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The  Greenberg–Hastings  cellular  automaton  (GHCA)  is  a  probabilistic
two-dimensional  cellular  automaton  with  a  Moore  or  von  Neumann
neighborhood to mimic pattern formations of excitable media. It is also
defined  on  a  graph,  where  a  vertex  corresponds  to  a  cell  and  its  adja-
cent  vertices  to  the  neighborhood  of  the  cell.  In  this  paper,  we  study  a
three-valued GHCA on an arbitrary finite connected graph analytically,
though  it  has  been  mainly  investigated  numerically.  We  prove  that
“maximum cycle density” completely decides asymptotic behavior of its
time evolution. 
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Introduction1.

A  cellular  automaton  (CA)  is  a  discrete  dynamical  system  in  both
space and time. Each cell in a CA takes only a finite number of states.
The  state  of  a  cell  changes  according  to  a  transition  rule,  which  is
defined  only  by  the  state  of  each  cell  and  those  of  its  neighborhoods;
that  is,  the  state  of  each  cell  at  time  t + 1  is  decided  by  its  state  and
those  of  neighborhoods  at  time  t.  A  graph  cellular  automaton  (GCA)
whose  space  is  expanded  to  an  arbitrary  graph  has  been  studied
[1, 2]. In a GCA, cells correspond to vertices of the graph. The neigh-
borhood  type  of  a  typical  two-dimensional  CA  is  either  a  Moore
neighborhood  (eight  nearest  neighbors)  or  a  von  Neumann  neighbor-
hood  (four  nearest  neighbors).  In  a  GCA,  the  neighborhood  of  a  ver-
tex is defined as all of its adjacent vertices. 

The  Greenberg–Hastings  cellular  automaton  (GHCA)  is  a  two-
dimensional  CA  to  mimic  pattern  formations  of  excitable  media
[3,  4].  In  a  GHCA,  each  cell  can  be  in  one  of  three  states:  quiescent,
excited or refractory. The transition rule is described as follows. 
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◼ An excited cell at time t becomes refractory at time t + 1. 

◼ A refractory cell at time t becomes quiescent at time t + 1. 

◼ A quiescent cell at time t becomes excited at time t + 1 with probability

p0 ≦ p ≦ 1 if at least one of its neighborhoods is excited at time t; oth-

erwise, the cell remains quiescent at time t + 1. 

The space on which a GHCA is defined can be extended to an arbi-
trary  graph  from  a  two-dimensional  lattice,  owing  to  the  characteris-
tics of the transition rule. Such a GHCA on an arbitrary graph (graph
GHCA)  has  been  studied  mainly  by  numerical  simulations  [5–11].  In
this  paper,  we  analytically  investigate  the  time  evolution  of  determin-
istic  graph  GHCA  (p  1)  on  a  connected,  finite,  simple  graph.
Sometimes  we  say  that  a  cell  gets  excited  when  it  transitions  from  a
quiescent state to an excited state. 

In Section 2, a graph GHCA on a connected, finite, simple graph is
defined.  In  Section  3,  we  prove  that  the  graph  GHCA  converges  to
either  an  equilibrium  state  where  all  the  cells  are  quiescent  or  a  peri-
odic  state  where  all  the  cells  get  excited  with  a  fixed  rhythm.  In  Sec-
tion 4, two quantities, phase difference of a walk and change amount
of  a  vertex,  are  introduced  to  perform  quantitative  analysis  of  the

graph  GHCA.  In  Section  5,  we  define  the  notions  nth  excitation  time

of a vertex and nth excitation walk of a vertex and show the necessary
and  sufficient  condition  for  a  vertex  to  get  excited.  In  Section  6,  we
prove  that  if  a  phase  difference  of  each  circuit  in  a  graph  GHCA  is
equal  to  0,  then  the  graph  GHCA  converges  to  an  equilibrium  state
where  all  vertices  are  quiescent,  while  if  there  is  at  least  one  circuit
whose  phase  difference  is  not  equal  to  0,  it  converges  to  a  periodic
state. In Section 7, we define the notion convergent excitation rate of

a vertex as the ratio N T for a vertex in a periodic state where it gets

excited  N  times  during  T  time  steps.  We  also  introduce  the  notion
maximum  cycle  density  dM  and  prove  that  the  convergent  excitation

rate of each vertex is equivalent to dM. 

Graph Greenberg–Hastings Cellular Automaton   2.

Let  G  (V, E)  be  a  connected,  finite,  simple,  undirected  graph.  Here
V denotes a set of vertices of G, and E denotes a set of edges of G. A

vertex will take a value in 0, 1, 2, each of which corresponds respec-

tively  to  a  quiescent  state,  an  excited  state  and  a  refractory  state.  We
let v(t) be the value of a vertex v at time t. The time evolution rule for
vertices is defined as follows.  
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◼ In case of v(t)  1, we always have vt + 1  2.

