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A cellular automaton is presented whose governing rule is that the Kol-
mogorov  complexity  of  a  cell’s  neighborhood  may  not  increase  when
the  cell’s  present  value  is  substituted  for  its  future  value.  Using  an
approximation  of  this  two-dimensional  Kolmogorov  complexity,  the
underlying automaton is shown to be capable of simulating binary logic
circuits.  A  similar  automaton  whose  rule  permits  at  times  the  increase
of a cell’s neighborhood complexity is shown to produce animated enti-
ties that can be used as information carriers akin to gliders in Conway’s
Game  of  Life.  The  element  that  repeatedly  generates  gliders,  the  glider
gun, is constructed in this automaton using a number of self-replicating
mechanisms.  Moreover,  gliders’  annihilation  and  creation  allow  con-
structing logic gates as well as data encoding mechanisms. 
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Introduction1.

In  natural  and  artificial  systems,  pattern  formation  and  order  are  the
imprints of a computational process. We ask whether this process can
be  reversed—can  the  enforcement  of  order  or  a  pattern  bring  about
computation? What sort of computation can be realized, for example,
by  not  allowing  the  local  patterns  in  cellular  automata  to  get  any
more  complex  than  they  already  are?  Can  any  computation  be  real-
ized  in  such  a  manner?  This  work  is  an  attempt  to  answer  some  of
these questions.

A  cellular  automaton  is  a  discrete  dynamical  system  that  was
originally  conceived  in  the  late  1940s  by  John  von  Neumann  and
Stanislaw Ulam. They incorporated the cellular automaton model into
von Neumann’s idea of a universal constructor [1]. Cellular automata
exhibit  a  new  way  of  thinking  about  how  little  complexity  can
achieve  interesting  behavior,  which  can  be  emulated  in  diverse  physi-
cal and biological phenomena [2]. They have played a significant role
in  computation,  as  they  have  proven  to  be  Turing  universal  [3,  4].
The  idea  that  the  universe  in  itself  is  a  cellular  automaton  inspired
Zuse’s Calculating Space [5], a precursor of digital physics. 
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A typical cellular automaton consists of a grid of cells, each storing
a  value  and  a  set  of  rules  according  to  which  their  values  change.
Although  the  underlying  rules  may  be  simple,  the  behavior  of  the
automaton  as  a  whole  may  quickly  become  complex,  a  trait  that
allows  such  automata  to  emulate  diverse  physical  and  biological  phe-
nomena.  There  are  many  known  cellular  automata  whose  chaotic
behavior  has  been  intensively  studied.  Perhaps  the  most  famous  are
the  Game  of  Life  and  rule  110.  It  has  been  shown  that  both  of  them
can realize any computation an ordinary computer can perform [4]. 

Von  Neumann’s  universal  constructor  used  thousands  of  cells  and
29  states  to  self-reproduce.  Its  complexity  was  later  reduced  in  [6].
Langton constructed a self-replicating automaton known as Langton’s
loops [7]. His model is less complex than the previous models due to
von  Neumann  and  Codd.  Langton’s  model  was  further  simplified  in
[8, 9]. The constructions of the smallest computationally universal cel-
lular automata have been considered in [2, 10–12]. Reversible cellular
automata have been studied in [13]. The links between dynamical and
computational  properties  of  cellular  automata  have  been  investigated
by Di Lena and Margara [14]. 

In  this  paper,  we  show  that  computation  in  cellular  automata  can
be  realized  by  exerting  local  order,  where  “order”  is  mathematically
defined in terms of Kolmogorov complexity. In particular, we formu-
late  a  cellular  automaton  that  employs  the  following  rule:  A  cell’s
value is changed from y to x if the Kolmogorov complexity of its pre-
sent  Moore  neighborhood  is  smaller  with  x  than  with  y.  Using  an
approximation  of  this  two-dimensional  Kolmogorov  complexity,  we
show  that  the  underlying  automaton  can  compute  Boolean  functions.
In particular, it can realize a universal set of Boolean gates, AND and
NOT,  as  well  as  wire  elements  for  transferring  information  from  a
given cell to any other cell. 

