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The self-replication introduced by John von Neumann is a process that
produces  a  copy  of  itself.  As  a  novel  approach,  this  paper  studies  the
self-replication  process  through  the  process  of  reproduction.  In  this
paper,  we  propose  a  comprehensive  graph  reproduction  system  (GRS)
and identify a specific reproduction system that turns out to be a graph
self-replication system (GSS), with which a copy of any given graph can
be  produced  through  an  algorithmic  process.  Unlike  the  GRS  studied
by  Richard  Southwell,  our  model  considers  the  evolution  of  edges
along  with  the  evolution  of  vertices.  We  analyze  some  of  the  existing
reproduction  models  through  our  system  and  identify  the  models  that
are self-replicable. 
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Introduction1.

The  question  of  whether  a  machine  can  make  a  copy  of  itself,  called
the  problem  of  self-replication,  was  initiated  by  von  Neumann  [1]  in
1940. For more than 60 years, the focus of investigation was primar-
ily on understanding the logic necessary for replication in comparison
with  the  biological  process  of  replication,  necessary  conditions  that
are  to  be  satisfied  by  a  replication  process  and  the  fundamental  algo-
rithms involved in self-replication.

This study of the artificial self-replication process will establish the
much-sought  mapping  between  the  biological  evolution  process  and
the  computational  evolution  process,  finally  showing  the  continuum
between  living  things  and  nonliving  things.  The  realization  of  artifi-
cial  self-replicating  machines  can  have  diverse  applications,  ranging
from  the  fabrication  of  nanomachines  to  space  exploration.  Further,
the  concept  of  self-replication  is  used  to  model  various  complex  bio-
logical  and  physical  systems  such  as  robotics,  formation  of
snowflakes, and so on. 
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Based on the models used to study self-replication, the explorations
carried out so far can be classified into four categories as described by
Sipper  in  [2]:  cellular  automata–based  self-replication,  computer
program–based  self-replication,  string-based  self-replication  and
mechanical  model–based  self-replication.  A  formal  framework  to
investigate  self-replication  was  provided  by  the  cellular  automaton
(CA),  a  dynamical �system,  discrete  in  time  and  space,  proposed  by
Ulam and von Neumann. A cellular automaton consists of an array of
cells, each of which can be in one of a finite number of possible states,
updated  synchronously  in  discrete  time  steps,  according  to  a  local,
identical interaction rule. The state of a cell at the next time step is de-
termined by the current states of a surrounding neighborhood of cells. 

Von  Neumann  designed  [3]  the  universal  self-replicator,  a  two-
dimensional  CA  with  29  states  per  cell  with  a  five-cell  neighborhood
that  implements  self-replication  as  well  as  construction  universality.
Construction universality refers to the ability to construct all the struc-
tures  in  a  given  specific  product  set,  given  its  description.  The  first
hardware  implementation  was  attempted  by  Beuchat  and  Haenni  [4],
wherein  small  systems  were  realized.  Beuchat  and  Haenni  could  not
realize the complete structure due to the requirement of a larger num-
ber  of  cells.  While  universal  construction  may  represent  a  sufficient
condition for attaining self-replication, Langton observed that it is not
a  necessary  condition.  Langton  attempted  to  design  the  simplest  CA
capable of self-reproduction. 

Langton’s loop [5] uses eight states for each of the 86 nonquiescent
cells  making  up  its  initial  configuration,  a  five-cell  neighborhood  and
a  few  hundred  transition  rules.  Codd  [6]  developed  a  self-replicating
structure consisting of two-dimensional, eight-state, five-neighbor cel-
lular automata (CAs). Further simplifications to Langton’s automaton
were  introduced  by  Reggia  in  his  work.  Apart  from  the  CA  models,
Lohn  and  Reggia  [7–9]  used  genetic  algorithms  to  generate  the  rules
that result in self-replicating structures. Sipper discusses a complete lit-
erature survey on self-replication in his two papers [2, 10]. 

Bratley  and  Millo  [11]  and  Burger,  Brill  and  Machi  [12]  devised
self-replicating computer programs, wherein a computer program pro-
duces  a  copy  of  the  program.  Ray  [13,  14]  investigated  the  self-
replicating  programs  to  study  evolution  using  his  Tierra  system,  a
virtual world consisting of computer programs that can undergo evo-
lution. So far, in the CA-based models as well as in the computer pro-
gram–based  models,  the  items  to  be  self-replicated  are  essentially
predetermined  directly  or  evolve  through  an  artificial  process.  There
are  self-replicating  systems  where  the  objects  to  be  replicated  are
dynamically constructed. Such a self-replicated system was studied by
Laing [15], wherein string-like objects, such as interconnected chains,
are the basic component of the structure. 
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A  study  of  any  self-replicating  machine  will  have  two  aspects,  the
logical  component  and  the  mechanical  part  (how  the  machine  is
built).  The  first  three  models  discussed  so  far  focus  on  the  logic
required  to  build  a  self-replicating  machine.  In  one  sense,  the  first
three  models  bring  out  the  computational  aspects  of  self-replicating
machines.  The  fourth  model  describes  the  mechanical  aspect  of  con-
structing  the  self-replicating  machine.  Penrose  [16]  built  simple
mechanical  units,  an  ensemble  of  which  was  placed  in  a  box  with  all
the  required  physical  components.  The  box  was  subjected  to  some
physical activity so as to produce the required energy for the physical
components to act to produce a copy of the ensemble unit. Following
this  mechanical  model,  Rebek  Jr.  [17]  designed  a  process  to  produce
self-replicating  molecules.  In  [18],  Ichihashi  and  Yomo  gave  a  con-
structive  approach,  in  which  life-specific  functions  are  recreated  in  a
test tube from specific biological molecules. Using this approach, they
were  able  to  employ  design  principles  to  reproduce  life-specific  func-
tions,  and  the  knowledge  gained  through  the  reproduction  process
provides clues as to their origins. 