◼ In case of v(t)  2, we always have vt + 1  0.

◼ In  case  of  v(t)  0,  if  at  least  one  adjacent  vertex  is  excited,  we  have

vt + 1  1. Otherwise, we have vt + 1  0.

Definition 1.  We  call  the  cellular  automaton  defined  here  a  graph
Greenberg–Hastings cellular automaton (graph GHCA). 

A  finite  sequence  of  vertices  w  v0v1…vn  is  called  a  walk  when

there is an edge that connects vi  with vi+1  0 ≦ ∀ i < n. We denote by

-w  a  walk  whose  vertices  and  edges  are  the  same  as  w  but  whose
direction  is  opposite  to  w,  that  is,  -w  vn…v1v0.  A  walk

w  v0v1…vn  is  called  a  path  when  vi ≠ vj  ∀ i, j : 0 ≦ i < j ≦ n  and

a circuit when v0  vn. A circuit w  v0v1…vn  is called a cycle if the

walk v0v1…vn-1 in w is a path. We denote by w the length of w. For

w  v0v1…vn, w  n. 

The Time Evolution of a Graph Greenberg–Hastings Cellular 
Automaton   

3.

We  prove  from  the  finiteness  of  G  that  a  graph  GHCA  converges  to
either  an  equilibrium  state  where  all  vertices  take  0  or  a  periodic
state.  

Lemma 1. If there exists one vertex that converges to a state with value
0, then all vertices converge to states with value 0. 

Proof.  We  suppose  that  there  is  a  vertex  v0  that  satisfies  v0(t)  0

(t ≧ t0).  When  v1  is  an  adjacent  vertex  of  v0,  v1(t) ≠ 1  (t ≧ t0)  from

the  transition  rule  of  a  graph  GHCA.  If  v1(t0)  0,  v1(t)  0  (t ≧ t0),

while  v1(t0)  2,  v1(t)  0  t ≧ t0 + 1.  Therefore,  v1(t)0  t ≧ t0 + 1

in  any  case.  Hence,  for  a  walk  v0v1…vn,  we  find  that  vn(t)  0

(t ≧ t0 + n) by repeating the same arguments. We let v be an arbitrary

vertex  different  from  v0.  Then  there  is  a  walk  w  satisfying  that  the

initial  vertex  is  v0  and  the  terminal  vertex  is  v  from  the  connectivity

of G. Therefore, vn(t)  0 (t ≧ t0 + w), which completes the proof. □ 

Proposition 1.  Each  vertex  eventually  takes  on  a  periodic  sequence  of
states. 

Proof. The time evolution rule of a graph GHCA is deterministic, and
its  orbit  is  confined  to  a  finite  number  of  states.  Therefore,  an
arbitrary vertex will tend to be either a state with constant value 0 or
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a  periodic  state.  When  there  is  one  vertex  that  converges  to  a  state
with  value  0,  all  vertices  converge  to  the  same  quiescent  states  from

Lemma 1. Otherwise, all vertices converge to a periodic state. □ 

Phase Difference of a Walk and Change Amount of a Vertex   4.

We  introduce  two  quantities,  phase  difference  of  a  walk  and  change
amount  of  a  vertex,  in  order  to  perform  quantitative  analysis  of
a  graph  GHCA  and  investigate  the  relationship  between  these  two
quantities.  

Definition 2. For a walk w  v0v1…vn, we define a value w(t) ∈ ℤ as 

w(t) := 
i0

n-1

mod3(vi+1(t) - vi(t)). (1)

Here, mod3( · ) :ℤ3 → ℤ is a mapping from an element of ℤ3 to a cor-

responding  representative  element  in  -1, 0, 1;  that  is,  if  k ∈ ℤ  is  a

representative  of  an  element  in  ℤ3  and  mod3k  k

∈ -1, 0, 1,

then  k ≡ k


 mod 3.  This  means  that  mod3-2  1,  mod31  1,

mod32  -1  and  so  on.  We  call  w(t)  the  phase  difference  of  w  at

time t.  

Note  that  w(t)  is  expressed  as  a  sum  of  the  phase  difference  of
walks with two vertices: 

w(t)  
i0

n-1

vivi+1(t). (2)

Lemma 2. For a walk w  v0v1⋯vn, 

vn(t) ≡ v0(t) +w(t) mod 3. (3)

Proof. 

v0(t) +w(t)  v0(t) + 
i0

n-1

mod3(vi+1(t) - vi(t))

≡ v0(t) + 
i0

n-1

{vi+1(t) - vi(t)} mod 3

≡ vn(t) mod 3.□
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Definition 3. For a vertex v, we define a value v(t, t + t′) ∈ ℤ as 

v(t, t + t′) := 
it

t+t′-1

mod3vi + 1 - v(i). (4)

We call v(t, t + t′) the change amount of v from time t to time t + t′.  

