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The  aim  of  this  paper  is  to  evaluate  the  performance  of  the  approach
that  focuses  on  support  vector  machine  (SVM)  classification  of  vocal
recording  to  differentiate  between  patients  affected  by  Parkinson’s  dis-
ease  (PD)  and  healthy  patients.  Our  study  was  based  on  the  condition
of  38  patients,  some  of  whom  are  healthy  and  others  who  suffer  from
PD.  The  study  was  carried  out  as  follows:  The  extraction  of  cepstral
coefficients  was  reached  through  the  transformation  of  the  speech  sig-
nal  by  discrete  wavelet  transform  (DWT)  and  also  through  cepstral
analysis by using the mel scale. At the end, a classification  was done by
the use of the two kernels linear and radial basis function (RBF) of the
SVM classifier. 
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Introduction1.

The nervous system controls all the workings of the body. The nerves,
spinal cord and brain are the components of this system, but if one of
them is affected, then the person could have trouble moving, swallow-
ing,  breathing,  learning  or  speaking.  More  than  that,  it  may  cause
problems with memory, senses or mood.

Among  the  neurological  diseases  are  degenerative  diseases,  where
nerve  cells  are  damaged  or  dead,  such  as  the  case  of  Alzheimer’s  dis-
ease and Parkinson’s disease. 

In  the  case  of  Parkinson’s  disease,  the  dopamine-producing  neu-
rons  that  are  damaged  are  in  the  area  of  the  brain  called  substantia
nigra.  Dopamine  is  a  chemical  messenger  or  a  neurotransmitter  that
plays a role in sending messages to the part of the brain that controls
movement  and  coordination.  The  loss  of  this  neurotransmitter  makes
it harder for people to control their movements.
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Signal treatment has been a means used to determine the diagnosis
of  diseases.  Image  treatment  is  used  in  Alzheimer’s  diagnosis  [1,  2].
Deepak  Gupta  and  Arnav  Julka  work  on  image  treatment  with  the
aim  of  diagnosing  Parkinson’s  disease.  To  evaluate  the  proposed
model,  Parkinson’s  speech  with  multiple  types  of  sound  recordings
and Parkinson’s handwriting samples datasets are used. The proposed
algorithm can be used in predicting Parkinson’s disease with an accu-
racy of approximately 94% [3]. 

In  vocal  analysis,  the  voice  signal  represents  the  convolution
between the excitation source and the vocal tract filter.  In the spectral
domain, this convolution becomes a product that makes it difficult  to
separate  the  contribution  of  the  source  and  the  tract.  This  problem
can  be  overcome  by  cepstral  analysis  using   cepstral  deconvolution
transforms,  which  transform  the  product  to  a  sum.  Cepstral  analysis
has  been  widely  used  for  voice  recognition  [4],  specifically  mel  fre-
quency  cepstral  coefficients  (MFCCs).  MFCC  analysis  consists  of
exploiting  the  properties  of  the  human  auditory  system  by  the  trans-
formation  of  the  linear  scale  of  frequencies  in  the  mel  scale  and  also
in the detection of diseases such as Parkinson’s disease [5, 6] by using
voice  recordings  from  different  people  during  the  pronunciation  of
sustained vowel /a/, then extracting the MFCCs. Respiratory patholo-
gies  using  pulmonary  acoustic  signals,  the  respiratory  sounds  used  in
this  study,  were  obtained  from  the  RALE  database  in  the  feature
extraction  stage.  The  MFCC  features  are  extracted  from  the  respira-
tory  sound  signals,  and  these  are  fed  to  the  SVM  and  k-nn  classifiers
separately in the classification stage. The maximum classification accu-
racies for the SVM and k-nn classifiers  were found to be 92.19% and
98.26%, respectively [7]. 

Recent  studies  have  been  done  by  T.  Belhoussine  Drissi  et  al.  in
which they work with the discrete wavelet transform (DWT), mel fre-
quency  cepstral  coefficients  and  the  SVM  classifier  [8].  Z.  Soumaya
et�al. apply the Daubechies db2 in the 3 scale from which they extract
the  MFCC  with  two  kernels  of  SVM  linear  and  radial  basis  function
(RBF)  [9].  S.  Zayrit  et  al.  [6]  propose  a  hybrid  method  based  on  the
time  frequency  domain  properties  and  the  K-nearest  neighbor  in  the
PD diagnosis. In this paper the MFCCs are extracted from the speech
signals  through  the  sorts  of  DWTs  that  were  tested,  and  through  the
cepstral analysis, and at the end applying the support vector machine
(SVM) as classifier. 