In recent years, Southwell and Cannings generated different graph-
reproducing  models  [19],  which  produce  different  types  of  graphs
from  the  given  initial  graph.  These  models  are  used  to  describe  the
growth  of  interactions  between  individuals  within  a  population.  In
their models [20, 21], every vertex produces a new vertex that is con-
nected  to  the  existing  vertices  based  on  different  constraints,  thereby
generating  eight  different  models  of  the  graph-generating  mechanism.
In their models, edges get eliminated because of the death of vertices.
Their models do not consider the edges as a valid parameter for repro-
duction. Since graphs are characterized by both vertices and edges, we
observe  that  any  graph  reproduction  system  (GRS)  should  also  con-
sider  the  edges  as  well  as  the  vertices  of  the  graph.  From  the  given
graph,  the  Southwell  model  focuses  on  the  generation  of  different
graphs, and self-replication of the given graph is not their concern. 

In  this  paper,  we  propose  a  generic  model  for  a  GRS  that  is  self-
replicable.  In  contrast  to  the  Southwell  model,  our  model  considers
vertices  as  well  as  edges  as  valid  parameters  for  the  evolution  of
graphs.  All  the  models  developed  by  Southwell  [19]  are  just  the  spe-
cific  instances  of  our  model.  This  paper  identifies  a  specific  GRS  that
is  self-replicable.  Further,  we  analyze  some  of  the  existing  reproduc-
tion models through our system and identify the models that are self-
replicable.  We  consider  self-replication  as  an  algorithmic  process  to
investigate  the  graphs  that  are  self-replicable.  Our  graph  self-replicat-
ing  model  through  a  GRS  will  fit  into  an  altogether  different
approach  that  does  not  fall  into  any  of  the  four  categories  described
by Sipper in [2]. 

Graph Self-Replication System 315

https://doi.org/10.25088/ComplexSystems.28.3.313

https://doi.org/10.25088/ComplexSystems.28.3.313


In this paper, we abstract the self-replication concept using graphs.
The paper is organized as follows. Section 2 proposes a generic model
of  GRS  ρ.  Section  3  discusses  the  graph  self-replication  system  (GSS)
along  with  illustrations.  Section  4  discusses  a  rigorous  mathematical
proof  for  the  self-replicability  of  the  GRS  ρ  along  with  the  results
obtained through simulation. Section 5 investigates some of the exist-
ing  graph  reproduction  models  for  self-replicability.  The  last  section
concludes with the description of future enhancements for our model. 

Graph Reproduction System2.

We present a GRS that has the ability to produce copies of the graph
given  as  an  input  to  the  system.  Though  biological  organisms  are  the
most  familiar  examples  of  a  self-replicating  system,  this  paper
explores the self-replication system with graphs as the basic unit. This
artificial  GSS  is  motivated  by  the  desire  to  understand  the  funda-
mental  information  processing  principles  and  algorithms  involved  in
self-replication,  independent  of  their  physical  realization.  A  better
theoretical  understanding  of  the  GRS  could  be  useful  in  a  number  of
ways, from a computational as well as an engineering perspective.

As mentioned earlier, the main aim is to study the feasibility of any
graph-generating  system  becoming  a  self-replication  system.  For  this
purpose,  we  should  have  a  generating  mechanism  through  which
graphs get generated from the given graph through some well-defined
process. 

In that sense, we consider a GRS that generates graphs through the
process  of  evolution/reproduction  over  discrete  time  steps  t.  This
paper assumes asexual reproduction with a single parent, in the sense
that  offspring  are  born  with  the  parent’s  strategy  (potential)  and  link
up to the surroundings in a similar way to their parent. This will simu-
late  the  natural  process  of  children  inheriting  the  parent’s  genes  and
getting connected to the environment of their parents. 

In our view, any asexual reproduction system in the social environ-
ment should not omit the following items.

◼ Offspring  are  born  based  on  the  parent’s  strategy  (potential)  and  get
connected to the environment of their parent. 

◼ Individual  organisms  lose  their  reproductive  potential  over  a  period  of
time due to various reasons. That is, individual organisms may become
infertile. 

◼ Infertile organisms may gain fertility due to some medical treatment. 

◼ Organisms lose their connectivity with other organisms over a period of
time. 