Note that 

vt, t + 1  mod3vt + 1 - v(t), (5)

and

v(t, t + t′) := 
it

t+t′-1

vi, i + 1. (6)

Lemma 3. For a walk w  v0v1…vn, 

w(t + t′) -w(t)  vn(t, t + t
′) - v0(t, t + t

′). (7)

Proof. (a) For a walk with two vertices w  v0v1, 

wt + 1 -w(t)mod3v1t + 1 - v0t + 1 -mod3(v1(t) - v0(t))

≡ v1t + 1 - v1(t) - v0t + 1 - v0(t) mod 3.

From equation (5), we have  

wt + 1 -w(t) ≡ v1t, t + 1 - v0t, t + 1 mod 3. (8)

From the definition of mod3( · ), -2 ≦ wt + 1 -w(t) ≦ 2.  

Suppose that wt + 1 -w(t)  -2. Then it must hold that 

mod3v1t + 1 - v0t + 1  -1, mod3(v1(t) - v0(t))  1.

The  possible  values  of  the  pair  (v1(t), v0(t))  are  1, 0,  2, 1  and

0, 2.  For  (v1(t), v0(t))  1, 0  and  2, 1,  the  time  evolution  rule

gives that v1t + 1, v0t + 1  2, 1 and 0, 2, respectively. Hence  

mod3v1t + 1 - v0t + 1  1.

For (v1(t), v0(t))  0, 2, v1t + 1, v0t + 1  0, 0 or 1, 0, and  

mod3v1t + 1 - v0t + 1  1 or 0.

Thus, we have   

mod3v1t + 1 - v0t + 1 ≠ -1,

and we conclude that wt + 1 -w(t) ≠ -2.  
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Using  similar  arguments,  we  conclude  that wt + 1 -w(t) ≠ 2.

Therefore, 

-1 ≦ wt + 1 -w(t) ≦ 1. (9)

On the other hand, it holds that   

-1 ≦ v1t, t + 1 - v0t, t + 1 ≦ 1, (10)

because vt, t + 1  0  or  1  for  an  arbitrary  vertex v.  From  equat-

ions�(8) through (10), we obtain  

wt + 1 -w(t)  v1t, t + 1 - v0t, t + 1. (11)

The preceding results can be easily extended to w(t + t′) -w(t) with
an arbitrary positive integer t′. In fact, since 

w(t + t′) -w(t)  
it

t+t′-1

wi + 1 -w(i),

we have from equation (11)  

w(t + t′) -w(t)  
it

t+t′-1

v1i, i + 1 - v0i, i + 1.

Thus, from equation (6),  

w(t + t′) -w(t)  v1(t, t + t
′) - v0(t, t + t

′). (12)

(b)  For  a  walk  with  n + 1  (n ≧ 2)  vertices,  w  v0v1…vn;  using

equation (2), we have 

w(t + t′) -w(t)  
i0

n-1

{vi+1vi(t + t
′) - vi+1vi(t)}.

From equation (12),  

w(t + t′) -w(t)  
i0

n-1

{vi+1(t, t + t
′) - vi(t, t + t

′)} 

vn(t, t + t
′) - v0(t, t + t

′),

which completes the proof. □

Lemma 4. For a circuit L, L(t) is invariant in time; that is, 

∀t′L(t′)  L(t). (13)

Proof. Without loss of generality, we can assume that t′ > t. For a cir-
cuit L  v0v1…v0, from Lemma 3, 

L(t′) -L(t)  v0(t, t
′) - v0(t, t

′)  0. □

106 N. Doba

Complex Systems, 27 © 2018



Excitation Time of a Vertex and Excitation Walk of a Vertex   5.

Definition 4. If  a vertex v gets  excited at time  step t1  for the first  time,

we  define  Tv, 1 := t1.  Similarly,  the  time  step  at  which  the  vertex  v

gets excited for the nth  time is denoted by T(v, n) and is called the nth

excitation time of v. 

Proposition 2.  When  a  vertex  v  gets  excited  n  times,  there  is  a  walk
w  vvT(v,n)-1…v0 satisfying the following condition (Figure 1):

vi(i)  10 ≦ i ≦ T(v, n) - 1. (14)

This walk w is called the nth excitation walk of v.  

Proof. Since vT(v, n)  1, it holds that vT(v, n) - 1  0. Therefore,

there  is  an  adjacent  vertex  of  v,  v*,  satisfying  that  v*T(v, n) - 1  1

due  to  the  transition  rule  of  a  graph  GHCA.  We  let  vT(v,n)-1  v*.