A  diagnosis  model  of  Parkinson’s  disease  will  be  presented  in  this
paper,  focusing  on  the  transformation  of  the  speech  signal  through
the proposal of time frequency treatment, followed by a cepstral anal-
ysis  in  order  to  extract  the  mel  frequency  cepstral  coefficients.  This
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model has been applied to a database [10] that is composed of 38�pa-
tients: 20 sick and the rest healthy. To conclude our study we devised
a  classification  of  the  database  that  was  done  in  the  following  way:
the  creation  of  a  training  base  that  represents  73%  of  the  database,
then testing of the entire database using two kernels linear and radial
basis function (RBF) of the SVM classifier. 

Wavelet Transform2.

The short-term Fourier transform (STFT) has been proposed to allow
time  and  frequency  analysis  of  a  signal  (spectrogram  calculation).
However, this tool has a limitation related to the rigidity of its tempo-
ral and frequency resolutions.

There  is,  however,  a  problem  called  the  “uncertainty  principle”:  It
is  not  possible  to  know  exactly  which  frequency  exists  for  a  given
moment  but  only  which  frequency  band  exists  over  a  time  interval.
We  cannot  know  exactly  which  component  spectral  exists  at  a  given
moment.  The  best  we  can  do  is  look  for  what  spectral  components
exist over a given time interval. It is a problem of resolution, and this
is the main reason that researchers went from STFT to wavelet trans-
form (WT). Indeed, the STFT gives a fixed  resolution for all moments
of time, while the WT gives a changeable resolution. The mathemati-
cal  equation  explaining  the  continuous  wavelet  transform  (CWT)  of
the signal s(t) is [11]: 

Wsa, b 
1

a

-∞

+∞

s(t)ψ*
t - b

a
dt. (1)

Here  ψ(t)  is  the  mother  wavelet,  ψ*(t)  is  the  conjugate  complex
ψ(t),  a  is  the  scale  factor,  and  b  is  the  translation  parameter.  In  this
paper  we  will  only  use  the  wavelets  of  Daubechies,  which  give  the
best  results  [8].  Daubechies  WT  as  described  by  Ingrid  Daubechies  is
an  orthogonal  wavelet  family  characterized  by  a  maximal  number  of
vanishing moments of some given support. Figure 1 shows a plot of a
Daubechies wavelet function.

The  DWT  is  the  discrete  version  of  the  CWT.  It  is  implemented
using  the  Mallat  algorithm  using  multi-resolution  analysis.  This  algo-
rithm  is  based  on  the  definition  of  a  pair  of  H  and  G  filters  that  are
shown  in  Figure  2,  also  called  quadratic  mirror  filters  (QMF),  whose
impulse responses h and g must satisfy certain conditions. 
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Figure 1. Daubechies wavelet function ψ.

Figure 2. Multi-resolution  analysis  at  three  levels  of  scales  (ai:  approxima-

tions and di: details).

Cepstral Coefficients at Mel Scale3.

Cepstral  analysis  is  widely  used  in  speech  and  speaker  recognition
applications, especially the MFCCs. This analysis explores the human
auditory system properties, realized through the transformation of the
linear scale of frequencies in the mel scale, which is linear in low fre-
quencies and logarithmic in high frequencies [4, 8].

In general, the signal that is the output of a system is caused by the
input  excitation  and  also  the  response  of  the  system.  As  a  conse-
quence, we can consider the signal as a convolution of the input exci-
tation and the response of the system. 

Many  speech  applications  necessitate  a  separate  estimate  of  these
individual components, hence a deconvolution between the excitation
source  and  the  vocal  tract  filter  is  important.  Cepstral  deconvolution
converts the product of two spectra to a sum of two signals. 
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That  is  the  spectrum  of  the  vocal  signal  S  E ·V,  with  E  the
spectrum  of  the  source  excitation  and  V  the  vocal  tract.  So

logS  log(E) + log(V),  separating V  and E.  The  exploitation  of  the

properties  of  the  human  auditory  system  by  a  transformation  of
the  frequencies  linear  scale  into  mel  scales  is  reached  by  applying  the
analysis of mel frequency cepstral coefficients.  This last scale is coded
through  a  bank  of  15  to  24  triangular  filters  spaced  linearly  up  to  1
kHz,  then  logarithmically  spaced  to  the  maximum  frequencies.  The
extraction  of  mel  frequency  cepstral  coefficients  is  given  by  (see
Figure 3): 

melf  2595 · log 1 +
1

1 + 700
. (2)

Figure 3. MVCCs extraction.

