
Complexity Steering in Cellular Automata

Bar Y. Peled
Avishy Y. Carmi

Department of Mechanical Engineering
Ben-Gurion University of the Negev

A cellular automaton is presented whose governing rule is that the Kol-
mogorov complexity of a cell’s neighborhood may not increase when
the cell’s present value is substituted for its future value. Using an
approximation of this two-dimensional Kolmogorov complexity, the
underlying automaton is shown to be capable of simulating binary logic
circuits. A similar automaton whose rule permits at times the increase
of a cell’s neighborhood complexity is shown to produce animated enti-
ties that can be used as information carriers akin to gliders in Conway’s
Game of Life. The element that repeatedly generates gliders, the glider
gun, is constructed in this automaton using a number of self-replicating
mechanisms. Moreover, gliders’ annihilation and creation allow con-
structing logic gates as well as data encoding mechanisms.

Keywords: cellular automata; Kolmogorov complexity; universal
computation; self-replication;
negentropy

Introduction1.

In natural and artificial systems, pattern formation and order are the
imprints of a computational process. We ask whether this process can
be reversed—can the enforcement of order or a pattern bring about
computation? What sort of computation can be realized, for example,
by not allowing the local patterns in cellular automata to get any
more complex than they already are? Can any computation be real-
ized in such a manner? This work is an attempt to answer some of
these questions.

A cellular automaton is a discrete dynamical system that was
originally conceived in the late 1940s by John von Neumann and
Stanislaw Ulam. They incorporated the cellular automaton model into
von Neumann’s idea of a universal constructor [1]. Cellular automata
exhibit a new way of thinking about how little complexity can
achieve interesting behavior, which can be emulated in diverse physi-
cal and biological phenomena [2]. They have played a significant role
in computation, as they have proven to be Turing universal [3, 4].
The idea that the universe in itself is a cellular automaton inspired
Zuse’s Calculating Space [5], a precursor of digital physics.

https://doi.org/10.25088/ComplexSystems.27.2.159

https://doi.org/10.25088/ComplexSystems.27.2.159

A typical cellular automaton consists of a grid of cells, each storing
a value and a set of rules according to which their values change.
Although the underlying rules may be simple, the behavior of the
automaton as a whole may quickly become complex, a trait that
allows such automata to emulate diverse physical and biological phe-
nomena. There are many known cellular automata whose chaotic
behavior has been intensively studied. Perhaps the most famous are
the Game of Life and rule 110. It has been shown that both of them
can realize any computation an ordinary computer can perform [4].

Von Neumann’s universal constructor used thousands of cells and
29 states to self-reproduce. Its complexity was later reduced in [6].
Langton constructed a self-replicating automaton known as Langton’s
loops [7]. His model is less complex than the previous models due to
von Neumann and Codd. Langton’s model was further simplified in
[8, 9]. The constructions of the smallest computationally universal cel-
lular automata have been considered in [2, 10–12]. Reversible cellular
automata have been studied in [13]. The links between dynamical and
computational properties of cellular automata have been investigated
by Di Lena and Margara [14].

In this paper, we show that computation in cellular automata can
be realized by exerting local order, where “order” is mathematically
defined in terms of Kolmogorov complexity. In particular, we formu-
late a cellular automaton that employs the following rule: A cell’s
value is changed from y to x if the Kolmogorov complexity of its pre-
sent Moore neighborhood is smaller with x than with y. Using an
approximation of this two-dimensional Kolmogorov complexity, we
show that the underlying automaton can compute Boolean functions.
In particular, it can realize a universal set of Boolean gates, AND and
NOT, as well as wire elements for transferring information from a
given cell to any other cell.

The expressiveness of a cellular automaton employing the
“nowhere increasing” complexity rule is rather limited. The initial
grid that encodes the logic circuit is gradually obliterated during the
automaton evolution. This implies that similar constructions may not
be used for recursive computations. Nevertheless, a similar automa-
ton with an alternating rule where the cell’s neighborhood complexity
may at times increase is shown to produce animated entities that can
be used as information carriers akin to gliders in the Game of Life
[15]. It is further shown how glider guns, logic gates and data encod-
ing mechanisms can be realized in this automaton.

