diagram for the tasks of the time-outs manager.

The server-side protocol is run by a component called the time-out
list manager (TLM). TLM basically checks every TM_CYCLE for the
occurrence of one of these two events:

A request from a client has arrived. If so, TLM serves that request.

One or more time-outs have expired. If so, TLM executes the corre-
sponding alarms.

A full description of the server-side protocol of TLM is out of the
scope of this paper—the interested reader may refer to [4]. In the fol-
lowing we just describe those aspects that are relevant to our following
discussion in section 3.

Complex Systems, 16 (2006) 209–223

212 V. De Florio and C. Blondia

1. /* Declarations */
Declare tom as Timeout Manager Handler;
Declare t1, t2, t3 as Timeout;
Declare my_alarm, another_alarm as Alarm Function;

2. /* Definitions */
Initialize tom as Time-outs Management System (my_alarm);
Define t1 as Cyclic Timeout (TIMEOUT1, SUBID1) With Deadline (DEADLINE1);
Define t2 as Cyclic Timeout (TIMEOUT2, SUBID2) With Deadline (DEADLINE2);
Define t3 as Cyclic Timeout (TIMEOUT3, SUBID3) With Deadline (DEADLINE3);

3. /* Activation */
Register t1, t2, t3 with tom ;

4. /* Control */
Disable t3;
Redefine t2 With Deadline (NEW_DEADLINE2);
Renew t2;
Delete t1;

5. /* Deactivation */
Terminate tom;

Table 1. An example using the time-outs management class. In 1. a time-out list
pointer and three time-out objects are declared, together with an alarm function.
In 2. the time-out list and the time-outs are initialized. Activation is carried out
at point 3. At 4., some control operations are performed on the list, namely,
time-out t3 is disabled, a new deadline value is specified for time-out t2 which
is then renewed to activate the change, and time-out t1 is deleted. The whole
list is finally deactivated in 5.

2.2 Server-side protocol

Each time-out t is characterized by its deadline t.deadline, a positive
integer representing the number of clock units that must separate the
time of insertion or renewal from the scheduled time of alarm exe-
cution. This field can only be set by the functions tom_declare and
tom_set_deadline. Each time-out t also holds a field, t.running, ini-
tially set to t.deadline.

Each time-out list object, say tom, hosts a variable representing the
origin of the time axis. This variable, tom.starting_time, tracks the
time-out at the top of the time-out list. The idea is that the top of the list
is the only entry whose running field needs to be compared with current
time in order to verify the occurrence of the expired time-out event [3].
For the time-outs behind the top one, that field represents relative values,
viz., distances from expiration time of the closest, preceding time-out.
In other words, the overall time-out list management aims at isolating
a “closest to expiration” time-out, or head time-out, which is the one
and only time-out to be tracked for expiration, and at keeping track of
a list of “relative time-outs.”

Let us call TimeNow the system function returning the current value
of the clock register. In an ordered, coherent time-out list, residual time

Complex Systems, 16 (2006) 209–223

Dynamics of a Time-outs Management System 213

for the head time-out t is given by

t.running � (TimeNow � tom.starting_time), (1)

that is, residual time minus elapsed time. Let us refer to equation (1) as
r1, or the head residual. For time-out n, n > 1, which is the time-out
located n � 1 entries “after” the top block, let us define

rn � r1 �
n

�

i�2

ti.running (2)

as the nth residual, or residual time for the time-out at entry n. If there
are m entries in the time-out list, let us define rj � 0 for any j > m.

It is now possible to formally define the key operations on a time-out
list: insertion and deletion of an entry.

2.2.1 Insertion

Three cases are possible, namely insertion on top, in the middle, and at
the end of the list.

Insertion on top. In this case we need to insert a new time-out object, say
t, such that t.deadline < r1, or whose deadline is less than the head
residual. Let us call u the current top of the list. Then the following
operations need to be carried out:

�
t.running � t.deadline � TimeNow � tom.starting_time
u.running � r1 � t.deadline.

Note that the first operation is needed in order to verify the relation

t.running � (TimeNow � tom.starting_time) � t.deadline,

while the second operation aims at turning the absolute value kept in
the running field of the “old” head of the list into a value relative to
the one stored in the corresponding field of the “new” top of the list.

Insertion in the middle. In this case we need to insert a time-out t such that

� j � rj � t.deadline < rj�1.