The  expressiveness  of  a  cellular  automaton  employing  the
“nowhere  increasing”  complexity  rule  is  rather  limited.  The  initial
grid  that  encodes  the  logic  circuit  is  gradually  obliterated  during  the
automaton evolution. This implies that similar constructions may not
be  used  for  recursive  computations.  Nevertheless,  a  similar  automa-
ton with an alternating rule where the cell’s neighborhood complexity
may  at  times  increase  is  shown  to  produce  animated  entities  that  can
be  used  as  information  carriers  akin  to  gliders  in  the  Game  of  Life
[15]. It is further shown how glider guns, logic gates and data encod-
ing mechanisms can be realized in this automaton. 

This paper is organized as follows. Section 2 is a brief introduction
to  the  notion  of  Kolmogorov  complexity.  The  nowhere  increasing
complexity cellular automaton is described in Section 3. It is shown to
realize  logic  gates  in  Section  4.  The  alternating,  nowhere  increasing/
decreasing  cellular  automaton  is  presented  and  analyzed  in  Section  5.
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The  evolution  of  complexity  during  the  automaton’s  operation  is  dis-
cussed in Section 6. Concluding remarks are offered in Section 7. 

Kolmogorov Complexity 2.

The  Kolmogorov  complexity  K(s)  of  an  object  or  a  string  s  is  a
measure of the computational resources that are needed to generate s
[16,  17].  Informally,  K(s)  is  the  length  of  the  shortest  program  that

produces s as an output and then halts. The string 01n, for example,

can be described as “n repetitions of 01.” This string is 2n digits long,
while its description contains around log2(n) binary digits, that is, the

length of the binary representation of n. On the other hand, seemingly
random  occurrences  of  zeros  and  ones  will  generally  not  admit  a
description shorter than their own length.

The Kolmogorov complexity can be used to define the measure 

2-K(s). (1)

If K(s) is the length of a program to a universal prefix Turing machine
that  produces  s  and  then  halts,  then  by  Kraft’s  inequality  (1)  may  be
interpreted  as  an  unnormalized  measure  of  probability  over  all  such
programs [17].

Kolmogorov  complexity  is  an  uncomputable  function—there  is  no
program  that  takes  a  string  s  as  an  input  and  produces  the  number
K(s)  [17].  Normally,  K(s)  is  approximated  using  known  compression
techniques;  see,  for  example,  [18].  But  equation  (1)  can  also  be  used
to estimate K(s), assuming one can simulate a large number of Turing
machines  that  produce  s.  Some  of  these  machines  will  halt  and  some
will  not.  Counting  the  number  of  them  that  produce  s  and  then  halt
gives  a  number  m(s).  The  Kolmogorov  complexity  is  then  approxi-
mated, up to a constant, as - log2m(s) [19, 20]. 

In this paper, we are interested in the Kolmogorov complexity of a
two-dimensional  object,  a  3⨯3  binary  matrix.  As  explained  in  Sec-
tion�3, such a matrix describes the Moore neighborhood of a cell. The
complexity of all these 512 binary matrices has been recently approxi-
mated  in  [20].  Simulating  a  large  number  of  two-dimensional  Turing
machines,  the  probability  (1)  was  approximated  for  any  given  matrix
configuration.  An  estimate  of  K  was  then  obtained,  as  just  described.
These approximations can be found at
github.com/algorithmicnaturelab/OACC/blob/master/data/K-3x3.csv. 

The Cellular Automaton3.

A  cellular  automaton  is  defined  by  a  finite  number  of  “colored”  cells
together  with  a  set  of  rules  that  specify  how  to  manipulate  their
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colors. The cells of a standard automaton contain binary values,
either “0” (black) or “1” (white). The purpose of the rules is to deter-
mine the state (color) of a cell at time t + 1 based on the values of its
neighbors, the set of cells in its vicinity at time t. The automaton
evolves by using the rules to determine the next value for each cell in
the grid at time t. The new cell values thus obtained make the grid at
time t + 1.

