
Graph Self-Replication System

D Venkata Lakshmi★

Jeganathan L†

School of Computing Science and Engineering
Vellore Institute of Technology
Vandalur-Kelambakkam Road, Chennai, India-600 127
★venkata.lakshmi2011@vit.ac.in, † jeganathan.l@vit.ac.in

The self-replication introduced by John von Neumann is a process that
produces a copy of itself. As a novel approach, this paper studies the
self-replication process through the process of reproduction. In this
paper, we propose a comprehensive graph reproduction system (GRS)
and identify a specific reproduction system that turns out to be a graph
self-replication system (GSS), with which a copy of any given graph can
be produced through an algorithmic process. Unlike the GRS studied
by Richard Southwell, our model considers the evolution of edges
along with the evolution of vertices. We analyze some of the existing
reproduction models through our system and identify the models that
are self-replicable.

Keywords: self-replication; reproduction models; graph reproduction
system; graph self-replication system; self-replication of graph; inherent
graph self-replication system

Introduction1.

The question of whether a machine can make a copy of itself, called
the problem of self-replication, was initiated by von Neumann [1] in
1940. For more than 60 years, the focus of investigation was primar-
ily on understanding the logic necessary for replication in comparison
with the biological process of replication, necessary conditions that
are to be satisfied by a replication process and the fundamental algo-
rithms involved in self-replication.

This study of the artificial self-replication process will establish the
much-sought mapping between the biological evolution process and
the computational evolution process, finally showing the continuum
between living things and nonliving things. The realization of artifi-
cial self-replicating machines can have diverse applications, ranging
from the fabrication of nanomachines to space exploration. Further,
the concept of self-replication is used to model various complex bio-
logical and physical systems such as robotics, formation of
snowflakes, and so on.

https://doi.org/10.25088/ComplexSystems.28.3.313

mailto:venkata.lakshmi2011@vit.ac.in
mailto:jeganathan.l@vit.ac.in
https://doi.org/10.25088/ComplexSystems.28.3.313

Based on the models used to study self-replication, the explorations
carried out so far can be classified into four categories as described by
Sipper in [2]: cellular automata–based self-replication, computer
program–based self-replication, string-based self-replication and
mechanical model–based self-replication. A formal framework to
investigate self-replication was provided by the cellular automaton
(CA), a dynamical �system, discrete in time and space, proposed by
Ulam and von Neumann. A cellular automaton consists of an array of
cells, each of which can be in one of a finite number of possible states,
updated synchronously in discrete time steps, according to a local,
identical interaction rule. The state of a cell at the next time step is de-
termined by the current states of a surrounding neighborhood of cells.

Von Neumann designed [3] the universal self-replicator, a two-
dimensional CA with 29 states per cell with a five-cell neighborhood
that implements self-replication as well as construction universality.
Construction universality refers to the ability to construct all the struc-
tures in a given specific product set, given its description. The first
hardware implementation was attempted by Beuchat and Haenni [4],
wherein small systems were realized. Beuchat and Haenni could not
realize the complete structure due to the requirement of a larger num-
ber of cells. While universal construction may represent a sufficient
condition for attaining self-replication, Langton observed that it is not
a necessary condition. Langton attempted to design the simplest CA
capable of self-reproduction.

Langton’s loop [5] uses eight states for each of the 86 nonquiescent
cells making up its initial configuration, a five-cell neighborhood and
a few hundred transition rules. Codd [6] developed a self-replicating
structure consisting of two-dimensional, eight-state, five-neighbor cel-
lular automata (CAs). Further simplifications to Langton’s automaton
were introduced by Reggia in his work. Apart from the CA models,
Lohn and Reggia [7–9] used genetic algorithms to generate the rules
that result in self-replicating structures. Sipper discusses a complete lit-
erature survey on self-replication in his two papers [2, 10].

Bratley and Millo [11] and Burger, Brill and Machi [12] devised
self-replicating computer programs, wherein a computer program pro-
duces a copy of the program. Ray [13, 14] investigated the self-
replicating programs to study evolution using his Tierra system, a
virtual world consisting of computer programs that can undergo evo-
lution. So far, in the CA-based models as well as in the computer pro-
gram–based models, the items to be self-replicated are essentially
predetermined directly or evolve through an artificial process. There
are self-replicating systems where the objects to be replicated are
dynamically constructed. Such a self-replicated system was studied by
Laing [15], wherein string-like objects, such as interconnected chains,
are the basic component of the structure.

314 D Venkata Lakshmi and Jeganathan L

Complex Systems, 28 © 2019

A study of any self-replicating machine will have two aspects, the
logical component and the mechanical part (how the machine is
built). The first three models discussed so far focus on the logic
required to build a self-replicating machine. In one sense, the first
three models bring out the computational aspects of self-replicating
machines. The fourth model describes the mechanical aspect of con-
structing the self-replicating machine. Penrose [16] built simple
mechanical units, an ensemble of which was placed in a box with all
the required physical components. The box was subjected to some
physical activity so as to produce the required energy for the physical
components to act to produce a copy of the ensemble unit. Following
this mechanical model, Rebek Jr. [17] designed a process to produce
self-replicating molecules. In [18], Ichihashi and Yomo gave a con-
structive approach, in which life-specific functions are recreated in a
test tube from specific biological molecules. Using this approach, they
were able to employ design principles to reproduce life-specific func-
tions, and the knowledge gained through the reproduction process
provides clues as to their origins.