Let us call u time-out j�1. (Note that both t and u exist by hypothesis.)
Then the following operations need to be carried out:

�
t.running � t.deadline � rj
u.running � u.running � t.running.

Observation 1. Note how, in the cases of insertion on top and insertion
in the middle, that the time interval [0, rm] has not changed length, it has
only been further subdivided, and is now to be referred to as [0, rm�1].

Complex Systems, 16 (2006) 209–223

214 V. De Florio and C. Blondia

Insertion at the end. Let us suppose the time-out list consists of m > 0
items, and that we need to insert time-out t such that t.deadline 	 rm.
In this case we simply tail the item and initialize it so that

t.running � t.deadline � rm.

Observation 2. Note how insertion at the end of the list is the only way
to prolong the range of action from a certain [0, rm] to a larger [0, rm�1].

2.2.2 Deletion

The other basic management operation on the time-out list is deletion.
As we had three possible insertions, likewise we distinguish here deletion
from top, from the middle, and from the end of the list.

Deletion from top. If the list is a singleton we are in a trivial case. Let us
suppose there are at least two items in the list. Let us call t the top of
the list and u the next element that will be promoted to the top. From
its definition we know that

r2 � u.running � r1

� u.running � t.running

� (TimeNow � tom.starting_time). (3)

By equation (1), the bracketed quantity is elapsed time. Then the
amount of absolute time units that separate current time from the ex-
piration time is given by u.running � t.running. In order to “behead”
the list we therefore need to update t as follows:

u.running � u.running � t.running.

Deletion from the middle. Let us say we have two consecutive time-outs in
our list, t followed by u, such that t is not the top of the list. With a rea-
soning similar to the one just followed we get to the same conclusion—
before physically purging t off the list we need to perform the following
step:

u.running � u.running � t.running.

Deletion from the end. Deletion from the end means deleting an entry
which is not referenced by any further item in the list. Physical deletion
can be performed without the need for any updating. Only, the interval
of action is shortened.

Observation 3. Variable tom.starting_time is never touched when de-
leting from or inserting entries into a time-out list, except when inserting
the first element: in such a case, that variable is set to the current value
of TimeNow.

Figure 3 shows the action of the server-side protocol.

Complex Systems, 16 (2006) 209–223

Dynamics of a Time-outs Management System 215

Figure 3. Operating scenario of the time-out manager. In 1., a 330ms time-out
called A is inserted in the list. In 2., after 100ms, A has been reduced to 230ms
and a 400ms time-out, called B, is inserted (its value is 170ms, i.e., 400�230ms).
Another 70ms have passed in 3., so A has been reduced to 160ms. At that point,
a 510ms time-out, C is inserted—it goes at the third position. In 4., after 160ms,
time-out A occurs—B then becomes the top of the list; its decrement starts. In 5.
another 20ms have passed and B is at 150ms—at that point a 230ms time-out,
called D is inserted. Its position is in between B and C, therefore this latter is
adjusted. In 6., after 150ms, B occurs and D goes on top.

Complex Systems, 16 (2006) 209–223

216 V. De Florio and C. Blondia

3. Dynamic behavior

We now discuss the behavior of our time-outs management system when
it executes several long lasting alarms. The main consequence of this is
that the alarms compete with each other and with the TLM for the CPU
or other scarce resources.

In this case there is a significant delay between the time in which r1
becomes zero and the time that event is managed. Such delay can be
expressed as

(TimeNow � tom.starting_time) � t.running.

The system deals with these events by propagating the delays to those
entries that follow the top of the list. This is done by determining the
integer j 	 1 such that

rj < 0 � rj�1 	 0, (4)

where this time r1 can also be negative. The time-out management
process needs therefore first to check whether r1 is less than zero; if so,
it must calculate index j such that equation (4) is verified; and finally
command the execution of all the corresponding alarm functions.

Finally, if the list is not empty, that process must adjust the corre-
sponding running field as follows: let t be time-out j � 1; then

t.running � t.running � rj.

Clearly this mechanism only works fine if there is a way to control the
congestion due to alarm execution. Section 3.1 describes a mechanism
with that aim.

3.1 Dealing with alarm execution congestion

Alarm execution is managed via the mechanism shown in Figure 1, items
(3) and (4), that is, through an alarm scheduler (AS) which gathers
all alarm execution requests and forwards them to the next entry of
a circular list of processes. As mentioned earlier, alarms often imply
communication, hence using a list of concurrent processes might in
principle result in better performance—should the underlying system
offer means for managing I/O in parallel. In general, if the alarm
functions do not compete “too much” for the same resources at the
same times, this scheme allows better exploitation of available resources
as well as a higher probability of controlling alarm congestion. Herein
we evaluate the ability of this mechanism to control alarm congestion
under different levels of congestion and in two opposite cases of alarm
interference, that is, no competition and full competition.