The existence of the walk w satisfying the preceding condition can be

proved by repeating the same arguments. □

Figure 1. nth excitation walk of a vertex v.  

Note that if w is an nth excitation walk of a vertex v, 

w  T(v, n) (15)

by definition.  

Lemma 5. If a vertex v gets excited n times, then 

v0, T(v, n)  3n + 1 -mod3
* v0. (16)

Here,   

mod3
* ( · ) : ℤ3 → ℤ

is  a  mapping  from  an  element  of  ℤ3  to  the  corresponding  value  in

1, 2, 3;  that  is,  if  k ∈ ℤ  is  a  representative  of  an  element  in  ℤ3  and
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mod3
* k  k


∈ 1, 2, 3,  then k ≡ k


mod 3.  This  means  that

mod3
* -2  1, mod3

* 0  3, mod3
* 2  2 and so on.

Proof. (a) In case of v0  0.

By  definition, vT(v, n)  1  and vT(v, n) - 1  0.  Furthermore,

v(t)  takes  n - 1  times  the  root:  0 → 1 → 2 → 0.  Because  of  the

time  evolution  rule, mod3vi + 1 - v(i)∈ 0, 1  and mod3vi + 1 -

v(i))  0 if and only if v(i)  vi + 1  0. Hence we have

v0, T(v, n) := 3 
i0

T(v,n)

mod3vi + 1 - v(i)

 3n - 1 + 1  3n - 2  3n + 1 -mod3
* v0.

(b) In case of v0  1.

v1  2, v2  0. Hence,

mod3v1 - v0  mod3v2 - v1  1.

In the time interval 3 ≦ t ≦ Tv, n - 1, v(t) takes n - 1 times the root:

0 → 1 → 2 → 0.  By  definition, mod3vT(v, n) - vT(v, n) - 1  1.

Therefore,  

v0, T(v, n)  2 + 3n - 1 + 1  3n  3n + 1 -mod3
* v0.

(c) In case of v0  2.

v1  0. Hence,

mod3v1 - v0  1.

In the time interval 2 ≦ t ≦ Tv, n - 1, v(t) takes n - 1 times the root:

0 → 1 → 2 → 0.  By  definition, mod3T(v, n) - vT(v, n) - 1  1.

Therefore,  

v0, T(v, n)  1 + 3n - 1 + 1  3n - 1  3n + 1 -mod3
* v0.

Thus we have proved Lemma 5. □

Lemma 6. When w is an nth excitation walk of a vertex v, 

w0  v0, T(v, n)  3n + 1 -mod3
* v0. (17)

Proof. Let an nth  excitation walk of a vertex v be w  vvT(v,n)-1…v0.

We  also  put  vT(v,n) := v.  Note  that  the  subscripts  of  the  vertices  in

w  are  arranged  in  reverse  order  compared  to  that  of  a  walk  in
Definition�2. 
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By definition of an nth excitation walk, each vertex vi satisfies equa-

tion (14); that is, vi(i)  1. From Lemma 3, we have 

w0  w1 - v00, 1 - v0, 1.

Since 

v00, 1  mod3v01 - v00  mod32 - 1  1,

and  

w1  
i0

T(v,n)-1

mod3vi1 - vi+11

 
i1

T(v,n)-1

mod3vi1 - vi+11 +mod3v01 - v11

 vT(v,n)vT(v,n)-1…v11 +mod32 - 1

 vT(v,n)vT(v,n)-1⋯v11 + 1,

we have  

w0  vvT(v,n)-1…v11 + v0, 1.

Similarly, we have  

vvT(v,n)-1…v11  vvT(v,n)-1…v22 + v1, 2.

Hence, using equation (6), we have  

w0  vvT(v,n)-1…v22 + v1, 2 +

v0, 1  vvT(v,n)-1…v22 + v0, 2.

Repeating similar arguments, finally we have  

w0  vvT(v,n)-1T(v, n) - 1 + v0, T(v, n) - 1 

mod3vT(v,n)-1T(v, n) - 1 - vT(v, n) - 1 + v0, T(v, n) - 1 

mod31 - vT(v, n) - 1 + v0, T(v, n) - 1 

mod3vT(v, n) - vT(v, n) - 1 + v0, T(v, n) - 1 

vT(v, n) - 1, T(v, n) + v0, T(v, n) - 1  v0, T(v, n).□

Proposition 3.  When  a  vertex  v  gets  excited  n  times,  there  is  a  walk  w
whose  initial  vertex  is  v  and  that  satisfies  equation  (18).  Similarly,
when there is a walk w whose initial vertex is v and that satisfies equa-
tion (18), v gets excited n times:

w0  3n + 1 -mod3
* v0. (18)
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Proof. (I) From Proposition 2, if a vertex v gets excited n times, there

exists  a  walk  w  that  is  an  nth  excitation  walk  of  a  vertex  v.  Then,
from Lemmas 5 and 6, 

w0  v0, T(v, n)  3n + 1 -mod3
* v0.