Let us denote as cij(t) ∈ 0, 1 the value at time t of the cell whose
coordinates are (i, j). At each time step, a cell updates its value accord-
ing to the following rule.

Rule 1. A cell’s value is changed from c to 1 - c if the Kolmogorov com-
plexity of its present Moore neighborhood is smaller with 1 - c than
with c.

This rule is mathematically expressed by:

cijt + 1 
cij(t), Kij(t) ≤ Kij

′ (t)
1 - cij(t), otherwise.

(2)
Here, Kij(t) is the Kolmogorov complexity at time t of the Moore
neighborhood of cij(t), a 3⨯3 pattern composed of the cell at location(i, j) together with eight other cells that surround it. The Kolmogorov
complexity at time t of the same pattern in which the cell at (i, j) is
flipped is represented by Kij

′ (t). For example, K and K′ may be evalu-
ated for the pair in Figure 1.

Figure 1.Moore neighborhoods for K and K′.

A pseudocode for a cellular automaton employing the rule depicted in
Figure 1 is provided in Algorithm 1.

Syntax: cijt + 1  CA cij(t)
Input: cij(t), i  1, … , N, j  1, … , M (grid at time t)

Output: cijt + 1, i  1, … , N, j  1, … , M (grid at time t + 1)
for i  2 :N - 1 do

for j  2 :M - 1 do
Let A be the Moore neighborhood of cij(t).
Obtain Kij(t) using A from the lookup table [20].
Flip the value of the middle cell in A and similarly obtain Kij

′ (t).
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if Kij(t) ≤ Kij
′ (t) then

cijt + 1  cij(t)

else

cijt + 1  1 - cij(t)

end if
end for

end for 

Algorithm 1. Nowhere increasing Kolmogorov complexity cellular automaton.

Computational Capabilities4.

In what follows, the underlying automaton is shown to realize the uni-
versal  set  of  gates,  NOT  and  AND,  together  with  wire  elements  for
connecting  them.  By  a  gate  or  a  wire,  we  mean  a  grid  whose  cells
store initial values, some of which represent inputs and some of which
represent  outputs.  Iterating  the  automaton  rule  in  Figure  1  where K
and K′

 are approximated as in [20] changes the cells’ values. This pro-
cedure  is  reiterated  until  all  cell  values  no  longer  change  or  oscillate
indefinitely.  The  output  cells  then  store  the  outcome  of  the
computation.

A  wire  element  transfers  information  between  cells  in  the  grid.  Its

basic form is shown in Figure 2. In this figure, the input x ∈ 0, 1 to

the  wire  is  specified  by  a  single  black  cell  in  the  block  of  white  cells
just above the wire’s upper end. The wire’s other end is connected to
another  block  of  white  cells.  The  initial  grids  of  the  automaton  for
two different inputs x are shown in the leftmost column. In the upper-
left  frame,  the  black  cell  in  the  center  of  the  white  block  represents

Figure 2. Wire element. The grid size is 30⨯30.
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the input "0." Similarly, the input "1" in the lower-left frame is repre-
sented by a black cell just below the center of this white block. Inject-
ing  "0"  to  the  wire  completely  destroys  it,  as  seen  by  the  upper
sequence  of  images  showing  different  times  during  the  evolution.
Injecting  "1,"  the  images  in  the  lower  row  show  that  a  propagating
sequence  of  alternating  black  and  white  cells  comes  out  of  the  upper
white block all the way down. These two behaviors are interpreted as
a wire carrying either "0" or "1"; that is, the content of the wire can
be read off at the vicinity of y. 