◼ Individual organisms die due to the aging process. 
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◼ As  a  social  constraint,  organisms  might  not  produce  more  offspring,
though  they  are  capable.  In  other  words,  there  may  be  a  cap  on  the
number of offspring that can be produced by an organism; for example,
organisms are allowed to reproduce only once during their lifetime. 

Considering all these items, we propose a graph-generating mecha-
nism  called  a  graph  reproduction  system  (GRS),  starting  from  an  ini-
tial  graph.  Our  main  goal  is  to  check  the  potential  of  this  GRS  in
becoming  a  graph  self-replication  system  (GSS),  thereby  possessing
the ability to generate copies of the initial graph. 

Definition 1. A GRS, ρ  RA, RI, CA, LCA, DA, where

◼ RA is the reproduction rule—the set of rules with which the vertices of
a graph reproduce. 

◼ RI  is  the  reproductive  index—a  positive  integer,  the  maximum  number
of offspring that can be produced by an organism throughout its life. 

◼ CA  is  the  connectivity  rule—the  set  of  rules  with  which  the  offspring
are connected to their parent and the other members of the society. 

◼ LCA is the loss of connectivity rule—the set of rules by which the con-
nectivity between the different vertices of the graph is lost. 

◼ DA is the dying rule—the set of rules by which the vertices die. 

Definition 2. Language  generated  by  a  GRS:  Let  ρ  be  any  GRS.  Let

G  be  any  graph.  ρG  is  the  set  of  graphs  reproduced  by  G;  that

is,  ρG  Ui1
∞ ρiG,  where  ρiG  is  the  graph  produced  in  the  ith

generation. 

Note 1. The  initial  graph  G  is  not  included  in  ρG,  just  to  observe

whether ρG produces G or not. 

Since  the  vertices  and  edges  are  the  only  two  parameters  of  a
graph,  the  preceding  five-tuple  GRS  represents  a  comprehensive
model of any GRS in the sense that the system includes the birth and
death of vertices along with the birth and death of edges. Any graph-
generating  reproducing  mechanism  will  be  a  specific  instance  of  our
GRS.  The  generating  reproducing  system  will  differ  only  in  the
description of rules. 

Graph Self-Replication System3.

The  preceding  GRS  ρ  has  five  components;  by  describing  each  of  the
five  components,  we  will  have  a  specific  GRS.  Any  component  of  ρ

can be described in a number of ways; thereby, we will have an expo-
nential number of GRS examples. 
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Definition 3. Graph  self-replication  system  (GSS):  A  GRS  ρ  is  said  to
be a GSS system of order k if there exists at least one graph G and a

k ≥ 1 such that ρkG ⋂ G ≠ Φ. If for any k, ρkG has disconnected

components,  the  individual  components  of  ρkG  will  be  considered

as separate graphs for the computation of ρkG ⋂ G. 

Definition 4. Inherent  GSS:  A  GRS  ρ  is  said  to  be  an  inherent  GSS  if

ρkG ⋂ G ≠ Φ for any graph G with a nonempty set of vertices and

a k ≥ 1. 

As already mentioned, the graph reproduction models of Southwell
[22]  discuss  primarily  the  generation  of  different  graphs,  whereas  the
main  focus  of  our  GRS  is  to  check  self-replicability  of  the  reproduc-
tion  system,  in  the  sense  of  producing  copies  of  the  initial  graph.  For
all the rules like RA, CA, LCA and DA, we have given the description
without attaching any specific physical meaning to that. We can think
about  the  exhaustive  list  of  descriptions  for  each  of  the  rules,  which
will  bring  out  many  comparative  models.  Every  GRS  ρ  will  differ  in
the description of the different rules. Now, we describe each rule in a
specific way, to propose a GRS. 

Graph Self-Replication System3.1

Now  we  describe  a  specific  GRS  that  is  self-replicable,  where  each
component is described one by one as follows. 

I:  Reproduction  rule  (RA1):  In  the  sense  of  reproduction,  we  cate-
gorize  the  vertices  of  a  graph  as:  reproduction-capable  vertices  (RC),
nonreproduction-capable  vertices  (NRC)  and  newborn  vertices  (NB).
Only  RC  vertices  can  produce  offspring,  one  at  a  time.  In  nature,
some  living  organisms  lose  fertility/gain  fertility/retain  fertility  due  to
various reasons. In that sense, an RC vertex can become an NRC ver-
tex based on the following conditions. 

RC to NRC conversion rules:

Every RC vertex with either two or three RC neighbors will remain an
RC vertex in the next generation. 

1.

Every  NRC  vertex  that  is  adjacent  to  exactly  three  RC  neighbors  will
become an RC vertex in the next generation. 

2.

Every RC vertex with four or more RC neighbors will become an NRC
vertex in the next generation. 

3.

Every RC vertex with one or fewer RC neighbors will become an NRC
vertex in the next generation. 

4.