This paper is organized as follows. Section 2 is a brief introduction
to the notion of Kolmogorov complexity. The nowhere increasing
complexity cellular automaton is described in Section 3. It is shown to
realize logic gates in Section 4. The alternating, nowhere increasing/
decreasing cellular automaton is presented and analyzed in Section 5.

160 B. Y. Peled and A. Y. Carmi

Complex Systems, 27 © 2018

The evolution of complexity during the automaton’s operation is dis-
cussed in Section 6. Concluding remarks are offered in Section 7.

Kolmogorov Complexity 2.

The Kolmogorov complexity K(s) of an object or a string s is a
measure of the computational resources that are needed to generate s
[16, 17]. Informally, K(s) is the length of the shortest program that

produces s as an output and then halts. The string 01n, for example,

can be described as “n repetitions of 01.” This string is 2n digits long,
while its description contains around log2(n) binary digits, that is, the

length of the binary representation of n. On the other hand, seemingly
random occurrences of zeros and ones will generally not admit a
description shorter than their own length.

The Kolmogorov complexity can be used to define the measure

2-K(s). (1)

If K(s) is the length of a program to a universal prefix Turing machine
that produces s and then halts, then by Kraft’s inequality (1) may be
interpreted as an unnormalized measure of probability over all such
programs [17].

Kolmogorov complexity is an uncomputable function—there is no
program that takes a string s as an input and produces the number
K(s) [17]. Normally, K(s) is approximated using known compression
techniques; see, for example, [18]. But equation (1) can also be used
to estimate K(s), assuming one can simulate a large number of Turing
machines that produce s. Some of these machines will halt and some
will not. Counting the number of them that produce s and then halt
gives a number m(s). The Kolmogorov complexity is then approxi-
mated, up to a constant, as - log2m(s) [19, 20].

In this paper, we are interested in the Kolmogorov complexity of a
two-dimensional object, a 3⨯3 binary matrix. As explained in Sec-
tion�3, such a matrix describes the Moore neighborhood of a cell. The
complexity of all these 512 binary matrices has been recently approxi-
mated in [20]. Simulating a large number of two-dimensional Turing
machines, the probability (1) was approximated for any given matrix
configuration. An estimate of K was then obtained, as just described.
These approximations can be found at
github.com/algorithmicnaturelab/OACC/blob/master/data/K-3x3.csv.

The Cellular Automaton3.

A cellular automaton is defined by a finite number of “colored” cells
together with a set of rules that specify how to manipulate their

Complexity Steering in Cellular Automata 161

https://doi.org/10.25088/ComplexSystems.27.2.159

https://github.com/algorithmicnaturelab/OACC/blob/master/data/K-3x3.csv
https://doi.org/10.25088/ComplexSystems.27.2.159

colors. The cells of a standard automaton contain binary values,
either “0” (black) or “1” (white). The purpose of the rules is to deter-
mine the state (color) of a cell at time t + 1 based on the values of its
neighbors, the set of cells in its vicinity at time t. The automaton
evolves by using the rules to determine the next value for each cell in
the grid at time t. The new cell values thus obtained make the grid at
time t + 1.

Let us denote as cij(t) ∈ 0, 1 the value at time t of the cell whose
coordinates are (i, j). At each time step, a cell updates its value accord-
ing to the following rule.

Rule 1. A cell’s value is changed from c to 1 - c if the Kolmogorov com-
plexity of its present Moore neighborhood is smaller with 1 - c than
with c.

This rule is mathematically expressed by:

cijt + 1 
cij(t), Kij(t) ≤ Kij

′ (t)
1 - cij(t), otherwise.

(2)
Here, Kij(t) is the Kolmogorov complexity at time t of the Moore
neighborhood of cij(t), a 3⨯3 pattern composed of the cell at location(i, j) together with eight other cells that surround it. The Kolmogorov
complexity at time t of the same pattern in which the cell at (i, j) is
flipped is represented by Kij

′ (t). For example, K and K′ may be evalu-
ated for the pair in Figure 1.