Let us call T the deadline of our time-outs, and Ν the extra time due
to alarm congestion, that is, the real-time violation. Furthermore, let

Complex Systems, 16 (2006) 209–223

Dynamics of a Time-outs Management System 217

T A time-out’s deadline, i.e., the amount of time that should
elapse between the moment the time-out is inserted and
the moment its alarm is invoked.

Α Minimal duration of the alarm functions.

Ν Run-time violation, i.e., actual duration of the
alarm functions.

∆ T � Ν.

TM_CYCLE The time-out manager’s period. Time-outs are checked
every TM_CYCLE clock ticks.

Τ Number of alarm processes in the system.

Table 2. Parameters and variables of the experimentations.

us call ∆ the actual time to the alarm, that is, T � Ν. In a perfect system
∆ would be equal to T while in real life it depends on the time-outs
manager’s period and on alarm execution congestion.

In order to estimate the average run-time violation experienced by
the time-outs manager we generated 1000 noncyclic time-outs with a
deadline T > 0 uniformly distributed.

In order to measure the ability of the time-out manager to control
alarm congestion, we run our experiment configuring the manager with
no processes in the circular list of alarm processes (alarm execution
managed by TLM) and then adding more and more processes in that
list. Let us call Τ the number of processes in the list.

Furthermore, we artificially imposed the following minimal durations
to the alarm functions: minimal,1 10ms, 100ms, and so on. These
durations have been imposed either by loading the alarm functions with
some purely computation-oriented tasks, letting them compete for the
same resource, being the one CPU in the system, or by executing a
function (TimeWait) that puts the calling process in the wait state for
the specified amount of time—this way alarm functions do not compete
at all with each other. Let us use Α to refer to the alarm durations.

The time-outs manager’s period, that is, TM_CYCLE was set to 50000
clock ticks, 1 clock tick being 1Μs. We run the experiment on a single
processing node with a PowerPC 604 at 133MHz. Let us call Γ the
number of time-outs that experience a run-time violation greater than
TM_CYCLE, 0 � Γ � 1000.

Table 2 groups the parameters and variables of the experimentations
and recalls their meanings.

1Just the overhead corresponding to calling a function and copying a 20-byte message—
this is the typical delay in our target applications, lasting approximately 50 ticks on our
processing node.

Complex Systems, 16 (2006) 209–223

218 V. De Florio and C. Blondia

0

10000

20000

30000

40000

50000

60000

50 100 200 300 400 500 600 700 800 900 1000

tic
ks

timeout no.

Real Time Violation

Figure 4. The graph shows the run-time violation when 1000 time-outs are
uniformly generated in (0, 100s], Α � 50 ticks, and Τ � 0 (i.e., TLM executes
alarms autonomously). Maximum observed value is 52787, minimum is 157.
The average is 26892.74 with a standard deviation equal to 14376.89. Γ is 20,
that is, of the 1000 time-outs, 20 exceeded TM_CYCLE (in this case, 50000
ticks or 50ms). Other statistics regarding this latter sample can be found in
Table 3.

Figure 4 summarizes the results of a first experiment in which:

Α is kept to its minimum value (approximately 50 clock ticks)

1000 time-outs are executed with T distributed pseudorandomly
in (0, 100s]

TLM directly executes alarm functions (Τ � 0).

3.1.1 Best case scenario

Figure 5 describes what happens by increasing Α while keeping Τ equal
to zero in the best case scenario—no competition among the alarm
functions. The results are summarized in Table 3, that also reports the
hugest violation (in the case with Α �20ms, the largest Ν was equal to
124535 clock ticks, or 2.49 times TM_CYCLE).

In particular, when Α became larger than TM_CYCLE (the checking
quantum of the time-out list manager), we measured ever increasing
values for Ν (real-time violation) due to alarm execution congestion (see
Figure 6).

Complex Systems, 16 (2006) 209–223

Dynamics of a Time-outs Management System 219

0

10000

20000

30000

40000

50000

60000

0 100 200 300 400 500 600 700 800 900 1000

tic
ks

timeout no.