In recent years, Southwell and Cannings generated different graph-
reproducing models [19], which produce different types of graphs
from the given initial graph. These models are used to describe the
growth of interactions between individuals within a population. In
their models [20, 21], every vertex produces a new vertex that is con-
nected to the existing vertices based on different constraints, thereby
generating eight different models of the graph-generating mechanism.
In their models, edges get eliminated because of the death of vertices.
Their models do not consider the edges as a valid parameter for repro-
duction. Since graphs are characterized by both vertices and edges, we
observe that any graph reproduction system (GRS) should also con-
sider the edges as well as the vertices of the graph. From the given
graph, the Southwell model focuses on the generation of different
graphs, and self-replication of the given graph is not their concern.

In this paper, we propose a generic model for a GRS that is self-
replicable. In contrast to the Southwell model, our model considers
vertices as well as edges as valid parameters for the evolution of
graphs. All the models developed by Southwell [19] are just the spe-
cific instances of our model. This paper identifies a specific GRS that
is self-replicable. Further, we analyze some of the existing reproduc-
tion models through our system and identify the models that are self-
replicable. We consider self-replication as an algorithmic process to
investigate the graphs that are self-replicable. Our graph self-replicat-
ing model through a GRS will fit into an altogether different
approach that does not fall into any of the four categories described
by Sipper in [2].

Graph Self-Replication System 315

https://doi.org/10.25088/ComplexSystems.28.3.313

https://doi.org/10.25088/ComplexSystems.28.3.313

In this paper, we abstract the self-replication concept using graphs.
The paper is organized as follows. Section 2 proposes a generic model
of GRS ρ. Section 3 discusses the graph self-replication system (GSS)
along with illustrations. Section 4 discusses a rigorous mathematical
proof for the self-replicability of the GRS ρ along with the results
obtained through simulation. Section 5 investigates some of the exist-
ing graph reproduction models for self-replicability. The last section
concludes with the description of future enhancements for our model.

Graph Reproduction System2.

We present a GRS that has the ability to produce copies of the graph
given as an input to the system. Though biological organisms are the
most familiar examples of a self-replicating system, this paper
explores the self-replication system with graphs as the basic unit. This
artificial GSS is motivated by the desire to understand the funda-
mental information processing principles and algorithms involved in
self-replication, independent of their physical realization. A better
theoretical understanding of the GRS could be useful in a number of
ways, from a computational as well as an engineering perspective.

As mentioned earlier, the main aim is to study the feasibility of any
graph-generating system becoming a self-replication system. For this
purpose, we should have a generating mechanism through which
graphs get generated from the given graph through some well-defined
process.

In that sense, we consider a GRS that generates graphs through the
process of evolution/reproduction over discrete time steps t. This
paper assumes asexual reproduction with a single parent, in the sense
that offspring are born with the parent’s strategy (potential) and link
up to the surroundings in a similar way to their parent. This will simu-
late the natural process of children inheriting the parent’s genes and
getting connected to the environment of their parents.

In our view, any asexual reproduction system in the social environ-
ment should not omit the following items.

◼ Offspring are born based on the parent’s strategy (potential) and get
connected to the environment of their parent.

◼ Individual organisms lose their reproductive potential over a period of
time due to various reasons. That is, individual organisms may become
infertile.

◼ Infertile organisms may gain fertility due to some medical treatment.

◼ Organisms lose their connectivity with other organisms over a period of
time.

◼ Individual organisms die due to the aging process.

316 D Venkata Lakshmi and Jeganathan L

Complex Systems, 28 © 2019

◼ As a social constraint, organisms might not produce more offspring,
though they are capable. In other words, there may be a cap on the
number of offspring that can be produced by an organism; for example,
organisms are allowed to reproduce only once during their lifetime.

Considering all these items, we propose a graph-generating mecha-
nism called a graph reproduction system (GRS), starting from an ini-
tial graph. Our main goal is to check the potential of this GRS in
becoming a graph self-replication system (GSS), thereby possessing
the ability to generate copies of the initial graph.

Definition 1. A GRS, ρ RA, RI, CA, LCA, DA, where

◼ RA is the reproduction rule—the set of rules with which the vertices of
a graph reproduce.

◼ RI is the reproductive index—a positive integer, the maximum number
of offspring that can be produced by an organism throughout its life.

◼ CA is the connectivity rule—the set of rules with which the offspring
are connected to their parent and the other members of the society.

◼ LCA is the loss of connectivity rule—the set of rules by which the con-
nectivity between the different vertices of the graph is lost.

◼ DA is the dying rule—the set of rules by which the vertices die.

Definition 2. Language generated by a GRS: Let ρ be any GRS. Let

G be any graph. ρG is the set of graphs reproduced by G; that

is, ρG Ui1
∞ ρiG, where ρiG is the graph produced in the ith

generation.

Note 1. The initial graph G is not included in ρG, just to observe

whether ρG produces G or not.

Since the vertices and edges are the only two parameters of a
graph, the preceding five-tuple GRS represents a comprehensive
model of any GRS in the sense that the system includes the birth and
death of vertices along with the birth and death of edges. Any graph-
generating reproducing mechanism will be a specific instance of our
GRS. The generating reproducing system will differ only in the
description of rules.

Graph Self-Replication System3.