Figure 1.Moore neighborhoods for K and K′.

A pseudocode for a cellular automaton employing the rule depicted in
Figure 1 is provided in Algorithm 1.

Syntax: cijt + 1  CA cij(t)
Input: cij(t), i  1, … , N, j  1, … , M (grid at time t)

Output: cijt + 1, i  1, … , N, j  1, … , M (grid at time t + 1)
for i  2 :N - 1 do

for j  2 :M - 1 do
Let A be the Moore neighborhood of cij(t).
Obtain Kij(t) using A from the lookup table [20].
Flip the value of the middle cell in A and similarly obtain Kij

′ (t).

162 B. Y. Peled and A. Y. Carmi

Complex Systems, 27 © 2018

if Kij(t) ≤ Kij
′ (t) then

cijt + 1  cij(t)

else

cijt + 1  1 - cij(t)

end if
end for

end for

Algorithm 1. Nowhere increasing Kolmogorov complexity cellular automaton.

Computational Capabilities4.

In what follows, the underlying automaton is shown to realize the uni-
versal set of gates, NOT and AND, together with wire elements for
connecting them. By a gate or a wire, we mean a grid whose cells
store initial values, some of which represent inputs and some of which
represent outputs. Iterating the automaton rule in Figure 1 where K
and K′

 are approximated as in [20] changes the cells’ values. This pro-
cedure is reiterated until all cell values no longer change or oscillate
indefinitely. The output cells then store the outcome of the
computation.

A wire element transfers information between cells in the grid. Its

basic form is shown in Figure 2. In this figure, the input x ∈ 0, 1 to

the wire is specified by a single black cell in the block of white cells
just above the wire’s upper end. The wire’s other end is connected to
another block of white cells. The initial grids of the automaton for
two different inputs x are shown in the leftmost column. In the upper-
left frame, the black cell in the center of the white block represents

Figure 2. Wire element. The grid size is 30⨯30.

Complexity Steering in Cellular Automata 163

https://doi.org/10.25088/ComplexSystems.27.2.159

https://doi.org/10.25088/ComplexSystems.27.2.159

the input "0." Similarly, the input "1" in the lower-left frame is repre-
sented by a black cell just below the center of this white block. Inject-
ing "0" to the wire completely destroys it, as seen by the upper
sequence of images showing different times during the evolution.
Injecting "1," the images in the lower row show that a propagating
sequence of alternating black and white cells comes out of the upper
white block all the way down. These two behaviors are interpreted as
a wire carrying either "0" or "1"; that is, the content of the wire can
be read off at the vicinity of y.

A NOT gate takes inputs x and returns y  1 - x. Its realization is
shown in Figure 3. The upper row in this figure shows the initial grid
for this gate with different inputs, x  1 and x  0. The respective
outputs y  0 and y  1 in the lower row are obtained after several
iterations of the automaton rule.

Figure 3. NOT gate. The upper row shows the initial grid for the two inputs,
x  1 (left) and x  0 (right). The respective final grid for each input is
shown in the lower row. The grid size is 30⨯30.

An AND gate takes inputs x and y and returns z  xy; that is, only
when x  y  1 does the gate return z  1. Its realization is shown in
Figure 4. The upper row in this figure shows the initial grid for this

gate with different inputs (x, y), that is, 0, 0, 0, 1, 1, 0 and 1, 1.

The respective outputs z  0, z  0, z  0 and z  1 in the lower row
are obtained after several iterations of the automaton rule.

An OR gate may be constructed out of an AND and three NOTs;

that is, z  1 - 1 - x1 - y, so that z  1 if at least one of the

164 B. Y. Peled and A. Y. Carmi

Complex Systems, 27 © 2018

inputs, x or y, equals one. The realization of this gate is shown in Fig-
ure 5. The upper row in this picture shows the initial grid for this gate

with different inputs (x, y), that is, 0, 0, 1, 0, 0, 1 and 1, 1. The

respective outputs z  0, z  1, z  1 and z  1 in the lower row are
obtained after several iterations of the automaton rule. The realiza-
tion in Figure 6 is that of an XOR gate, for which the output is

z  1 + -1xy  2.