A NOT gate takes inputs x and returns y  1 - x. Its realization is
shown in Figure 3. The upper row in this figure shows the initial grid
for  this  gate  with  different  inputs,  x  1  and  x  0.  The  respective
outputs  y  0  and  y  1  in  the  lower  row  are  obtained  after  several
iterations of the automaton rule. 

Figure 3. NOT gate. The upper row shows the initial grid for the two inputs,
x  1  (left)  and  x  0  (right).  The  respective  final  grid  for  each  input  is
shown in the lower row. The grid size is 30⨯30.

An AND gate takes inputs x and y and returns z  xy; that is, only
when x  y  1 does the gate return z  1. Its realization is shown in
Figure  4.  The  upper  row  in  this  figure  shows  the  initial  grid  for  this

gate with different inputs (x, y), that is, 0, 0, 0, 1, 1, 0 and 1, 1.

The respective outputs z  0, z  0, z  0 and z  1 in the lower row
are obtained after several iterations of the automaton rule. 

An  OR  gate  may  be  constructed  out  of  an  AND  and  three  NOTs;

that  is,  z  1 - 1 - x1 - y,  so  that  z  1  if  at  least  one  of  the
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inputs, x or y, equals one. The realization of this gate is shown in Fig-
ure 5. The upper row in this picture shows the initial grid for this gate

with different inputs (x, y), that is, 0, 0, 1, 0, 0, 1 and 1, 1. The

respective outputs z  0, z  1, z  1 and z  1 in the lower row are
obtained  after  several  iterations  of  the  automaton  rule.  The  realiza-
tion  in  Figure  6  is  that  of  an  XOR  gate,  for  which  the  output  is

z  1 + -1xy  2. 

Figure 4. AND  gate.  The  upper  row  shows  the  initial  grid  for  the  four  input

combinations,  from  left  to  right  0, 0,  0, 1,  1, 0  and  1, 1.  The  respective

final grid for each input is shown in the lower row. The grid size is 30⨯30.

Figure 5. OR  gate.  The  upper  row  shows  the  initial  grid  for  the  four  input

combinations,  from  left  to  right  0, 0,  1, 0,  0, 1  and  1, 1.  The  respective

final grid for each input is shown in the lower row. The grid size is 40⨯40.
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Figure 6. XOR  gate.  The  upper  row  shows  the  initial  grid  for  the  four  input

combinations,  from  left  to  right  0, 0,  0, 1,  1, 0  and  1, 1.  The  respective

final grid for each input is shown in the lower row. The grid size is 37⨯30.

Alternating Rules and Gliders5.

Gliders  are  animated  entities  that  emerge  in  the  grid  during  the
automaton  evolution.  In  terms  of  computation,  such  patterns  are
instrumental  for  carrying  information  across  the  grid.  The  Game  of
Life-based  Turing  machine,  for  example,  heavily  relies  on  gliders  to
realize its logic and memory parts [21].

For reasons mentioned in the introduction, we suspect that the pre-
ceding cellular automaton cannot produce gliders. We were able, how-
ever,  to  generate  gliders  with  an  automaton  whose  rule  permits  at
times  the  increase  of  a  cell’s  Kolmogorov  complexity.  One  cycle  of
this  automaton  is  as  follows.  In  the  beginning  of  a  cycle  it  employs
two rules to obtain the grid in the next time step: 

Rule 2. Nothing  comes  out  of  nothing—do  nothing  to  a  (blank)  cell
whose Moore neighborhood vanishes.

Rule 3. A cell’s value is changed from c to 1 - c if the Kolmogorov com-
plexity  of  its  present  Moore  neighborhood  is  larger  with  1 - c  than
with c. 

A  single  cycle  of  this  automaton  starts  with  a  single  iteration  of
Algorithm  2.  For  the  next  few  time  steps,  the  automaton  operates  as
described in Algorithm 1; that is, it employs the “nowhere increasing”
complexity  rule.  It  proceeds  in  this  way  until  the  pair  of  grids,  the
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recent  one  at  an  odd  time  step  and  the  one  two  time  steps  back,  are
the  same.  This  cycle  is  repeated  indefinitely.  A  pseudocode  for  this
automaton is given in Algorithm 3. 