The preceding GRS ρ has five components; by describing each of the
five components, we will have a specific GRS. Any component of ρ

can be described in a number of ways; thereby, we will have an expo-
nential number of GRS examples.

Graph Self-Replication System 317

https://doi.org/10.25088/ComplexSystems.28.3.313

https://doi.org/10.25088/ComplexSystems.28.3.313

Definition 3. Graph self-replication system (GSS): A GRS ρ is said to
be a GSS system of order k if there exists at least one graph G and a

k ≥ 1 such that ρkG ⋂ G ≠ Φ. If for any k, ρkG has disconnected

components, the individual components of ρkG will be considered

as separate graphs for the computation of ρkG ⋂ G.

Definition 4. Inherent GSS: A GRS ρ is said to be an inherent GSS if

ρkG ⋂ G ≠ Φ for any graph G with a nonempty set of vertices and

a k ≥ 1.

As already mentioned, the graph reproduction models of Southwell
[22] discuss primarily the generation of different graphs, whereas the
main focus of our GRS is to check self-replicability of the reproduc-
tion system, in the sense of producing copies of the initial graph. For
all the rules like RA, CA, LCA and DA, we have given the description
without attaching any specific physical meaning to that. We can think
about the exhaustive list of descriptions for each of the rules, which
will bring out many comparative models. Every GRS ρ will differ in
the description of the different rules. Now, we describe each rule in a
specific way, to propose a GRS.

Graph Self-Replication System3.1

Now we describe a specific GRS that is self-replicable, where each
component is described one by one as follows.

I: Reproduction rule (RA1): In the sense of reproduction, we cate-
gorize the vertices of a graph as: reproduction-capable vertices (RC),
nonreproduction-capable vertices (NRC) and newborn vertices (NB).
Only RC vertices can produce offspring, one at a time. In nature,
some living organisms lose fertility/gain fertility/retain fertility due to
various reasons. In that sense, an RC vertex can become an NRC ver-
tex based on the following conditions.

RC to NRC conversion rules:

Every RC vertex with either two or three RC neighbors will remain an
RC vertex in the next generation.

1.

Every NRC vertex that is adjacent to exactly three RC neighbors will
become an RC vertex in the next generation.

2.

Every RC vertex with four or more RC neighbors will become an NRC
vertex in the next generation.

3.

Every RC vertex with one or fewer RC neighbors will become an NRC
vertex in the next generation.

4.

Every vertex in the graph is labeled with a three-tuple (name of the
node, nature of the node RC/NRC/NB, index of the generation). For
example, in generation zero, consider an initial graph G. Let vi be a

318 D Venkata Lakshmi and Jeganathan L

Complex Systems, 28 © 2019

vertex in G. Since all vertices in the initial graph are RC, vi is referred

to as (vi, RC, 0) or in short, vi, RC
0 . The index of generation is a

positive number indicating the generation in which the vertex was

born. A vertex vi, RC
2

 means an RC vertex with label vi, born in the

second generation.
For describing the RC to NRC conversion rules, we have just repli-

cated analogously Conway’s Game of Life rule [23], wherein birth
and death are the two states of the cell. We have just simulated the
birth and death of the cell with RC vertices and NRC vertices, respec-
tively. We do not attach any physical significance for choosing
Conway’s Game of Life for the RC to NRC conversion rule. We want
to have some constraints by which an RC vertex becomes an NRC
vertex and vice versa. Since Conway’s Game of Life suits the purpose
in the analogous sense, we have chosen that. A deep study in this
direction may result in better conditions that could have some real-
world meaning.

Now we state the reproduction rule.

Reproduction rule (RA1):

All the vertices in the initial graph are RC vertices.1.

Any NB vertex will become an RC vertex in the next generation. That
is, the generation in which the vertex is born is the first generation.

2.

All RC vertices produce one vertex in a generation. 3.

All NRC vertices are treated as infertile and hence will not produce any
vertex in that generation.

4.

RC vertices may become NRC vertices and vice versa based on the RC
to NRC conversion rules described in (I).

5.

II: Reproduction index (RI1): The reproduction index denoted by k
is a positive integer (k ≠ 0) that constrains the number of offspring
that can be produced by an organism. For example, if RI 1, that
means that the organisms can produce only one offspring throughout
their lifetime. Here k ≠ 0, for the reason that our generative mecha-
nism depends on reproduction alone.

III: Connectivity rule (CA1): Connectivity rules are the rules that
prescribe the edges connecting the NB vertices with those of the other
vertices in the graph.

Connectivity rule: All the newborn vertices are connected to their
respective parents and the offspring of their parent’s neighbors.

Southwell and Cannings [22] described a graph-generating mecha-
nism using the reproduction process. The authors detailed the eight
models, with each model describing a specific mechanism of connec-
tivity between the newborn vertices and the other vertices of the
graph.

Graph Self-Replication System 319

https://doi.org/10.25088/ComplexSystems.28.3.313

https://doi.org/10.25088/ComplexSystems.28.3.313

As mentioned in the RA1
 rule, we do not attach any specific mean-

ing to the choice of model described as in Southwell’s generating
mechanism [19] for our connectivity rule.

IV: Loss-of-connectivity rule (LCA1): This LCA rule describes the
loss of connectivity of a vertex with others in due course of time. This
loss of connectivity (due to various reasons) is an existing phe-
nomenon in society.