Figure 4. AND gate. The upper row shows the initial grid for the four input

combinations, from left to right 0, 0, 0, 1, 1, 0 and 1, 1. The respective

final grid for each input is shown in the lower row. The grid size is 30⨯30.

Figure 5. OR gate. The upper row shows the initial grid for the four input

combinations, from left to right 0, 0, 1, 0, 0, 1 and 1, 1. The respective

final grid for each input is shown in the lower row. The grid size is 40⨯40.

Complexity Steering in Cellular Automata 165

https://doi.org/10.25088/ComplexSystems.27.2.159

https://doi.org/10.25088/ComplexSystems.27.2.159

Figure 6. XOR gate. The upper row shows the initial grid for the four input

combinations, from left to right 0, 0, 0, 1, 1, 0 and 1, 1. The respective

final grid for each input is shown in the lower row. The grid size is 37⨯30.

Alternating Rules and Gliders5.

Gliders are animated entities that emerge in the grid during the
automaton evolution. In terms of computation, such patterns are
instrumental for carrying information across the grid. The Game of
Life-based Turing machine, for example, heavily relies on gliders to
realize its logic and memory parts [21].

For reasons mentioned in the introduction, we suspect that the pre-
ceding cellular automaton cannot produce gliders. We were able, how-
ever, to generate gliders with an automaton whose rule permits at
times the increase of a cell’s Kolmogorov complexity. One cycle of
this automaton is as follows. In the beginning of a cycle it employs
two rules to obtain the grid in the next time step:

Rule 2. Nothing comes out of nothing—do nothing to a (blank) cell
whose Moore neighborhood vanishes.

Rule 3. A cell’s value is changed from c to 1 - c if the Kolmogorov com-
plexity of its present Moore neighborhood is larger with 1 - c than
with c.

A single cycle of this automaton starts with a single iteration of
Algorithm 2. For the next few time steps, the automaton operates as
described in Algorithm 1; that is, it employs the “nowhere increasing”
complexity rule. It proceeds in this way until the pair of grids, the

166 B. Y. Peled and A. Y. Carmi

Complex Systems, 27 © 2018

recent one at an odd time step and the one two time steps back, are
the same. This cycle is repeated indefinitely. A pseudocode for this
automaton is given in Algorithm 3.

Syntax: cijt + 1  CA cij(t)

Input: cij(t), i  1, … , N, j  1, … , M (grid at time t)

Output: cijt + 1, i  1, … , N, j  1, … , M (grid at time t + 1)

for i  2 :N - 1 do
for j  2 :M - 1 do

Let A be the Moore neighborhood of cij(t).

if A does not zeros then
Obtain Kij(t) using A from the lookup table [20].

Flip the value of the middle cell in A and similarly obtain Kij
′ (t).

if Kij(t) ≥ Kij
′ (t) then

cijt + 1  cij(t)

else

cijt + 1  1 - cij(t)

end if
end if

end for
end for

Algorithm2.Nowhere decreasing Kolmogorov complexity cellular automaton.

Syntax: cij(t + s)  CA cij(t)

Input: cij(t), i  1, … , N, j  1, … , M (grid at time t)

Output: cij(t + s), i  1, … , N, j  1, … , M (grid at time t + s)

cijt + 1  CA cij(t)

s  0

while ∃ i, jcij(s) ≠ cijs - 2 ⋁ s is even do

 cijt + s + 1  CA cij(t + s)

 s  s + 1

end while

Algorithm 3. Alternating, nowhere decreasing/increasing cellular automaton.

The basic construction of a glider and its evolution in the course of
two cycles of this automaton are shown in Figure 7.

Complexity Steering in Cellular Automata 167

https://doi.org/10.25088/ComplexSystems.27.2.159

https://doi.org/10.25088/ComplexSystems.27.2.159

Figure 7. Evolution of a glider using the cellular automaton in Algorithm 3.
The first cycle starts with the grid numbered 1 and concludes with the grid
numbered 5. The second cycle starts with grid 5 and concludes with grid 13.
The grid size is 12⨯12.