Syntax: cijt + 1  CA cij(t)

Input: cij(t), i  1, … , N, j  1, … , M (grid at time t) 

Output: cijt + 1, i  1, … , N, j  1, … , M (grid at time t + 1) 

for i  2 :N - 1 do
for j  2 :M - 1 do

Let A be the Moore neighborhood of cij(t). 

if A does not zeros then
Obtain Kij(t) using A from the lookup table [20]. 

Flip the value of the middle cell in A and similarly obtain Kij
′ (t). 

if Kij(t) ≥ Kij
′ (t) then

cijt + 1  cij(t) 

else

cijt + 1  1 - cij(t) 

end if
end if

end for
end for 

Algorithm2.Nowhere decreasing Kolmogorov complexity cellular automaton. 

Syntax: cij(t + s)  CA cij(t) 

Input: cij(t), i  1, … , N, j  1, … , M (grid at time t) 

Output: cij(t + s), i  1, … , N, j  1, … , M (grid at time t + s) 

cijt + 1  CA cij(t) 

s  0 

while ∃ i, jcij(s) ≠ cijs - 2 ⋁ s is even do

 cijt + s + 1  CA cij(t + s) 

 s  s + 1 

end while 

Algorithm 3. Alternating, nowhere decreasing/increasing cellular automaton.

The basic construction of a glider and its evolution in the course of
two cycles of this automaton are shown in Figure 7. 
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Figure 7. Evolution  of  a  glider  using  the  cellular  automaton  in  Algorithm  3.
The  first  cycle  starts  with  the  grid  numbered  1  and  concludes  with  the  grid
numbered 5. The second cycle starts with grid 5 and concludes with grid 13.
The grid size is 12⨯12.

Glider Guns and Logic Gates5.1

The  glider  gun  in  the  Game  of  Life  is  the  mechanism  that  generates
gliders. A similar entity may be realized using the alternating automa-
ton  rules  in  Figure  1.  Its  construction  makes  use  of  another  elemen-
tary  unit.  A  caterpillar,  as  the  name  suggests,  is  an  elongated  entity
that  grows  in  the  grid  by  replicating  a  single  pattern  every  few  time
steps.  A  caterpillar  extends  indefinitely  if  no  other  entities  interact
with it in the grid. See Figure 8.

Figure 8. Evolution  of  a  caterpillar  using  the  cellular  automaton  in
Algorithm�3.

Three caterpillars are used to construct a glider gun as in Figure 9.
The two vertical caterpillars approach one another and cut a piece of
the  horizontal  caterpillar  once  they  meet.  After  that,  the  caterpillars
are  all  annihilated,  while  the  single  glider  that  was  cut  out  endures
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(see  Figure  10).  This  process  is  repeated  indefinitely  during  the
automaton evolution, and so gliders come out one after the other at a
constant rate. 

Figure 9. A glider gun is constructed using three caterpillars.

Figure 10. Once  two  caterpillars  meet  up,  they  are  annihilated  in  the  next
time step.

As  demonstrated  in  Figure  11,  when  two  gliders  meet,  depending
on their position, they may be annihilated in the next time step. Simi-
lar  to  the  Game  of  Life,  this  feature  may  be  utilized  for  constructing
the  universal  set  of  gates,  AND  and  NOT.  See  Figures  12  and  13.  It
can also be used for encoding data into a stream of gliders emanating
from a glider gun. 

A stream of gliders can be viewed as a stream of bits, where 0 and
1  are  represented  by  the  absence  and  presence  of  gliders  at  particular
locations. Encoding bits into such a stream is done by placing caterpil-
lars below or above it. This allows eliminating some gliders while leav-
ing others, so as to produce a particular periodic pattern of 0s and 1s.
See Figure 14. 
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Figure 11. Annihilation  configurations.  The  grids  in  the  upper  row  show  two
gliders approaching one another from different directions. The corresponding
grids after they meet up are shown in the bottom row.