Every vertex in the graph is labeled with a three-tuple (name of the
node,  nature  of  the  node  RC/NRC/NB,  index  of  the  generation).  For
example,  in  generation  zero,  consider  an  initial  graph  G.  Let  vi  be  a
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vertex in G. Since all vertices in the initial graph are RC, vi  is referred

to  as  (vi,  RC,  0)  or  in  short,  vi, RC
0 .  The  index  of  generation  is  a

positive  number  indicating  the  generation  in  which  the  vertex  was

born.  A  vertex  vi, RC
2

 means  an  RC  vertex  with  label  vi,  born  in  the

second generation. 
For describing the RC to NRC conversion rules, we have just repli-

cated  analogously  Conway’s  Game  of  Life  rule  [23],  wherein  birth
and  death  are  the  two  states  of  the  cell.  We  have  just  simulated  the
birth and death of the cell with RC vertices and NRC vertices, respec-
tively.  We  do  not  attach  any  physical  significance  for  choosing
Conway’s Game of Life for the RC to NRC conversion rule. We want
to  have  some  constraints  by  which  an  RC  vertex  becomes  an  NRC
vertex and vice versa. Since Conway’s Game of Life suits the purpose
in  the  analogous  sense,  we  have  chosen  that.  A  deep  study  in  this
direction  may  result  in  better  conditions  that  could  have  some  real-
world meaning. 

Now we state the reproduction rule. 

Reproduction rule (RA1):

All the vertices in the initial graph are RC vertices.1.

Any  NB  vertex  will  become  an  RC  vertex  in  the  next  generation.  That
is, the generation in which the vertex is born is the first generation. 

2.

All RC vertices produce one vertex in a generation. 3.

All NRC vertices are treated as infertile and hence will not produce any
vertex in that generation. 

4.

RC vertices may become NRC vertices and vice versa based on the RC
to NRC conversion rules described in (I). 

5.

II: Reproduction index (RI1): The reproduction index denoted by k
is  a  positive  integer  (k ≠ 0)  that  constrains  the  number  of  offspring
that  can  be  produced  by  an  organism.  For  example,  if  RI  1,  that
means that the organisms can produce only one offspring throughout
their  lifetime.  Here  k ≠ 0,  for  the  reason  that  our  generative  mecha-
nism depends on reproduction alone. 

III:  Connectivity  rule  (CA1):  Connectivity  rules  are  the  rules  that
prescribe the edges connecting the NB vertices with those of the other
vertices in the graph. 

Connectivity  rule:  All  the  newborn  vertices  are  connected  to  their
respective parents and the offspring of their parent’s neighbors. 

Southwell  and  Cannings  [22]  described  a  graph-generating  mecha-
nism  using  the  reproduction  process.  The  authors  detailed  the  eight
models,  with  each  model  describing  a  specific  mechanism  of  connec-
tivity  between  the  newborn  vertices  and  the  other  vertices  of  the
graph. 

Graph Self-Replication System 319

https://doi.org/10.25088/ComplexSystems.28.3.313

https://doi.org/10.25088/ComplexSystems.28.3.313


As mentioned in the RA1
 rule, we do not attach any specific mean-

ing  to  the  choice  of  model  described  as  in  Southwell’s  generating
mechanism [19] for our connectivity rule. 

IV:  Loss-of-connectivity  rule  (LCA1):  This  LCA  rule  describes  the
loss of connectivity of a vertex with others in due course of time. This
loss  of  connectivity  (due  to  various  reasons)  is  an  existing  phe-
nomenon in society. 

Loss-of-connectivity rule:

There  shall  be  no  edge  connecting  an  RC  vertex  with  an  NRC  vertex
and  vice  versa;  that  is,  there  will  not  be  an  edge  of  the  form

v1, RC
i , v2, NRC

j  for any i, j.

1.

There shall be no edge connecting two RC vertices that belong to differ-
ent  generations;  that  is,  there  will  not  be  any  edge  of  the  form

xRC
i , yRC

j , i ≠ j. 

2.

V:  Dying  rule  (DA1:  This  dying  rule  describes  when  the  vertices

die in the due course of time. This is also an existing phenomenon in
society. 

The  dying  rule:  The  vertices  of  degree  zero  (i.e.,  isolated  vertices)
that  are  NRC  will  die  from  one  generation  to  the  next  generation  if
they become isolated. 

With the rules described, we propose a GRS, 

ρ  RA1, RI1  1, CA1, LCA1, DA1,

where RA1, RI1, CA1, LCA1, DA1
 are the ones described earlier.

Illustrations3.2

Illustrations for ρ  RA1, RI1  1, CA1, LCA1, DA1.

In  the  following  figures,  the  vertices  are  labeled  with  the  nature  of
the  vertex  as  RC  (reproduction-capable  vertex),  NRC
(nonreproduction-capable  vertex)  and  NB  (newborn  vertex)  instead
of the actual vertex label. 

Example 1. Consider  a  complete  graph  G  with  three  vertices

(Figure�1).  At  the  zeroth  generation,  by  the  RA1
 rule,  the  initial  ver-

tices will be the reproduction-capable (RC) vertices. 