Glider Guns and Logic Gates5.1

The glider gun in the Game of Life is the mechanism that generates
gliders. A similar entity may be realized using the alternating automa-
ton rules in Figure 1. Its construction makes use of another elemen-
tary unit. A caterpillar, as the name suggests, is an elongated entity
that grows in the grid by replicating a single pattern every few time
steps. A caterpillar extends indefinitely if no other entities interact
with it in the grid. See Figure 8.

Figure 8. Evolution of a caterpillar using the cellular automaton in
Algorithm�3.

Three caterpillars are used to construct a glider gun as in Figure 9.
The two vertical caterpillars approach one another and cut a piece of
the horizontal caterpillar once they meet. After that, the caterpillars
are all annihilated, while the single glider that was cut out endures

168 B. Y. Peled and A. Y. Carmi

Complex Systems, 27 © 2018

(see Figure 10). This process is repeated indefinitely during the
automaton evolution, and so gliders come out one after the other at a
constant rate.

Figure 9. A glider gun is constructed using three caterpillars.

Figure 10. Once two caterpillars meet up, they are annihilated in the next
time step.

As demonstrated in Figure 11, when two gliders meet, depending
on their position, they may be annihilated in the next time step. Simi-
lar to the Game of Life, this feature may be utilized for constructing
the universal set of gates, AND and NOT. See Figures 12 and 13. It
can also be used for encoding data into a stream of gliders emanating
from a glider gun.

A stream of gliders can be viewed as a stream of bits, where 0 and
1 are represented by the absence and presence of gliders at particular
locations. Encoding bits into such a stream is done by placing caterpil-
lars below or above it. This allows eliminating some gliders while leav-
ing others, so as to produce a particular periodic pattern of 0s and 1s.
See Figure 14.

Complexity Steering in Cellular Automata 169

https://doi.org/10.25088/ComplexSystems.27.2.159

https://doi.org/10.25088/ComplexSystems.27.2.159

Figure 11. Annihilation configurations. The grids in the upper row show two
gliders approaching one another from different directions. The corresponding
grids after they meet up are shown in the bottom row.

Figure 12. AND gate in the alternating increasing/decreasing complexity
automaton.

170 B. Y. Peled and A. Y. Carmi

Complex Systems, 27 © 2018

Figure 13. NOT gate in the alternating increasing/decreasing complexity
automaton.

Figure 14. Encoding a periodic pattern 011 011… by a stream of gliders.

Emergent Complexity6.

As neighborhoods overlap, the average Kolmogorov complexity in the

grid, K, may nevertheless increase in the automaton in Algorithm 1
and may decrease in the automaton in Algorithm 2.

The values of K during the operation of the NOT gate in Figure 3
are shown in Figure 15(a). The transition from the initial to the final
grid, in which complexity is lower on the average, shows instances
where the average complexity rises. The average complexity fluctuates
in the course of a glider evolution, as shown in Figure 15(b).

Complexity Steering in Cellular Automata 171

https://doi.org/10.25088/ComplexSystems.27.2.159

https://doi.org/10.25088/ComplexSystems.27.2.159

(a) (b)

Figure 15. (a) The average Kolmogorov complexity during the evolution of
the NOT gate in Figure 3. The solid and dashed lines correspond, respec-
tively, to the inputs 1 and 0. (b) The corresponding measure is shown for the
glider in Figure 7.

Counting the instances where a neighborhood’s complexity drops
in the next time step yields the “flowers” in Figure 16. The four pat-
terns are obtained using different initial conditions of the nowhere
decreasing complexity automaton in Algorithm 2. Brighter pixels rep-
resent higher counts for the neighborhoods in the respective locations
in the grid.

These examples demonstrate that locally enforcing lower complex-
ity states potentially leads to otherwise untenable reduction rates in
the grid’s average complexity as neighborhoods overlap (interact).
These very interactions are the reason for instantaneous increase in
both local and average complexities [22]. It can be seen that two
opposing factors are at work in this dynamical behavior; a “life” rule
that tends to decrease local complexity at greater rates than otherwise
possible, and interactions that at times deny such reduction rates.