Real Time Violation

0

10000

20000

30000

40000

50000

60000

70000

0 100 200 300 400 500 600 700 800 900 1000

tic
ks

timeout no.

Real Time Violation

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

0 100 200 300 400 500 600 700 800 900 1000

tic
ks

timeout no.

Real Time Violation

0

20000

40000

60000

80000

100000

120000

140000

0 100 200 300 400 500 600 700 800 900 1000

tic
ks

timeout no.

Real Time Violation

Figure 5. Real-time violation when Α is equal to 1ms (upper left), 5ms (upper
right), 10ms (lower left), and 20ms (lower right). 1000 pseudorandom time-
outs with deadlines uniformly distributed in (0, 100s], Τ � 0. In each plot, the
central straight line represents the average (y � a), while the others are y � a�d,
d being the standard deviation.

Α Population Average Stdev Max

� 50 ticks 20 50967.10 762.07 52782
106 ticks 34 51282.32 975.85 53263
5 � 106 ticks 77 53077.68 2774.48 64328
10 � 106 ticks 132 57605.80 6917.56 88183
20 � 106 ticks 238 65639.74 14571.78 124535

Table 3. This table reports some experiments that measure alarm execution
congestion. 50 ticks is approximately the average local clock time required by
the alarm function used in our target applications: a context switch time plus
the time to store a 20-byte message into the input mailbox of the receiver process
(measurements done with the TEX operating system [5]).

Complex Systems, 16 (2006) 209–223

220 V. De Florio and C. Blondia

0

50000

100000

150000

200000

250000

300000

350000

400000

0 100 200 300 400 500 600 700 800 900 1000

tic
ks

timeout no.

Real-time violation

0

200000

400000

600000

800000

1e+06

1.2e+06

0 100 200 300 400 500 600 700 800 900 1000

tic
ks

timeout no.

Real-time violation

0

500000

1e+06

1.5e+06

2e+06

2.5e+06

0 100 200 300 400 500 600 700 800 900 1000

tic
ks

timeout no.

Real-time violation

0

1e+06

2e+06

3e+06

4e+06

5e+06

6e+06

7e+06

0 100 200 300 400 500 600 700 800 900 1000

tic
ks

timeout no.

Real-time Violation

Figure 6. The experiment is repeated with Α respectively equal to 60ms, 80ms,
90ms, and 100ms. Run-time violation grows without bounds. Note how the
plot corresponding to the worst case exhibits some degree of self-similarity.

We experimentally found that the presence of the alarm scheduler and
of the circular list of processes has positive relapses on alarm congestion
control. As an example, Table 4 summarizes the results of increasing
Τ from 0 to 5 when Α is set to 20ms. In particular, when Τ is equal to
2, Γ drops from 264 to 46 items, while with Τ � 3 the worst case for Γ
was equal to 53934 clock units, or just 1.07868 times TM_CYCLE—a
violation of less than 8%. Other examples are described in Table 5 and
Figure 7.

3.1.2 Worst case scenario

The worst case takes place when all alarm processes compete for the
same set of resources at the same time. An easy way to accomplish
this is to let each alarm function perform, for example, a pure integer
computation task so that each process competes with all the others
for the single integer pipeline of the CPU of our system. Given a fixed
Α � 20ms, we increased Τ and measured real-time violations. The results
have been summarized in Table 6. Adding processes did not produce
any useful result in this case.

Complex Systems, 16 (2006) 209–223

Dynamics of a Time-outs Management System 221

Τ Μ Σ Γ Γmax Μ� Σ�

0 35962.849 22683.486 264 130993 65483.295 14160.466
1 30200.690 18447.083 108 108991 64676.176 15647.9
2 27556.858 14471.615 46 63659 52228.13 2926.681
3 27286.773 14369.997 45 53934 51280.733 1014.648
4 27493.727 14058.125 47 53372 51526.17 921.993
5 27422.843 14079.798 46 54077 51357.196 1079.067

Table 4. The experiment is repeated with Α � 20ms and 0 � Τ � 5. Μ and Σ are
respectively the average and standard deviation of the 1000 outcomes. Μ� and
Σ� are respectively the average and standard deviation of Γ. Γmax is the largest of
the Γ values.