At  the  first  generation,  each  RC  vertex  will  produce  an  offspring

called the newborn (NB) vertex by using the RA1
 rule. As per the con-

nectivity  rule  (CA1),  all  the  NB  vertices  will  get  connected  with  the
respective  parent  RC  vertices.  Further,  all  NB  vertices  will  get  con-
nected  with  the  offspring  of  neighbors  of  the  parent  RC  vertices.  As
each of the initial RC vertices has two RC neighbors, RC vertices will
remain RC vertices. 
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Figure 1. Illustration for complete graph on three vertices. 

At  the  second  generation,  the  three  NB  vertices  will  become  RC
vertices. As the reproducing index is 1, the initial RC vertices will not
produce any NB vertices. 

At  the  third  generation,  by  the  LCA1
 rule,  the  edges  between  RC

and RC at different levels are removed and the original graph is repro-
duced.  In  fact,  two  isomorphic  original  graphs  are  obtained  at  this
stage. That means self-replication can be seen at this stage. 

In the fourth generation, each of the RC vertices produced at gener-
ation  1  will  produce  an  NB  vertex.  The  same  process  is  continued,
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and  we  obtain  the  original  graph  at  time  step  6,  time  step  9  and  so
forth. 

Example 2. Consider a path graph G with three vertices (Figure 2). At

the  zeroth  generation,  by  the  RA1
 rule,  the  initial  vertices  will  be  the

reproduction-capable (RC) vertices. 

Figure 2. Illustration for path graph. 

At  the  first  generation,  each  RC  vertex  will  produce  an  offspring

called the newborn (NB) vertex by using RA1
 as described in I. As per

the  connectivity  rule  (CA1),  all  the  NB  vertices  will  get  connected
with  the  respective  parent  RC  vertices.  Further,  all  NB  vertices  will
get  connected  with  the  offspring  of  neighbors  of  the  parent  RC
vertices. 

At the second generation, as two of the initial RC vertices have one
RC  neighbor,  they  will  become  nonreproduction-capable  vertices.
One RC vertex has two RC neighbors, so it will remain an RC vertex.
The  three  NB  vertices  will  become  RC  vertices.  As  the  reproducing
index is 1, the initial RC vertices will not produce any NB vertices. 

At  the  third  generation,  by  the  LCA1
 rule,  the  edges  between  RC

and  RC  at  different  levels  and  edges  between  RC  and  NRC  vertices
are  removed,  and  the  original  graph  is  reproduced.  In  fact,  two  iso-
morphic  original  graphs  are  obtained  at  this  stage.  That  means  self-
replication can be seen at this stage. 
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In the fourth generation, each of the RC vertices produced at gener-
ation  1  will  produce  an  NB  vertex.  The  same  process  is  continued,
and  we  obtain  the  original  graph  at  time  step  6,  time  step  9  and  so
forth. 

Self-Replicability of ρ4.

Now, we prove that the GRS ρ turns out to be a GSS. 

Theorem 1. ρ  RA1, 1, CA1, LCA1, DA1  is  a  GSS  of  order  3.  In

fact, ρ is an inherent GSS of order 3. 

Proof. Part I:

Consider a graph G  (V, E). Let V  {v1, v2, … , vn} and E be the

edge set of the graph G. 
We describe the proof in stages. 

Stage  1:  Generation  0:  In  the  initial  graph  G,  let  the  vertices  be

v1
0, v2

0, … , vn
0. All the vi are RC vertices. 

Stage  2:  Generation  1:  Now,  all  the  vi, RC
0

 will  produce  an  off-

spring. Let the offspring of the vi
0
 be called vi

1, respectively. 

As per the connectivity rule CA1, all the vi, NB
1

 vertices will get con-

nected  with  the  respective  vi, RC
0 .  Further,  vi, NB

1
 will  get  connected

with the offspring of neighbors of vi, RC
0

 (as in the graph G). 

In  other  words,  there  will  be  some  edges  connecting  vi, NB
1

 with

vj, NB
1 . 

By the CA1
 rule, all the offspring are connected to the offspring of

the  neighbors  of  the  parents;  that  is,  if  there  is  an  edge  between  the

parents  (vi, RC
0 , vj, RC

0 ),  then  there  will  be  an  edge  between

(vi, NB
1 , vj, NB

1 ).  Due  to  this,  the  adjacency  maintained  among  the  vi, RC
0

vertices  is  preserved  among  the  vi, NB
1

 vertices;  that  is,  the  block  dia-

gram of ρ1( G ) will look like:

Here, all the vertices that are adjacent in the top rectangle will have
the  adjacencies  preserved  with  the  respective  vertices  in  the  bottom
rectangle. 
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In  fact,  the  graph  in  the  top  rectangle  is  the  original  graph  and  is
isomorphic to the graph in the bottom rectangle. 

It is clear that ρ1G ⋂ G ≠ Φ. 

Stage  3:  Generation  2:  By  the  RA1
 rule,  all  the  vi, RC

0
 vertices  will

become  either  vi, RC
0

 (retaining  RC)  or  vi, NRC
0 ,  depending  on  the

nature of the respective neighbors. 

All the vi, NB
1

 vertices of ρ1G will become vi, RC
1 . 

All the vi, RC
1

 vertices produce offspring vi, NB
2

 vertices. 