Figure 12. AND  gate  in  the  alternating  increasing/decreasing  complexity
automaton.
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Figure 13. NOT  gate  in  the  alternating  increasing/decreasing  complexity
automaton.

Figure 14. Encoding a periodic pattern 011 011… by a stream of gliders.

Emergent Complexity6.

As neighborhoods overlap, the average Kolmogorov complexity in the

grid,  K,  may  nevertheless  increase  in  the  automaton  in  Algorithm  1
and may decrease in the automaton in Algorithm 2.

The values of K during the operation of the NOT gate in Figure 3
are  shown  in  Figure  15(a).  The  transition  from  the  initial  to  the  final
grid,  in  which  complexity  is  lower  on  the  average,  shows  instances
where the average complexity rises. The average complexity fluctuates
in the course of a glider evolution, as shown in Figure 15(b). 
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(a) (b)

Figure 15. (a)  The  average  Kolmogorov  complexity  during  the  evolution  of
the  NOT  gate  in  Figure  3.  The  solid  and  dashed  lines  correspond,  respec-
tively, to the inputs 1 and 0. (b) The corresponding measure is shown for the
glider in Figure 7.

Counting  the  instances  where  a  neighborhood’s  complexity  drops
in  the  next  time  step  yields  the  “flowers”  in  Figure  16.  The  four  pat-
terns  are  obtained  using  different  initial  conditions  of  the  nowhere
decreasing complexity automaton in Algorithm 2. Brighter pixels rep-
resent higher counts for the neighborhoods in the respective locations
in the grid. 

These examples demonstrate that locally enforcing lower complex-
ity  states  potentially  leads  to  otherwise  untenable  reduction  rates  in
the  grid’s  average  complexity  as  neighborhoods  overlap  (interact).
These  very  interactions  are  the  reason  for  instantaneous  increase  in
both  local  and  average  complexities  [22].  It  can  be  seen  that  two
opposing factors are at work in this dynamical behavior; a “life” rule
that tends to decrease local complexity at greater rates than otherwise
possible, and interactions that at times deny such reduction rates. 
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Figure 16. Kolmogorov complexity flowers.

Conclusion7.

This  paper  is  an  attempt  to  address  the  questions  raised  in  Section  1.
The  answer  we  offer  is  only  partial.  One  may  wonder  whether  any
computable function can be computed by a similar “nowhere increas-
ing” cellular automaton, or in other words, whether such an automa-
ton is Turing complete. For one reason, we think it is not. During its
evolution,  the  initial  grid  on  which  the  logical  gate  is  encoded  self-
destructs.  Therefore,  outputs  cannot  be  reused  as  inputs  to  the  same
logical  gate.  Although  not  proven,  we  suspect  that  this  behavior  hin-
ders  the  construction  of  a  memory  device  and  thus  also  of  a  Turing-
equivalent model of computation.

But the concept of using a measure of complexity to evolve is multi-
faceted. We have shown that a cellular automaton whose rule permits
at  times  the  increase  of  the  cell’s  neighborhood  complexity  can  pro-
duce  gliders,  glider  guns,  logic  gates  and  data  encoding  mechanisms.
The lesson learned from the Game of Life is that, apart from a mem-
ory  unit,  these  are  the  basic  ingredients  in  any  computation,  and  so
perhaps this automaton also is Turing complete. 

As a final remark, we have used a particular measure of complexity
of  the  3⨯3  Moore  neighborhood.  Other  complexity  measures  and
neighborhood  dimensions  may  similarly  be  used  to  evolve  cellular
automata  with  different  computational  capabilities  and  behavior.  In
this respect, it would be interesting to investigate the behavior of simi-
lar  automata  employing  the  approximate  4⨯4  Kolmogorov  complex-
ity lookup table in
github.com/algorithmicnaturelab/OACC/blob/master/data/K-4x4.csv. 
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