172 B. Y. Peled and A. Y. Carmi

Complex Systems, 27 © 2018

Figure 16. Kolmogorov complexity flowers.

Conclusion7.

This paper is an attempt to address the questions raised in Section 1.
The answer we offer is only partial. One may wonder whether any
computable function can be computed by a similar “nowhere increas-
ing” cellular automaton, or in other words, whether such an automa-
ton is Turing complete. For one reason, we think it is not. During its
evolution, the initial grid on which the logical gate is encoded self-
destructs. Therefore, outputs cannot be reused as inputs to the same
logical gate. Although not proven, we suspect that this behavior hin-
ders the construction of a memory device and thus also of a Turing-
equivalent model of computation.

But the concept of using a measure of complexity to evolve is multi-
faceted. We have shown that a cellular automaton whose rule permits
at times the increase of the cell’s neighborhood complexity can pro-
duce gliders, glider guns, logic gates and data encoding mechanisms.
The lesson learned from the Game of Life is that, apart from a mem-
ory unit, these are the basic ingredients in any computation, and so
perhaps this automaton also is Turing complete.

As a final remark, we have used a particular measure of complexity
of the 3⨯3 Moore neighborhood. Other complexity measures and
neighborhood dimensions may similarly be used to evolve cellular
automata with different computational capabilities and behavior. In
this respect, it would be interesting to investigate the behavior of simi-
lar automata employing the approximate 4⨯4 Kolmogorov complex-
ity lookup table in
github.com/algorithmicnaturelab/OACC/blob/master/data/K-4x4.csv.

Complexity Steering in Cellular Automata 173

https://doi.org/10.25088/ComplexSystems.27.2.159

https://doi.org/10.25088/ComplexSystems.27.2.159

Acknowledgments

This research is supported by Israel Science Foundation Grant No.
1723/16.

References

[1] J. von Neumann, Theory of Self-Reproducing Automata (A. W. Burks,
ed.), Urbana, IL: University of Illinois Press, 1966.

[2] S. Wolfram, A New Kind of Science, Champaign, IL: Wolfram Media,
2002. www.wolframscience.com.

[3] P. Rendell, “Turing Universality of the Game of Life,” in Collision-
Based Computing (A. Adamatzky, ed.), London: Springer, 2002
pp. 513–539.

[4] M. Cook, “Universality in Elementary Cellular Automata,” Complex
Systems, 15(1), 2004 pp. 1–40. complex-systems.com/pdf/15-1-1.pdf.

[5] K. Zuse, “Rechnender Raum (Calculating Space),” 1st re-edition
(A. German and H. Zenil, eds.), A Computable Universe: Understand-
ing & Exploring Nature as Computation, London: World Scientific
Publishing Company, 2012.
www.mathrix.org/zenil/ZuseCalculatingSpace-GermanZenil.pdf.

[6] E. F. Codd, Cellular Automata, New York: Academic Press, 1968.

[7] C. G. Langton, “Self-Reproduction in Cellular Automata,” Physica D:
Nonlinear Phenomena, 10(1–2), 1984 pp. 135–144.
doi:10.1016/0167-2789(84)90256-2.

[8] J. Byl, “Self-Reproduction in Small Cellular Automata,” Physica D:
Nonlinear Phenomena, 34(1–2), 1989 pp. 295–299.
10.1016/0167-2789(89)90242-X.

[9] J. A. Reggia, S. L. Armentrout, H.-H. Chou and Y. Peng, “Simple Sys-
tems That Exhibit Self-Directed Replication,” Science, 259(5099), 1993
pp. 1282–1287. doi:10.1126/science.259.5099.1282.

[10] K. Lindgren and M. G. Nordahl, “Universal Computation in Simple
One-Dimensional Cellular Automata,” Complex Systems, 4(3), 1990
pp. 299–318. complex-systems.com/pdf/04-3-4.pdf.