As per the CA1
 rule, all the vi, NB

2
 vertices will have adjacency with

the  offspring  of  the  neighbors  of  vi, RC
1

 vertices.  That  is,  now  we  will

have  three  rectangles  (as  in  the  next  figure),  preserving  the  adjacency
among the respective vertices. 

Now, because the RI value is 1, vi, RC
0

 vertices will not produce any

offspring. 

By  the  LCA1
 rule,  the  edges  connecting  RC  vertices  of  different

levels as well as vertices connecting RC vertices and NRC vertices will
be lost. 

In other words, the edges connecting the top and middle block will
be lost. 

Now all three blocks are isomorphic. Continuing in the same way,
we have:

324 D Venkata Lakshmi and Jeganathan L

Complex Systems, 28 © 2019



Stage 4: Generation 3: Now, we have, ρ3G ⋂ G ≠ Φ. 

In  fact,  we  have  two  copies  of  G  replicated.  That  is,  the  top  two
blocks individually are copies of the initial graph G; we can continue

this  process.  Since  we  have  proved  ρ3G ⋂ G ≠ Φ,  ρ  is  self-replica-

ble of order 3. 
Part II:

G  is  any  arbitrary  graph  and  ρ3G ⋂ G ≠ Φ,  ∀ G.  This  implies

that ρ is inherently a GSS of order 3. □

Simulation of Graph Reproduction System4.1

Thus, we have proved the self-replicability of our GRS ρ as an inher-
ent  GSS  of  order  3,  with  full  rigor,  beyond  any  ambiguity.  With  the
aim  of  bringing  out  any  hidden  property  of  our  GRS  that  is  not  nor-
mally  observed,  we  captured  the  dynamic  behavior  of  our  GRS  ρ  by
simulating  with  MATLAB,  using  appropriate  code.  An  adjacency
matrix that corresponds to the initial graph in our GRS formed input
for  our  model,  and  the  output  is  also  obtained  as  an  adjacency
matrix.  The MATLAB code used for the purpose is available at [24].

We  simulated  our  GRS  with  various  initial  graphs  as  input  and
studied the behavior of our GRS by simulating to a maximum of 100
generations.  The  evolution  of  the  complete  graph  on  three  vertices
described  in  Section  3,  Example  1,  obtained  through  our  simulation
procedure is provided at [24]. 

As expected, results of our simulation concurred with the theoreti-
cal  results  of  ρ,  proved  in  this  section.  Besides,  as  an  outcome  of  our
analysis  of  ρ  through  simulation,  we  observed  the  following  proper-
ties of ρ. 

Result 1. Let  ρ  be  a  GSS  of  order  k.  Given  an  initial  graph  G,  ρ  will

produce  j  copies  of  G;  at  the  end  of  the  jkth  generation,  j ≠ 0.
Including  the  parent  graph,  there  will  be  a  total  of  j + 1  copies  of  G.
Further,  none  of  the  reproduced  copies  of  G  will  have  an  edge  con-
necting them. 

Result 2. Let  G  be  a  disconnected  graph  with  n  disconnected  compo-
nents,  say  G1, G2, …Gn.  Let  ρ  be  a  GSS  of  order  k.  Then  at  the  end

of  the  jkth  generation,  we  will  have  j  copies  of  the  individual  compo-
nents G1, G2, …Gn. 
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Result 3. The process of self-replication by ρ ensures that all the char-
acteristics of the parent graph are inherited by the offspring graph. 

Result 4. The  process  of  self-replication  produces  a  disconnected
graph in which the parent and the offspring vertices form the discon-
nected components of the graph. 

Existing Graph Reproduction Models5.

Southwell and Cannings explored different graph-reproducing models
[19]  that  produce  different  types  of  graphs  from  the  given  initial
graph. In their models, every vertex produces a new vertex that is con-
nected  to  the  existing  vertices  based  on  different  constraints,  thereby
generating  eight  different  models  of  the  graph-generating  mechanism.
In their models, edges get eliminated because of the death of vertices.
The models concentrate on the evolution of different types of graphs,
and  self-replication  of  the  given  graph  is  not  the  authors’  concern.
The  models  proposed  in  [19]  are  the  specific  instances  of  our  GRS.
The  eight  models  are  represented  through  our  GRS  as

ρi  RAi, RIi, CAi, LCAi, DAi, where i  0, 1, 2, 3, 4, 5, 6, 7. 

In  all  eight  models,  the  rules  other  than  the  connectivity  rule
remain  the  same.  They  differ  only  in  the  connectivity  aspect;  that
means  the  models  can  be  differentiated  only  with  respect  to  the  con-
nectivity rule. 

The components in the preceding five-tuple are described as:

◼ RAi: All vertices produce offspring vertices one at a time ∀ i. 

◼ RIi  1∀ i; that means all the vertices produce only one offspring vertex

throughout their lifetime. 

◼ LCAi  Φ (empty set) ∀ i. 

◼ DAi:  Q,  a  positive  integer,  which  means  that  every  vertex  of  degree

greater than Q will die. 

The connectivity axioms are described as follows:

◼ CA0:  No  offspring  are  connected  among  themselves  and  no  offspring

are connected to their parent. 