Τ Μ Σ Γ Γmax Μ� Σ�

1 3692158.863 2966039.234 974 12277216 3790057.80 2943375.88
2 33674.461 27688.173 140 264882 83244.94 38052.06
3 28177.013 16801.971 54 146684 66737.87 20705.76
4 27621.631 14276.781 45 100260 52871.73 7358.90
5 27435.401 14087.224 44 53712 51375.93 1001.36
6 27475.845 14107.325 44 53992 51443.95 1008.77

Table 5. The experiment is repeated with Α � 100ms and 0 � Τ � 6. Μ,Σ, Γ,Μ�,
and Σ� are as defined in Table 4. Note how a relatively low number of alarm
workers is able to reasonably control alarm execution congestion even in the
scenario of Figure 6.

Τ Μ Σ Γ Γmax Μ� Σ�

0 35251.93 21667.08 226 126931 66223.70 13713.40
1 35533.45 21584.35 248 127403 64377.88 13803.45
2 35735.19 21606.70 250 125910 64681.21 13305.83

Table 6. The experiment is repeated with Α � 20ms and 0 � Τ � 2. This time
alarm workers do compete for a unique system resource. As evident, adding
processes does not produce any useful result in this case.

4. Conclusions

A simple software system for managing lists of time-outs has been in-
troduced. Experimental results show that, in some cases, the congestion
due to the concurrent execution of the alarms and of the time-out man-
agement tasks may produce severe violations of the expected behavior.
We showed how in some special cases this congestion can be controlled
if not eliminated. In the general case this congestion brings the system
to a chaotic state. This transition can be represented in some cases as
images depicting some degree of self-similarity (as shown for instance in

Complex Systems, 16 (2006) 209–223

222 V. De Florio and C. Blondia

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

0 100 200 300 400 500 600 700 800 900 1000

tic
ks

timeout no.

Real-time Violation

0

50000

100000

150000

200000

250000

300000

0 100 200 300 400 500 600 700 800 900 1000

tic
ks

timeout no.

Real-time Violation

0

20000

40000

60000

80000

100000

120000

140000

160000

0 100 200 300 400 500 600 700 800 900 1000

tic
ks

timeout no.

Real-time Violation

0

10000

20000

30000

40000

50000

60000

0 100 200 300 400 500 600 700 800 900 1000

tic
ks

timeout no.

Real-time Violation

Figure 7. The pictures show how by increasing Τ, that is, adding processes to
the circular list of alarm processes, it is possible to control alarm execution
congestion even in the scenario of the last picture of Figure 6 (Α � 100 ticks).
From left to right and up to down, the pictures represent the cases of Τ equal to
1, 2, 3, and 5.

Figure 8). Future work will include an analysis of those images’ complex
features and new experiments with nonuniformly distributed time-outs.

Acknowledgments

The authors wish to thank the Editor and the reviewers for their many
and insightful comments and suggestions.

References

[1] O. Botti, V. De Florio, G. Deconinck, S. Donatelli, A. Bobbio, A. Klein,
H. Kufner, R. Lauwereins, E. Thurner, and E. Verhulst, “TIRAN: Flexi-
ble and Portable Fault Tolerance Solutions for Cost Effective Dependable
Applications,” in Proceedings of the Fifth Euro-Par Conference, edited
by P. Amestoy, Lecture Notes in Computer Science, volume 1685, pages
1166–1170, Toulouse, France, August/September 1999 (Springer-Verlag,
Berlin).

Complex Systems, 16 (2006) 209–223

Dynamics of a Time-outs Management System 223

0

2e+06

4e+06

6e+06

8e+06

1e+07

1.2e+07

1.4e+07

0 100 200 300 400 500 600 700 800 900 1000

tic
ks

timeout no.

Real-time Violation

Figure 8. The top plot from Figure 7 is shown at a larger size to stress its
self-similarity.

[2] G. Deconinck, V. De Florio, and R. Belmans, Architecting Dependable
Systems II, volume 3069 of Lecture Notes in Computer Science (State-
of-the-Art Survey), chapter Architecting Distributed Control Applications
based on (Re-)Configurable Middleware, pages 123–143. Springer-Verlag,
Berlin, Germany, 2004.

[3] A. S. Tanenbaum, Computer Networks (Prentice-Hall, London, 3rd edi-
tion, 1996).

[4] V. De Florio, “A Fault-Tolerance Linguistic Structure for Distributed Ap-
plications,” Ph.D. Thesis, Department of Electrical Engineering, University
of Leuven, October 2000. ISBN 90-5682-266-7.

[5] DEC. CS_Q66E Alpha Q-Bus CPU Module: User’s Manual (Digital Equip-
ment Corp., 1997).

Complex Systems, 16 (2006) 209–223