Loss-of-connectivity rule:

There shall be no edge connecting an RC vertex with an NRC vertex
and vice versa; that is, there will not be an edge of the form

v1, RC
i , v2, NRC

j for any i, j.

1.

There shall be no edge connecting two RC vertices that belong to differ-
ent generations; that is, there will not be any edge of the form

xRC
i , yRC

j , i ≠ j.

2.

V: Dying rule (DA1: This dying rule describes when the vertices

die in the due course of time. This is also an existing phenomenon in
society.

The dying rule: The vertices of degree zero (i.e., isolated vertices)
that are NRC will die from one generation to the next generation if
they become isolated.

With the rules described, we propose a GRS,

ρ RA1, RI1 1, CA1, LCA1, DA1,

where RA1, RI1, CA1, LCA1, DA1
 are the ones described earlier.

Illustrations3.2

Illustrations for ρ RA1, RI1 1, CA1, LCA1, DA1.

In the following figures, the vertices are labeled with the nature of
the vertex as RC (reproduction-capable vertex), NRC
(nonreproduction-capable vertex) and NB (newborn vertex) instead
of the actual vertex label.

Example 1. Consider a complete graph G with three vertices

(Figure�1). At the zeroth generation, by the RA1
 rule, the initial ver-

tices will be the reproduction-capable (RC) vertices.

At the first generation, each RC vertex will produce an offspring

called the newborn (NB) vertex by using the RA1
 rule. As per the con-

nectivity rule (CA1), all the NB vertices will get connected with the
respective parent RC vertices. Further, all NB vertices will get con-
nected with the offspring of neighbors of the parent RC vertices. As
each of the initial RC vertices has two RC neighbors, RC vertices will
remain RC vertices.

320 D Venkata Lakshmi and Jeganathan L

Complex Systems, 28 © 2019

Figure 1. Illustration for complete graph on three vertices.

At the second generation, the three NB vertices will become RC
vertices. As the reproducing index is 1, the initial RC vertices will not
produce any NB vertices.

At the third generation, by the LCA1
 rule, the edges between RC

and RC at different levels are removed and the original graph is repro-
duced. In fact, two isomorphic original graphs are obtained at this
stage. That means self-replication can be seen at this stage.

In the fourth generation, each of the RC vertices produced at gener-
ation 1 will produce an NB vertex. The same process is continued,

Graph Self-Replication System 321

https://doi.org/10.25088/ComplexSystems.28.3.313

https://doi.org/10.25088/ComplexSystems.28.3.313

and we obtain the original graph at time step 6, time step 9 and so
forth.

Example 2. Consider a path graph G with three vertices (Figure 2). At

the zeroth generation, by the RA1
 rule, the initial vertices will be the

reproduction-capable (RC) vertices.

Figure 2. Illustration for path graph.

At the first generation, each RC vertex will produce an offspring

called the newborn (NB) vertex by using RA1
 as described in I. As per

the connectivity rule (CA1), all the NB vertices will get connected
with the respective parent RC vertices. Further, all NB vertices will
get connected with the offspring of neighbors of the parent RC
vertices.

At the second generation, as two of the initial RC vertices have one
RC neighbor, they will become nonreproduction-capable vertices.
One RC vertex has two RC neighbors, so it will remain an RC vertex.
The three NB vertices will become RC vertices. As the reproducing
index is 1, the initial RC vertices will not produce any NB vertices.

At the third generation, by the LCA1
 rule, the edges between RC

and RC at different levels and edges between RC and NRC vertices
are removed, and the original graph is reproduced. In fact, two iso-
morphic original graphs are obtained at this stage. That means self-
replication can be seen at this stage.

322 D Venkata Lakshmi and Jeganathan L

Complex Systems, 28 © 2019

In the fourth generation, each of the RC vertices produced at gener-
ation 1 will produce an NB vertex. The same process is continued,
and we obtain the original graph at time step 6, time step 9 and so
forth.

Self-Replicability of ρ4.

Now, we prove that the GRS ρ turns out to be a GSS.

Theorem 1. ρ RA1, 1, CA1, LCA1, DA1 is a GSS of order 3. In

fact, ρ is an inherent GSS of order 3.

Proof. Part I:

Consider a graph G (V, E). Let V {v1, v2, … , vn} and E be the

edge set of the graph G.
We describe the proof in stages.

Stage 1: Generation 0: In the initial graph G, let the vertices be

v1
0, v2

0, … , vn
0. All the vi are RC vertices.

Stage 2: Generation 1: Now, all the vi, RC
0

 will produce an off-

spring. Let the offspring of the vi
0
 be called vi

1, respectively.

As per the connectivity rule CA1, all the vi, NB
1

 vertices will get con-

nected with the respective vi, RC
0 . Further, vi, NB

1
 will get connected

with the offspring of neighbors of vi, RC
0

 (as in the graph G).

In other words, there will be some edges connecting vi, NB
1

 with

vj, NB
1 .

By the CA1
 rule, all the offspring are connected to the offspring of

the neighbors of the parents; that is, if there is an edge between the

parents (vi, RC
0 , vj, RC

0), then there will be an edge between

(vi, NB
1 , vj, NB

1). Due to this, the adjacency maintained among the vi, RC
0

vertices is preserved among the vi, NB
1

 vertices; that is, the block dia-

gram of ρ1(G) will look like:

Here, all the vertices that are adjacent in the top rectangle will have
the adjacencies preserved with the respective vertices in the bottom
rectangle.