◼ CA1: Offspring are connected to their parent’s neighbors. 

◼ CA2: Offspring are connected to their parent. 

◼ CA3:  Offspring  are  connected  to  their  parent  and  their  parent’s  neigh-

bors. 

◼ CA4:  Offspring  are  connected  to  the  offspring  of  their  parent’s  neigh-

bors. 
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◼ CA5: Offspring are connected to their parent’s neighbors and their par-

ent’s neighbors’ offspring. 

◼ CA6: Offspring are connected to their parent and the offspring of their

parent’s neighbors. 

◼ CA7:  Offspring  are  connected  to  their  parent,  their  parent’s  neighbors

and the offspring of their parent’s neighbors. 

The GRS ρi corresponds to the ith model described in [19]. 

Apart  from  the  respective  descriptions  of  RAi,  CAi,

ρi  RAi, 1, CAi, Φ, Q  conveys  that  LCAi  is  empty,  RIi  is  1  and

DAi  Q. 

We now investigate Southwell’s models for self-replicability. 

Theorem 2. Theorem:

ρ0  RA0, 1, CA0, Φ, Q is a GSS of order 1. Further, ρ0  will replicate

all graphs G  V, E such that deg(vi) ≤ Q for at least one vi ∈ V  and

will not replicate any graph G such that deg(vi) > Q. 

1.

ρ4  RA4, 1, CA4, Φ, Q is a GSS of order 1. Further, ρ4  will replicate

all  graphs  G  V, E  such  that  deg(vi) ≤ Q∀ vi ∈ V.  ρ4  will  not  repli-

cate any graph G such that deg(vi) > Q for at least one vi ∈ V. 

2.

ρ6  RA6, 1, CA6, Φ, Q is a GSS of order 3. Further, ρ6  will replicate

all  graphs  G  V, E  such  that  deg(vi) ≤ Q∀ vi ∈ V.  ρ6  will  not  repli-

cate any graph G such that deg(vi) > Q for at least one vi ∈ V. 

3.

Proof.  Without  loss  of  generality,  we  prove  the  theorem  for  one
model, ρ4. The other proofs can be done analogously. 

Given  ρ4  RA4, 1, CA4, Φ, Q,  let  G  (V, E)  be  a  graph  where

V  {v1, v2, … , vn} is the set of vertices of G and E is the set of edges

of G. 
We describe the proof in stages. 

Stage  1:  Generation  0:  Let  the  vertices  in  the  zeroth  generation  be

v1
0, v2

0, … , vn
0
 . All the vi

0
 are parent vertices. 

Stage  2:  Generation  1:  Now,  all  the  vi
0

 will  produce  an  offspring

vertex. Let the offspring of the vi
0
 be denoted as vi

1, respectively. 

As per the connectivity rule CA4, all the offspring vi
1 vertices will

get  connected  with  the  offspring  of  neighbors  of  parent  vi
0  vertices.

That is, if vi
0, vj

0 is an edge in generation 0, there will be a new edge

vi
1, vj

1  in  generation  1  and  there  will  be  no  other  edge  connecting

any of the vertices of generation 0 with any of the vertices of genera-
tion 1. 
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In  other  words,  (1)  adjacency  among  the  parent  vertices  is

preserved  among  the  offspring  vertices.  Further,  (2)  degvi
0 

degvi
1  deg(vi).

Case  1:  Suppose  deg(vi) ≤ Q∀ vi ∈ V.  By  (1)  degvi
0 

degvi
1 ≤ Q. No vertices will die because of the dying rule. By (1) and

(2) we will have a copy of the original graph reproduced at the end of
generation�1. Hence ρ4 is a GSS of order 1. 

Case 2: Suppose deg(vi) > Q for at least one vi ∈ V. 

Let  vk  be  a  vertex  in  G  such  that  deg(vk) > Q.  This  implies

degvk
0 > Q.  By  (1),  degvk

0  degvk
1 > Q.  By  DA4,  vk

0
 and  vk

1
 will

die and all the edges incident on vk
0
 and vk

1
 will get eliminated. 

Vertices  in  generation  1  are  v1
0,  v2

0, …vk-1
0 ,  vk+1

0 , …vn
0;  v1

1,

v2
1, …vk-1

1 , vk+1
1 , …vn

1. 

Thus,  by  (1),  the  graph  formed  with  the  vertices  vi
1,

i  1, 2, … , k - 1, k + 1, …n is the graph G with vk  eliminated. That

is, a copy of G could not be obtained in generation 1. Now the degree
of all the vertices of generation 1 is less than or equal to Q. If we con-
tinue the reproduction process, by case 1, we get a graph formed with

the  vertices  vi
1,  i  1, 2, … , k - 1, k + 1, …n.  That  is,  a  copy  of  G

without  the  vertex  vk  will  get  generated  in  generation  3  and  also  in

the  subsequent  generations.  Thus  the  original  graph  G  cannot  be
obtained for deg(vi) > Q for at least one vi ∈ V. 