Hence, the former statement is proved.  

(II)  Let  a  walk  w*  vNvN-1…v0  (v  vN)  be  the  shortest  walk

that  satisfies  equation  (18).  It  is  sufficient  to  prove  the  latter  state-
ment to show that N  T(v, n). For this purpose, we first show that 

vi(i)  10 ≦ i ≦ N. (19)

If equation (19) holds, from Lemma 6,  

v0, N  w*0  3n + 1 -mod3
* v0.

Then, from Lemma 5, we have N  T(v, n). Hence, it is enough to
prove equation (19). We prove it by induction. 

(1) From Lemma 2,  

v00 ≡ vN0 +w
*0 mod 3

≡ v0 + 3n + 1 -mod3
* v0

≡ 1 mod 3.

Since 0 ≦ v00 ≦ 1, v00  1.  

(2) We shall show v11  1 by proof of contradiction. 

(a) Suppose that v11  2. Since v00  1 and v10  1, 

w*0  vNvN-1…v1v00  vNvN-1…

v10 +mod3v00 - v10  vNvN-1…v10.

Hence,  the  walk  vNvN-1…v1  satisfies  equation  (18)  and  its  length

is N - 1 < w*. This contradicts the definition of w*
 (Figure 2). 

Figure 2. In case of v11  2.  
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(b)  Suppose  that v11  0.  By  the  time  evolution  rule  of  a  graph

GHCA, v10  0  or v10  2.  If v10  0,  then v11  1,  because

the  adjacent  vertex v0  takes v00  1.  Hence, v10  2  and

v1v00  mod3v00 - v10  -1. We have

w*0  vNvN-1…v1v00  vNvN-1

…v10 + v1v00  vNvN-1…v10 - 1.

Therefore

vNvN-1)⋯v10 > w*0.

Then  there  exists  an  integer  k  2 ≦ k ≦ N - 1  satisfying

vN…vk0  w*0, because 

vivi+10  mod3vi+10 - vi0 ∈ -1, 0, 1.

Since

vN…vk0  N - k < w*0,

w*
 is not the shortest walk satisfying equation (18), which is a contra-

diction (Figure 3).

Figure 3. In case of v11  0.  

Thus we find that v11  1. 

(3) For a positive integer k, let us assume that vi(i)  1 0 ≦ i ≦ k.

We show vk+1k + 1  1 by proof of contradiction. 

(a)  Suppose that  vk+1k + 1  2.  Then, there  exists  a positive  inte-

ger m satisfying that k  T(vk+1, m), because vk+1k  1. We let w**

be an mth
 excitation walk of vk+1. From Lemmas 3 and 6, 

vkvk+1k - vkvk+10  vk+10, k - vk0, k  w**0 - vk…v00.
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Since 

vkvk+1k  mod3vk+1k - vkk  0

and 

vkvk+10  -vk+1vk0,

we have  

w**0  vk+1vk0 + vk…v00.

Therefore we have  

w0  vN…vk+10 + vk+1vk
0 + vk…v00  vN…vk+10 +w

**0.

Let us consider the walk vN…vk+1 ⋁w
**, which is constructed by com-

bining  vN…vk+1  with  w**.  The  walk  vN…vk+1 ⋁w
**

 satisfies  equa-

tion�(18)  and  the  length  is  N - 1  since,  from  Proposition  2,

w**  T(vk+1, m)  k.  This  contradicts  the  definition  of  w*

(Figure�4).

(b)  Suppose  that  vk+1k + 1  0.  According  to  the  time  evolution

rule  of  a  graph  GHCA,  vk+1k  0  or  vk+1k  2.  If  vk+1k  0,

then  vk+1k + 1  1,  because  vkk  1  and  vk  is  an  adjacent  vertex

of vk+1. Hence vk+1k  2, which implies vk+1k - 1  1. Then there

exists  a  positive  integer m  satisfying  that k - 1  T(vk+1, m).  The

argument following is almost the same as that in (a). We let w**
 be an

mth
 excitation walk of vk+1. From Lemmas 3 and 6, 

vk-1vkvk+1k - 1 - vk-1vkvk+10  vk+1
0, k - 1 - vk-10, k - 1  w**0 - vk-1…v00.

Noticing the fact that   

vk-1vkvk+1k - 1  mod3vk+1k - 1 - vkk - 1 +mod3
vkk - 1 - vk-1k - 1  mod31 - 0 +mod30 - 1  0

Figure 4. In case of vk+11  2.  
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and  

vk-1vkvk+10  -vk+1vkvk-10,

we have  

w**0  vk+1vkvk-10 + vk-1…v00.