Graph Self-Replication System 323

https://doi.org/10.25088/ComplexSystems.28.3.313

https://doi.org/10.25088/ComplexSystems.28.3.313

In fact, the graph in the top rectangle is the original graph and is
isomorphic to the graph in the bottom rectangle.

It is clear that ρ1G ⋂ G ≠ Φ.

Stage 3: Generation 2: By the RA1
 rule, all the vi, RC

0
 vertices will

become either vi, RC
0

 (retaining RC) or vi, NRC
0 , depending on the

nature of the respective neighbors.

All the vi, NB
1

 vertices of ρ1G will become vi, RC
1 .

All the vi, RC
1

 vertices produce offspring vi, NB
2

 vertices.

As per the CA1
 rule, all the vi, NB

2
 vertices will have adjacency with

the offspring of the neighbors of vi, RC
1

 vertices. That is, now we will

have three rectangles (as in the next figure), preserving the adjacency
among the respective vertices.

Now, because the RI value is 1, vi, RC
0

 vertices will not produce any

offspring.

By the LCA1
 rule, the edges connecting RC vertices of different

levels as well as vertices connecting RC vertices and NRC vertices will
be lost.

In other words, the edges connecting the top and middle block will
be lost.

Now all three blocks are isomorphic. Continuing in the same way,
we have:

324 D Venkata Lakshmi and Jeganathan L

Complex Systems, 28 © 2019

Stage 4: Generation 3: Now, we have, ρ3G ⋂ G ≠ Φ.

In fact, we have two copies of G replicated. That is, the top two
blocks individually are copies of the initial graph G; we can continue

this process. Since we have proved ρ3G ⋂ G ≠ Φ, ρ is self-replica-

ble of order 3.
Part II:

G is any arbitrary graph and ρ3G ⋂ G ≠ Φ, ∀ G. This implies

that ρ is inherently a GSS of order 3. □

Simulation of Graph Reproduction System4.1

Thus, we have proved the self-replicability of our GRS ρ as an inher-
ent GSS of order 3, with full rigor, beyond any ambiguity. With the
aim of bringing out any hidden property of our GRS that is not nor-
mally observed, we captured the dynamic behavior of our GRS ρ by
simulating with MATLAB, using appropriate code. An adjacency
matrix that corresponds to the initial graph in our GRS formed input
for our model, and the output is also obtained as an adjacency
matrix. The MATLAB code used for the purpose is available at [24].

We simulated our GRS with various initial graphs as input and
studied the behavior of our GRS by simulating to a maximum of 100
generations. The evolution of the complete graph on three vertices
described in Section 3, Example 1, obtained through our simulation
procedure is provided at [24].

As expected, results of our simulation concurred with the theoreti-
cal results of ρ, proved in this section. Besides, as an outcome of our
analysis of ρ through simulation, we observed the following proper-
ties of ρ.

Result 1. Let ρ be a GSS of order k. Given an initial graph G, ρ will

produce j copies of G; at the end of the jkth generation, j ≠ 0.
Including the parent graph, there will be a total of j + 1 copies of G.
Further, none of the reproduced copies of G will have an edge con-
necting them.

Result 2. Let G be a disconnected graph with n disconnected compo-
nents, say G1, G2, …Gn. Let ρ be a GSS of order k. Then at the end

of the jkth generation, we will have j copies of the individual compo-
nents G1, G2, …Gn.

Graph Self-Replication System 325

https://doi.org/10.25088/ComplexSystems.28.3.313

https://doi.org/10.25088/ComplexSystems.28.3.313

Result 3. The process of self-replication by ρ ensures that all the char-
acteristics of the parent graph are inherited by the offspring graph.

Result 4. The process of self-replication produces a disconnected
graph in which the parent and the offspring vertices form the discon-
nected components of the graph.

Existing Graph Reproduction Models5.

Southwell and Cannings explored different graph-reproducing models
[19] that produce different types of graphs from the given initial
graph. In their models, every vertex produces a new vertex that is con-
nected to the existing vertices based on different constraints, thereby
generating eight different models of the graph-generating mechanism.
In their models, edges get eliminated because of the death of vertices.
The models concentrate on the evolution of different types of graphs,
and self-replication of the given graph is not the authors’ concern.
The models proposed in [19] are the specific instances of our GRS.
The eight models are represented through our GRS as

ρi RAi, RIi, CAi, LCAi, DAi, where i 0, 1, 2, 3, 4, 5, 6, 7.

In all eight models, the rules other than the connectivity rule
remain the same. They differ only in the connectivity aspect; that
means the models can be differentiated only with respect to the con-
nectivity rule.

The components in the preceding five-tuple are described as:

◼ RAi: All vertices produce offspring vertices one at a time ∀ i.

◼ RIi 1∀ i; that means all the vertices produce only one offspring vertex

throughout their lifetime.

◼ LCAi Φ (empty set) ∀ i.

◼ DAi: Q, a positive integer, which means that every vertex of degree

greater than Q will die.

The connectivity axioms are described as follows:

◼ CA0: No offspring are connected among themselves and no offspring

are connected to their parent.

◼ CA1: Offspring are connected to their parent’s neighbors.

◼ CA2: Offspring are connected to their parent.

◼ CA3: Offspring are connected to their parent and their parent’s neigh-

bors.

◼ CA4: Offspring are connected to the offspring of their parent’s neigh-

bors.