Hence in this case, ρ4 is not a GSS. □

As  evident  from  the  statement  of  Theorem  2,  ρ0,  ρ4  are  GSSs

of  order  1,  whereas  ρ6  is  a  GSS  of  order  3.  Further,  self-replicability

of a graph under ρ0, ρ4  or ρ6  depends upon the degree of the vertices

of G. 

Theorem 3. ρi for i  1, 2, 3, 5, 7 are not a GSS. 

Proof.  Without  loss  of  generality,  we  prove  the  theorem  for  one
model, that is for ρ3. The other proofs can be done analogously. 

Given  ρ3  RA3, 1, CA3, Φ, DA3,  let  G  (V, E)  be  a  graph

where  V  {v1, v2, … , vn}  is  the  set  of  vertices  of  G  and  E  is  the  set

of edges of G. 
We describe the proof in stages. 

Stage  1:  Generation  0:  Let  the  vertices  in  the  zeroth  generation  be

v1
0, v2

0, …vn
0. All the vi

0
 are parent vertices. 

Stage  2:  Generation  1:  Now,  all  the  vi
0

 will  produce  an  offspring

vertex. Let the offspring of the vi
0
 be represented as vi

1, respectively. 

328 D Venkata Lakshmi and Jeganathan L

Complex Systems, 28 © 2019



As per the connectivity rule CA3, all the offspring vi
1 vertices will

get  connected  with  the  respective  parent  vertices  and  with  the  neigh-

bors of respective parent vi
0 vertices. 

For  every  adjacent  vertex,  the  degree  of  vi
0

 will  get  increased  by

one  (in  CA3  there  will  be  an  edge  connecting  the  parent’s  neighbor

and  the  offspring).  There  will  also  be  an  edge  connecting  the  vi
0

 with

its  own  offspring.  Hence  if  degvi
0  is  k,  the  degvi

0  in  generation  1

will increase by 2k + 1. The degvi
1 (vi

1
 are offspring vertices in genera-

tion  1)  will  be  k + 1,  where  k  is  the  degvi
0  in  generation  0.  In  CA3,

there will be no edge connecting any two offspring vertices vi
1
 and vj

1

for any i, j. 

Case 1: degvi
k > Q for any i, k is either 0 or 1. 

If  degvi
0 > Q,  for  any  i,  then  by  the  dying  rule  DA3,  vi

0
 vertices

will  die,  along  with  the  incident  edges.  In  such  a  case,  the  degree

sequence  of  the  graph  formed  by  the  vertices  vi
0

 (parent  vertices)  or

the  degree  sequence  of  the  graph  formed  by  the  vertices  vi
1
 (offspring

vertices) or the degree sequence of the vertices vi
0
 and vi

1
 (both the par-

ent  vertices  and  offspring  vertices)  will  not  be  the  same  as  the  degree
sequence of the original graph G. Thus we cannot get a copy of G in
generation 1. 

Case 2: degvi
k < Q for all i, k is either 0 or 1. 

None  of  the  vertices  will  die,  since  there  is  no  edge  connecting  the
offspring  vertices,  and  due  to  the  increase  in  the  degree  of  the  parent

vertices vi
0, the degree sequence of the graph involving the parent ver-

tices  alone  will  not  be  the  same  as  that  of  the  degree  sequence  of  the
original graph G. The scenarios with the degree sequence of the graph
involving  the  offspring  vertices  alone  and  the  degree  sequence  of  the
graph  involving  both  offspring  and  the  parent  vertices  are  the  same.
Hence, a copy of G cannot get reproduced in generation 1. We will be
encountering a similar situation in the subsequent generations. Hence
a copy of G will not get reproduced in any of the generations. So ρ3 is

not a GSS. □

Thus,  of  the  eight  models,  we  conclude  that  three  models  are  self-
replicable and the remaining models are not self-replicable. 

Conclusions and Future Work6.

In  this  paper  we  have  described  a  graph  reproduction  system  (GRS)
with five components such as RA, RI, CA, LCA and DA that is capa-
ble  of  self-replication.  In  fact,  our  GRS  provides  an  algorithmic
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process  to  produce  multiple  copies  of  the  initial  graph.  Here  we  have
described  the  RA,  CA,  LCA  and  DA,  without  attaching  much  physi-
cal significance to the description. We can generate more ρ’s by vary-
ing  all  the  components  of  ρ,  which  may  result  in  an  exponential
number of GRS. A thorough study of the GRS by varying all the com-
ponents  of  ρ  will  bring  out  a  characterization  of  a  graph  self-replica-
tion  system  (GSS).  We  have  investigated  the  Southwell  models
through  our  system  and  verified  which  models  are  self-replicable.  In
[25],  the  authors  attempted  to  develop  a  replication  system  based  on
the rolling-circle replication of a circular DNA coupled with recombi-
nation using self-encoded phi29 DNA polymerase and externally sup-
plied Cre recombinase. We want to define a composite GRS, wherein
more than one GRS is involved with a specific iterative process for the
generation  of  languages.  We  plan  to  investigate  whether  or  not  com-
posite GRSs are self-replicative, thus introducing an operation among
the set of all GRSs, and to check which composite operations are self-
replicative or not. 
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