[11] N. Ollinger, “Universalities in Cellular Automata: A (Short) Survey,” in
Journées Automates Cellulaires (B. Durand, ed.), Apr 2008, Uzès,
France, 2008 pp. 102–118. core.ac.uk/download/pdf/52464175.pdf.

[12] T. Neary and D. Woods, “Four Small Universal Turing Machines,”
Fundamenta Informaticae, 91(1), 2009 pp. 123–144.

[13] N. Margolus, “Physics-like Models of Computation,” Physica D: Non-
linear Phenomena, 10(1–2), 1984 pp. 81–95.
doi:10.1016/0167-2789(84)90252-5.

174 B. Y. Peled and A. Y. Carmi

Complex Systems, 27 © 2018

http://www.wolframscience.com
http://complex-systems.com/pdf/15-1-1.pdf
http://www.mathrix.org/zenil/ZuseCalculatingSpace-GermanZenil.pdf
https://doi.org/10.1016/0167-2789(84)90256-2
https://doi.org/10.1016/0167-2789(89)90242-X
https://doi.org/10.1126/science.259.5099.1282
http://complex-systems.com/pdf/04-3-4.pdf
https://core.ac.uk/download/pdf/52464175.pdf
https://doi.org/10.1016/0167-2789(84)90252-5

[14] P. Di Lena and L. Margara, “Computational Complexity of Dynamical
Systems: The Case of Cellular Automata,” Information and Computa-
tion, 206(9–10), 2008 pp. 1104–1116. doi:10.1016/j.ic.2008.03.012.

[15] J. T. Lizier, M. Prokopenko and A. Y. Zomaya, “Local Information
Transfer as a Spatiotemporal Filter for Complex Systems,” Physical
Review E, 77(2), 2008 026110. doi:10.1103/PhysRevE.77.026110.

[16] A. N. Kolmogorov, “Three Approaches to the Quantitative Definition
of Information,” International Journal of Computer Mathematics,
2(1–4), 1968 pp. 157–168. doi:10.1080/00207166808803030.

[17] G. J. Chaitin, “On the Length of Programs for Computing Finite Binary
Sequences: Statistical Considerations,” Journal of the ACM (JACM),
16(1), 1969 pp. 145–159. doi:10.1145/321495.321506.

[18] É. Rivals, M. Dauchet, J. P. Delahaye and O. Delgrange, “Compression
and Genetic Sequence Analysis,” Biochimie, 78(5), 1996 pp. 315–322.
doi:10.1016/0300-9084(96)84763-8.

[19] J.-P. Delahaye and H. Zenil, “Numerical Evaluation of Algorithmic
Complexity for Short Strings: A Glance into the Innermost Structure of
Randomness,” Applied Mathematics and Computation, 219(1), 2012
pp. 63–77. doi:10.1016/j.amc.2011.10.006.

[20] H. Zenil, F. Soler-Toscano, J.-P. Delahaye and N. Gauvrit, “Two-
Dimensional Kolmogorov Complexity and an Empirical Validation of
the Coding Theorem Method by Compressibility,” PeerJ Computer Sci-
ence, 1(e23), 2015. doi:10.7717/peerj-cs.23.

[21] P. Rendell, Turing Machine Universality of the Game of Life, Cham,
Switzerland: Springer International Publishing, 2016 pp. 45–70.

[22] H. Zenil, N. A. Kiani and J. Tegnér, “Algorithmic Information Dynam-
ics of Persistent Patterns and Colliding Particles in the Game of Life.”
arxiv.org/abs/1802.07181.

Complexity Steering in Cellular Automata 175

https://doi.org/10.25088/ComplexSystems.27.2.159

https://doi.org/10.1016/j.ic.2008.03.012
https://doi.org/10.1103/PhysRevE.77.026110
https://doi.org/10.1080/00207166808803030
https://doi.org/10.1145/321495.321506
https://doi.org/10.1016/0300-9084(96)84763-8
https://doi.org/10.1016/j.amc.2011.10.006
https://doi.org/10.7717/peerj-cs.23
https://arxiv.org/abs/1802.07181
https://doi.org/10.25088/ComplexSystems.27.2.159