Thus

w0  vN…vk+10 +w
**0  vN

…vk+10 + vk+1vkvk-10 + vk-1…v00.

By  connecting  w**
 to  vN…vk+1,  we  have  the  walk  vN…vk+1 ⋁w

**,

which satisfies equation (18). From Proposition 2,

w**  T(vk+1, m)  k - 1

and 

vN…vk+1 ⋁w
**  N - 2.

This contradicts the definition of w*
 (Figure 5).  

From (a) and (b), we conclude that vk+1k + 1  1. 

From (1), (2), (3), we proved that vi(i)  10 ≦ i ≦ N, which com-

pletes the proof. □

(a)

(b)

Figure 5. In case of vk+11  0.  
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From the proof of Proposition 3, we see that Proposition 4 holds. 

Proposition 4.  The  statement  that  w  is  an  nth  excitation  walk  of  a  ver-
tex  v  is  equivalent  to  saying  that  w  is  the  shortest  walk  whose  initial
vertex is v and that satisfies equation (18). It also holds that 

T (v, n)  min w w is a walk with initial vertex v and

w0  3 n + 1 -mod3
* v 0.

(20)

The Convergence of a Graph Greenberg–Hastings Cellular 
Automaton   

6.

In this section, the asymptotic state of a graph GHCA, which is either
an equilibrium state where all the vertices take 0 or a periodic state, is
determined  by  the  existence  or  nonexistence  of  a  circuit  whose  phase
difference is not equal to 0.  

Theorem 1. (1) If a phase difference of each circuit in a graph GHCA is
equal to 0, a value of each vertex asymptotically approaches 0. 

(2)  If  there  is  at  least  one  circuit  whose  phase  difference  is  not
equal to 0, all vertices converge to a periodic excited state. 

Proof of (1). Let us consider a walk w in the graph GHCA with initial
vertex  v.  When  w  is  not  a  circuit,  w  is  decomposed  into  one  path  P
and  finite  cycles  C1, … , Cm.  Since  a  phase  difference  of  each  cycle  is

supposed to be equal to 0, 

w0  P0 +C10 +⋯ +Cm0  P0 ≦ P < +∞.

If  w  is  a  circuit,  w0  0  from  the  assumption  of  Theorem  2  (1).

Hence,  in  both  cases,  w0  has  an  upper  limit.  Then,  from  Proposi-

tion�3,  v(t)  can  get  excited  only  finite  times,  which  implies  that  v(t)

converges to 0. □

Proof of (2). Let v be an arbitrary vertex, C be a circuit whose phase

difference is not equal to 0 C0 > 0, and v*  be a vertex in C. From

the connectivity of G, there is such a walk w that the initial vertex is v
and the terminal vertex is v*. We consider the walk that is constituted
of w and n cycles of C, and denote it by w ⋁ nC (Figure 6). Then, 

lim
n→∞

w ⋁ nC0  lim
n→∞

w0 + nC0  ∞.

Therefore, w ⋁ nC0 has no upper limit. Then, from Proposition 3,

there  is  no  finite  time  step  tf  that  satisfies  v(t)  0  (∀t, t ≥ tf ).  Thus,

from Proposition 1, all vertices converge to a periodic state. □
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Figure 6. w ⋁ nC.  

Convergent Excitation Rate of Vertex and Maximum Cycle 

Density dM   

7.

In  the  previous  section,  we  found  that  when  there  is  at  least  one  cir-
cuit whose phase difference is not equal to 0, all vertices converge to a
periodic state (Theorem 2). In this section, the notion convergent exci-

tation  rate  of  a  vertex  is  defined  as  N T  when  the  vertex  converges

to a periodic state in which it gets excited N times during T steps. We
also  introduce  the  notion  maximum  cycle  density  dM  and  prove  that

the convergent excitation rate of each vertex is equivalent to dM.

Definition 5. When a vertex v converges to a periodic state where it gets
excited N times during T time steps, we define 

e(v) :=
N

T
(21)

and call it the convergent excitation rate of v. When a value of a ver-
tex v converges to 0, we put e(v)  0 for convenience.  

Lemma 7. When a vertex v converges to a periodic state, 

lim
n→∞

n

T(v, n)
 e(v). (22)

Proof.  Let  us  suppose  that  after  time  t0,  a  vertex  v  enters  a  periodic

state  where  it  gets  excited  N  times  during  T  time  steps.  For  a  suffi-
ciently  large  number  n0,  we  can  assume  that  t0 ≦ T  (v, n0).  An  arbi-

trary integer n (n0 ≦ n) can be expressed as 

n  n0 + aN + b, 0 ≦ a, 0 ≦ b < N.

Clearly,  

T(v, n0 + aN) ≦ T(v, n) ≦ Tv, n0 + a + 1N.