326 D Venkata Lakshmi and Jeganathan L

Complex Systems, 28 © 2019

◼ CA5: Offspring are connected to their parent’s neighbors and their par-

ent’s neighbors’ offspring.

◼ CA6: Offspring are connected to their parent and the offspring of their

parent’s neighbors.

◼ CA7: Offspring are connected to their parent, their parent’s neighbors

and the offspring of their parent’s neighbors.

The GRS ρi corresponds to the ith model described in [19].

Apart from the respective descriptions of RAi, CAi,

ρi RAi, 1, CAi, Φ, Q conveys that LCAi is empty, RIi is 1 and

DAi Q.

We now investigate Southwell’s models for self-replicability.

Theorem 2. Theorem:

ρ0 RA0, 1, CA0, Φ, Q is a GSS of order 1. Further, ρ0 will replicate

all graphs G V, E such that deg(vi) ≤ Q for at least one vi ∈ V and

will not replicate any graph G such that deg(vi) > Q.

1.

ρ4 RA4, 1, CA4, Φ, Q is a GSS of order 1. Further, ρ4 will replicate

all graphs G V, E such that deg(vi) ≤ Q∀ vi ∈ V. ρ4 will not repli-

cate any graph G such that deg(vi) > Q for at least one vi ∈ V.

2.

ρ6 RA6, 1, CA6, Φ, Q is a GSS of order 3. Further, ρ6 will replicate

all graphs G V, E such that deg(vi) ≤ Q∀ vi ∈ V. ρ6 will not repli-

cate any graph G such that deg(vi) > Q for at least one vi ∈ V.

3.

Proof. Without loss of generality, we prove the theorem for one
model, ρ4. The other proofs can be done analogously.

Given ρ4 RA4, 1, CA4, Φ, Q, let G (V, E) be a graph where

V {v1, v2, … , vn} is the set of vertices of G and E is the set of edges

of G.
We describe the proof in stages.

Stage 1: Generation 0: Let the vertices in the zeroth generation be

v1
0, v2

0, … , vn
0
 . All the vi

0
 are parent vertices.

Stage 2: Generation 1: Now, all the vi
0

 will produce an offspring

vertex. Let the offspring of the vi
0
 be denoted as vi

1, respectively.

As per the connectivity rule CA4, all the offspring vi
1 vertices will

get connected with the offspring of neighbors of parent vi
0 vertices.

That is, if vi
0, vj

0 is an edge in generation 0, there will be a new edge

vi
1, vj

1 in generation 1 and there will be no other edge connecting

any of the vertices of generation 0 with any of the vertices of genera-
tion 1.

Graph Self-Replication System 327

https://doi.org/10.25088/ComplexSystems.28.3.313

https://doi.org/10.25088/ComplexSystems.28.3.313

In other words, (1) adjacency among the parent vertices is

preserved among the offspring vertices. Further, (2) degvi
0

degvi
1 deg(vi).

Case 1: Suppose deg(vi) ≤ Q∀ vi ∈ V. By (1) degvi
0

degvi
1 ≤ Q. No vertices will die because of the dying rule. By (1) and

(2) we will have a copy of the original graph reproduced at the end of
generation�1. Hence ρ4 is a GSS of order 1.

Case 2: Suppose deg(vi) > Q for at least one vi ∈ V.

Let vk be a vertex in G such that deg(vk) > Q. This implies

degvk
0 > Q. By (1), degvk

0 degvk
1 > Q. By DA4, vk

0
 and vk

1
 will

die and all the edges incident on vk
0
 and vk

1
 will get eliminated.

Vertices in generation 1 are v1
0, v2

0, …vk-1
0 , vk+1

0 , …vn
0; v1

1,

v2
1, …vk-1

1 , vk+1
1 , …vn

1.

Thus, by (1), the graph formed with the vertices vi
1,

i 1, 2, … , k - 1, k + 1, …n is the graph G with vk eliminated. That

is, a copy of G could not be obtained in generation 1. Now the degree
of all the vertices of generation 1 is less than or equal to Q. If we con-
tinue the reproduction process, by case 1, we get a graph formed with

the vertices vi
1, i 1, 2, … , k - 1, k + 1, …n. That is, a copy of G

without the vertex vk will get generated in generation 3 and also in

the subsequent generations. Thus the original graph G cannot be
obtained for deg(vi) > Q for at least one vi ∈ V.

Hence in this case, ρ4 is not a GSS. □

As evident from the statement of Theorem 2, ρ0, ρ4 are GSSs

of order 1, whereas ρ6 is a GSS of order 3. Further, self-replicability

of a graph under ρ0, ρ4 or ρ6 depends upon the degree of the vertices

of G.

Theorem 3. ρi for i 1, 2, 3, 5, 7 are not a GSS.

Proof. Without loss of generality, we prove the theorem for one
model, that is for ρ3. The other proofs can be done analogously.

Given ρ3 RA3, 1, CA3, Φ, DA3, let G (V, E) be a graph

where V {v1, v2, … , vn} is the set of vertices of G and E is the set

of edges of G.
We describe the proof in stages.

Stage 1: Generation 0: Let the vertices in the zeroth generation be

v1
0, v2

0, …vn
0. All the vi

0
 are parent vertices.

Stage 2: Generation 1: Now, all the vi
0

 will produce an offspring

vertex. Let the offspring of the vi
0
 be represented as vi

1, respectively.