Since 

T(v, n0 + aN)  T(v, n0) + aT
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and 

Tv, n0 + a + 1N  T(v, n0) + a + 1T,

we have  

T(v, n0) + aT ≦ T(v, n) ≦ T(v, n0) + a + 1T.

Noticing that n0 + aN ≦ n ≦ n0 + a + 1N,

n0 + aN

T(v, n0) + a + 1T
≦

n

T(v, n)
≦
n0 + a + 1N

T(v, n0) + aT
.

Therefore  

N

T
≦ lim

n→∞

n

T(v, n)
≦
N

T
.

Because e(v)  N T, the lemma is proved. □

Definition 6. For a walk w in a graph GHCA G, we define 

d(w) :=
w0

3w
(23)

and call it the density of w. We also define   

dM := max ⅆ (w) w ⊆ G is a cycle (24)

and  call  it  the  maximum  cycle  density.  When  G  has  no  cycle,  we
define dM  0 for convenience.  

Lemma 8.  When  a  vertex  v  converges  to  a  periodic  state  and  wn  is  an

nth excitation walk of a vertex v, 

lim
n→∞

d(wn)  e(v). (25)

Proof. From Lemmas 6 and 7, 

d(wn) :=
wn0

3wn


3n + 1 -mod3
* v0

3T(v, n)
⟶e(v)(n → +∞). □

Lemma 9.  If  the  phase  difference  of  a  circuit  C  at  t  is  positive,  that  is,
C(t) > 0, then there exists a vertex v ∈ C that satisfies v(t)  1. 

Proof.  Let  w  v0v1…vn-1v0.  Suppose  that  vi(t)  is  either  0  or  2

0 ≦ ∀i ≦ n - 1. We consider the case of G  C. Clearly, vit + 1  0

if  vi(t)  2.  And  vit + 1  0  if  vi(t)  0,  because  there  is  no  vertex

v ∈ G  that  satisfies  v(t)  1.  That  is,  vit + 1  0  0 ≦ ∀i ≦ n - 1,

which  implies  Ct + 1  0.  From  Lemma  4,  C(t)  0.  C(t)  in  case  of
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an arbitrary G including C is equivalent to one in case of G  C from
Definition  2.  This  contradicts  C(t) > 0.  Hence,  there  exists  a  vertex

v ∈ w that satisfies v(t)  1. □

Theorem 2. For an arbitrary vertex v, 

e(v)  dM. (26)

Proof.  (1)  If  dM  0,  a  phase  difference  of  each  cycle  is  equal  to  0,

and a phase difference of each circuit is equal to 0. Then, from Theo-
rem 2 (1), we have e(v)  0. 

(2) If dM ≠ 0, from Theorem 2 (2), all vertices converge into a peri-

odic state. 
(a) We show that dM ≦ e(v). 

Let  C  be  a  cycle  whose  density  is  dM  and  hence  C0 > 0.  Then,

from  Lemma  9,  there  is  a  vertex  v*  in  C  that  satisfies  v*0  1.  Due

to the connectivity of G, there exists a walk w*
 whose initial vertex is

v  and  whose  terminal  vertex  is  v*.  We  connect  m  cycles  of  C  to  w*

and denote the resulting walk by w* ⋁mC. From Lemma 2, 

C0 ≡ v*0 - v*0 ≡ 0 mod 3

and   

w*0 ≡ v*0 - v0 ≡ 1 - v0 mod 3.

Putting   

C0  3α, w*0  3β + 1 -mod3
* v0 (α, β ∈ ℤ),

we have  

w* ⋁mC0  w*0 +mC0  3(mα + β) + 1 -mod3
* v0.

Let wmα+β  be an mα + βth  excitation walk of the vertex v. From equa-

tion (15) and Lemma 6,  

dwmα+β :=
wmα+β0

3wmα+β


3(mα + β) + 1 -mod3
* v0

3T(v, mα + β)
.

From Proposition 4, we have  

T(v, mα + β) ≦ w* ⋁mC,

and   

3(mα + β) + 1 -mod3
* v0

3w* ⋁mC


3(mα + β) + 1 -mod3
* v0

3w* +mC
≦ dwmα+β.
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Therefore

lim
m→∞

3(mα + β) + 1 -mod3
* v0

3w* +mC


α

C
≦ lim

m→∞
dwmα+β.

On the other hand,

dM 
C0

3C


α

C
.

Thus we obtain  

dM ≦ e(v). (27)

(b) We show that e(v) ≦ dM. 

We  let  wn  be  the  walk  of  a  vertex  v  excited  n  times.  If  wn  is  a

circuit, wn is decomposed into finite cycles Cn1, … , Cnf . If wn is not a

circuit, wn is constituted of one path Pn and finite cycles Cn1, … , Cnf .