328 D Venkata Lakshmi and Jeganathan L

Complex Systems, 28 © 2019

As per the connectivity rule CA3, all the offspring vi
1 vertices will

get connected with the respective parent vertices and with the neigh-

bors of respective parent vi
0 vertices.

For every adjacent vertex, the degree of vi
0

 will get increased by

one (in CA3 there will be an edge connecting the parent’s neighbor

and the offspring). There will also be an edge connecting the vi
0

 with

its own offspring. Hence if degvi
0 is k, the degvi

0 in generation 1

will increase by 2k + 1. The degvi
1 (vi

1
 are offspring vertices in genera-

tion 1) will be k + 1, where k is the degvi
0 in generation 0. In CA3,

there will be no edge connecting any two offspring vertices vi
1
 and vj

1

for any i, j.

Case 1: degvi
k > Q for any i, k is either 0 or 1.

If degvi
0 > Q, for any i, then by the dying rule DA3, vi

0
 vertices

will die, along with the incident edges. In such a case, the degree

sequence of the graph formed by the vertices vi
0

 (parent vertices) or

the degree sequence of the graph formed by the vertices vi
1
 (offspring

vertices) or the degree sequence of the vertices vi
0
 and vi

1
 (both the par-

ent vertices and offspring vertices) will not be the same as the degree
sequence of the original graph G. Thus we cannot get a copy of G in
generation 1.

Case 2: degvi
k < Q for all i, k is either 0 or 1.

None of the vertices will die, since there is no edge connecting the
offspring vertices, and due to the increase in the degree of the parent

vertices vi
0, the degree sequence of the graph involving the parent ver-

tices alone will not be the same as that of the degree sequence of the
original graph G. The scenarios with the degree sequence of the graph
involving the offspring vertices alone and the degree sequence of the
graph involving both offspring and the parent vertices are the same.
Hence, a copy of G cannot get reproduced in generation 1. We will be
encountering a similar situation in the subsequent generations. Hence
a copy of G will not get reproduced in any of the generations. So ρ3 is

not a GSS. □

Thus, of the eight models, we conclude that three models are self-
replicable and the remaining models are not self-replicable.

Conclusions and Future Work6.

In this paper we have described a graph reproduction system (GRS)
with five components such as RA, RI, CA, LCA and DA that is capa-
ble of self-replication. In fact, our GRS provides an algorithmic

Graph Self-Replication System 329

https://doi.org/10.25088/ComplexSystems.28.3.313

https://doi.org/10.25088/ComplexSystems.28.3.313

process to produce multiple copies of the initial graph. Here we have
described the RA, CA, LCA and DA, without attaching much physi-
cal significance to the description. We can generate more ρ’s by vary-
ing all the components of ρ, which may result in an exponential
number of GRS. A thorough study of the GRS by varying all the com-
ponents of ρ will bring out a characterization of a graph self-replica-
tion system (GSS). We have investigated the Southwell models
through our system and verified which models are self-replicable. In
[25], the authors attempted to develop a replication system based on
the rolling-circle replication of a circular DNA coupled with recombi-
nation using self-encoded phi29 DNA polymerase and externally sup-
plied Cre recombinase. We want to define a composite GRS, wherein
more than one GRS is involved with a specific iterative process for the
generation of languages. We plan to investigate whether or not com-
posite GRSs are self-replicative, thus introducing an operation among
the set of all GRSs, and to check which composite operations are self-
replicative or not.

References

[1] R. A. Freitas, Jr. and R. C. Merkle, Kinematic Self-Replicating
Machines, Georgetown, TX: Landes Bioscience, 2004.

[2] M. Sipper, “Fifty Years of Research on Self-Replication: An Overview,”
Artificial Life, 4(3), 1998 pp. 237–257. doi:10.1162/106454698568576.

[3] J. von Neumann, Theory of Self-Reproducing Automata (A. W. Burks,
ed.), Urbana, IL: University of Illinois Press, 1966.

[4] J.-L. Beuchat and J. O. Haenni, “Von Neumann’s 29-State Cellular
Automaton: A Hardware Implementation,” IEEE Transactions on
Education, 43(3), 2000 pp. 300–308. doi:10.1109/13.865205.

[5] C. G. Langton, “Self-Reproduction in Cellular Automata,” Physica D:
Nonlinear Phenomena, 10(1–2), 1984 pp. 135–144.
doi:10.1016/0167-2789(84)90256-2.

[6] E. Codd, Cellular Automata, New York: Academic Press, 1968.

[7] J. D. Lohn and J. A. Reggia, “Discovery of Self-Replicating Structures
Using a Genetic Algorithm,” in Proceedings of 1995 IEEE International
Conference on Evolutionary Computation (ICEC’95), Perth, WA,
Australia, 1995, Piscataway, NJ: IEEE, 1995 pp. 678–683.
doi:10.1109/ICEC.1995.487466.

[8] J. D. Lohn, “Automated Discovery of Self-Replicating Structures in Cel-
lular Space Automata Models,” Department of Computer Science, Uni-
versity of Maryland at College Park, Tech. Rep. CS-TR-3677, 1996.
hdl.handle.net/1903/468.