We  denote  by  V  the  number  of  vertices  in  G.  Clearly,  Pn ≦ V

and  for  an  arbitrary  cycle  C,  C0 ≦ 3dMC  by  equation  (24).  Thus,

we have

wn0 ≦ V +Cn10 +⋯ +Cnf

0 ≦ V + 3dMCn1 +⋯ + Cnf ,

and  

wn ≧ Cn1 +⋯ + Cnf .

Therefore,  

d(wn) 
wn0

wn
≦

V + 3dMCn1 +⋯ + Cnf 

3Cn1 +⋯ + Cnf 
.

By n → ∞, from Lemma 8, we obtain   

e(v) ≦ dM. (28)

From equations (27) and (28), we have dM  e(v), which completes

the proof. □

Concluding Remarks   8.

In  this  paper,  we  have  investigated  analytically  a  deterministic  graph
Greenberg–Hastings  cellular  automaton  (graph  GHCA).  We  proved
that  all  vertices  converge  to  either  an  equilibrium  state  where  the
value of each vertex is equal to 0 or a periodic excited state, and that
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nonexistence  or  existence  of  a  circuit  whose  phase  difference  is  not
equal to 0 determines if the graph GHCA converges to either an equi-
librium state or a periodic state. When a vertex v converges to a peri-
odic state where it gets excited N times during T time steps, we define

e(v)  N T  and  call  it  a  convergent  excitation  rate  of  v.  We  have

showed that all the vertices converge to a periodic state, and the con-
vergent  excitation  rate  of  each  vertex  is  equivalent  to  dM.  (Example:

Figures 7 through 13.) 
In  a  general  graph  GHCA,  a  quiescent  vertex  at  time  t  becomes

excited  at  time  t + 1  with  probability  p  0 ≦ p ≦ 1.  As  is  the  case  in

this paper, dM  is time invariant for p  1 because the phase difference

of  a  circuit  is  time  invariant.  But  in  a  general  graph  GHCA  with
p ≠ 1,  dM  is  not  time  invariant.  We  consider  it  important  to  investi-

gate  the  time  evolution  of  dM  by  a  stochastic  approach  for  p ≠ 1,

which is a project we wish to address in the future. 

Figure 7. An  example  (1)  of  G.  G  has  six  cycles,  ±C1,  ±C2,  ±C3.

C1  ajkdcba, C2  dkjihgfed, C3  ajihgfedcba.  

Figure 8. An example (1) of dM  0. d±C1  d±C2  d±C3  0, dM  0.

All vertices converge to 0 in value after time 3.  
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Figure 9. (continues)
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Figure 9. An  example  (1)  of  dM ≠ 0.  d±C1  ±1  6,  dC2  ±1  8,

dC3  ±1  5,  dM  1  5.  The  values  of  each  vertex  at  time  7  are  equal  to

the values of each vertex at time 17. That is, each vertex converges to a peri-
odic state 10 steps after time 7. In addition, each vertex gets excited two times
in  such  a  cycle,  so  the  excitation  rate  of  each  vertex  converges  to

2  10  1  5  dM.  

Figure 10. An example (2) of G. G has 14 cycles, ±C1, ±C2, ±C3, ±C4, ±C5, 

±C6, ±C7. C1  abcmlijka, C2  cdenmc, C3  mnefghilm, 

C4  abcdenmlijka, C5  cdefghilmc, C6  abcmnefghijka, 

C7  abcdefghijka.  
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Figure 11. An example (2) of dM  0. 

d±C1  d±C2  d±C3  d±C4  d±C5  d±C6  d±C7  0, 

dM  0. All vertices converge to 0 in value after time 3.  

Figure 12. (continues)
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Figure 12. An  example  (2)  of  dM ≠ 0.  d±C1  ±1  8,  d±C2  ±1  5,

d±C3  ±1  8,  d±C4  ±2  11,  d±C5  ±2  9,  d±C6  ±1  4,

d±C7  ±3  11, dM  3  11. The values of each vertex at time 2 are equal

to  those  at  time  13,  thus  converging  into  a  cycle  of  period  11  after  time  2.
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In addition, each vertex gets excited three times in the 11-cycle; thus, the con-

vergent excitation rate of each vertex is equal to 3  11  dM.

Figure 13. (continues)
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Figure 13. An  example  (3)  of  dM ≠ 0.  d±C1  ±1  4,  d±C2  ∓1  5,

d±C3 ±18,  d±C4 ±111,  d±C5  0,  d±C6 ±14,  d±C7 ±211,

dM  1  4. The values of each vertex at time 7 are equal to those at time 11,

thus getting into a cycle of period 4. Each vertex gets excited only one time in
that period, and thus the convergent excitation rate of each vertex is equal to

1  4  dM.
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