330 D Venkata Lakshmi and Jeganathan L

Complex Systems, 28 © 2019

https://doi.org/10.1162/106454698568576
https://doi.org/10.1109/13.865205
https://doi.org/10.1016/0167-2789(84)90256-2
https://dx.doi.org/10.1109/ICEC.1995.487466
http://hdl.handle.net/1903/468

[9] J. D. Lohn and J. A. Reggia, “Automatic Discovery of Self-Replicating
Structures in Cellular Automata,” IEEE Transactions on Evolutionary
Computation, 1(3), 1997 pp. 165–178. doi:10.1109/4235.661547.

[10] D. Emmite, J. A. Reggia and M. Sipper, “Go Forth and Replicate,” SA
Special Editions, 18(1s), 2008 pp. 48–57.
doi:10.1038/scientificamerican0208-48sp.

[11] P. Bratley and J. Millo, “Computer Recreations: Self-Reproducing
Programs,” Software Practice and Experience, 2, 1972 pp. 397–400.
fab.cba.mit.edu/classes/865.18/replication/Bratley.pdf.

[12] J. Burger, D. Brill and F. Machi, “Self-Reproducing Programs,” Byte, 5,
1980 pp. 72–74.

[13] T. S. Ray, “An Approach to the Synthesis of Life,” Artificial Life II:
Proceedings of the Workshop on Artificial Life (C. G. Langton, et al.,
eds.), Santa Fe, NM, 1990, Redwood City, CA: Addison-Wesley, 1992
pp. 371–408.

[14] T. S. Ray, “An Evolutionary Approach to Synthetic Biology: Zen and
the Art of Creating Life,” Artificial Life, 1(1–2), 1993 pp. 179–209.
doi:10.1162/artl.1993.1.1_2.179.

[15] R. Laing, “Automaton Models of Reproduction by Self-Inspection,”
Journal of Theoretical Biology, 66(3), 1977 pp. 437–456.
doi:10.1016/0022-5193(77)90294-6.

[16] L. S. Penrose, “Self-Reproducing Machines,” Scientific American,
200(6), 1959 pp. 105–117. www.jstor.org/stable/26309511.

[17] J. Rebek Jr., “Synthetic Self-Replicating Molecules,” Scientific Ameri-
can, 271(1), 1994 pp. 48–55. www.jstor.org/stable/24942766.

[18] N. Ichihashi and T. Yomo, “Constructive Approaches for Understand-
ing the Origin of Self-Replication and Evolution,” Life, 6(3), 2016 26.
doi:10.3390%2 Flife6030026.

[19] R. Southwell and C. Cannings, “Some Models of Reproducing Graphs:
1 Pure Reproduction,” Applied Mathematics, 1(3), 2010 pp. 137–145.
doi:10.4236/am.2010.13018.

[20] R. Southwell and C. Cannings, “Some Models of Reproducing Graphs:
2 Age Capped Vertices,” Applied Mathematics, 1(4), 2010 pp. 251–259.
doi:10.4236/am.2010.14031.

[21] R. Southwell and C. Cannings, “Some Models of Reproducing Graphs:
3 Game Based Reproduction,” Applied Mathematics, 1(5), 2010
pp. 335–343. doi:10.4236/am.2010.15044.

[22] R. Southwell and C. Cannings, “Games on Graphs That Grow Deter-
ministically,” in International Conference on Game Theory for
Networks (Nets’09), Istanbul, 2009, Piscataway, NJ: IEEE, 2009
pp. 347–356. doi:10.1109/GAMENETS.2009.5137420.

Graph Self-Replication System 331

https://doi.org/10.25088/ComplexSystems.28.3.313

https://doi.org/10.1109/4235.661547
https://doi.org/10.1038/scientificamerican0208-48sp
http://fab.cba.mit.edu/classes/865.18/replication/Bratley.pdf
https://doi.org/10.1162/artl.1993.1.1_2.179
https://doi.org/10.1016/0022-5193(77)90294-6
https://www.jstor.org/stable/26309511
https://www.jstor.org/stable/24942766
https://dx.doi.org/10.3390%2Flife6030026
https://doi.org/10.4236/am.2010.13018
https://dx.doi.org/10.4236/am.2010.14031
https://dx.doi.org/10.4236/am.2010.15044
https://doi.org/10.1109/GAMENETS.2009.5137420
https://doi.org/10.25088/ComplexSystems.28.3.313

[23] M. Gardner, “Mathematical Games: The Fantastic Combinations of
John H. Conway’s New Solitaire Game ‘Life’,” Scientific American,
223(4), 1970 pp. 120–123. www.jstor.org/stable/24927642.

[24] V. L. Dasari. “MATLAB Code for Simulation of the Graph Reproduc-
tion System.” (Oct 4, 2019).
in.mathworks.com/matlabcentral/fileexchange/72869-matlab-code-for-
simulation-of-the-graph-reproduction-system.

[25] Y. Sakatani, T. Yomo and N. Ichihashi, “Self-Replication of Circular
DNA by a Self-Encoded DNA Polymerase through Rolling-Circle Repli-
cation and Recombination,” Scientific Reports, 8(1), 2018 13089.
doi:10.1038/s41598-018-31585-1.

332 D Venkata Lakshmi and Jeganathan L

Complex Systems, 28 © 2019

https://www.jstor.org/stable/24927642
https://in.mathworks.com/matlabcentral/fileexchange/72869-matlab-code-for-simulation-of-the-graph-reproduction-system
https://in.mathworks.com/matlabcentral/fileexchange/72869-matlab-code-for-simulation-of-the-graph-reproduction-system
https://doi.org/10.1038/s41598-018-31585-1