We  calculate  the  mel-frequency  cepstral  coefficient  from  the  fast
Fourier  transform  (FFT)  coefficients  by  converting  every  frame  of  N
samples  into  the  frequency  domain  instead  of  the  time  domain.  They
are  then  filtered,  employing  a  triangular  bandpass  filter  bank  where

melf  is  the  logarithmic  scale  of  the  normal  frequency  scale  f,  to

obtain  MFCCs  we  convert  to  time  through  the  discrete  cosine  trans-
form. The final  liftering phase aims to raise the cepstrum, which con-
sequently increases the amplitudes so that they become quite similar. 
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The Support Vector Machine4.

SVM  modeling  is  based  on  a  discriminative  method.  The  separation
between learning samples of two categories by a hyperplane that maxi-
mizes  the  distance  between  the  samples  is  the  principle  of  the  SVM.
The  linearly  separable  data  and  nonlinearly  separable  data  are  the
two cases of the SVM models. As for the case of the nonlinearly sepa-
rable  data,  we  change  it  by  projecting  the  data  into  a  higher  dimen-
sion  so  that  it  will  be  considered  linearly  separable.  This  nonlinear
function is reached through a function called kernel function. We rep-
resent among those kernels: 

◼ Linear kernel (simple scalar product): K(x, xi)  x * xi. 

◼ Radial basis function (RBF) kernel: K(x, xi)  exp-γ(x - xi)
2. 

◼ Polynomial kernel: K(x, xi)  x * xi + C
2. 

The  principal  of  the  SVM  classifier  is  quite  simple.  It  is  similar  to
teaching a child to differentiate between two objects, such as types of
fruit,  by  showing  them  pictures  of  apples  and  oranges  during  the
learning  phase  while  telling  them  their  names.  Then  we  show  the
child  a  picture  of  one  fruit  and  ask  them  to  name  it.  The  aim  of  this
test phase is to make sure that the child is able to say correctly which
is which. The algorithm of the SVM classifier follows:

Give  the  learning  samples  of  the  two  categories  S(x1, x2, …, xN),  hav-

ing the label (y1, y2, …, yN) with (yi)  1 or 0. 

1.

Input:  give  the  kernel  in  which  we  will  work  then  the  learning  data
with the label. 

2.

Output:  obtain  the  training  model:  two  categories  separated  by  the
hyperplane. 

3.

Input: inject the test sample x0. 4.

Output: obtain the predicted label x0, which is equal to 1 or 0 depend-

ing on the category in which the sample belongs. 

5.

Methodology and Results5.

In  this  paper  we  will  deal  with  the  database  [10]  with  the  aim  of
detecting healthy patients and those affected by PD. First we perform
a  time-frequency  treatment  by  the  Daubechies  wavelet  in  the  third
scale;  this  choice  is  based  on  the  study  in  [8].  After  testing  all  the
DWTs on the acoustic signal, then following the method shown in Fig-
ure  4(a),  we  concluded  that  the  Daubechies  wavelet  in  the  third  scale
and  the  use  of  the  SVM  linear  kernel  give  the  best  results.  In  this
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paper a classification  will be effected by the use of two SVM kernels,
the linear kernel and the RBF kernel, as given in Figure 4(b). Figure 4
shows the process of signal treatment in both studies. 

Figure 4. (a)  The  process  followed  in  [8];  (b)  the  process  followed  in
this paper.

The algorithm of the DWT stresses the definition  of a pair of filters
H  (lowpass  filter)  and  G  (highpass  filter).  The  filter  outputs  are  sub-
sampled  by  a  factor  of  2.  The  highpass  filter  provides  DWT  coeffi-
cients  or  signal  details  at  a  given  scale.  The  lowpass  filter  gives  the
coefficients  of  the  approximation  of  the  signal  at  the  same  scale.  The
recordings  in  which  the  patients’  voices  utter  the  vowel  sound  “a”
will be transformed into an acoustic signal; after that it is transformed
again by the use of Daubechies WT at level two on the scale tree. 

Afterward,  to  obtain  the  first  12  MFCCs  of  every  patient,  we  will
take  the  output  of  the  block  DWT,  in  which  only  the  approximation
a3  is  taken  into  account.  Finally  this  approximation  a3  will  be
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inserted in the MFCC block, in which we use the program “Htk mfcc
matlab”  [12].  Based  on  these  cepstral  coefficients,  a  categorization
will  be  effected  by  the  use  of  the  SVM  classifier,  so  as  to  have  a  pre-
cise  detection.  The  MFCC  consists  of  numerous  frames  that  necessi-
tate significant  processing time for categorization and that prevent an
exact  detection  [8].  To  cope  with  this  problem,  the  average  value  of
these  images  is  calculated  to  reach  the  voiceprint  (see  Figure  5).  To
classify healthy and sick patients, we use a training base that accounts
for  73%  of  the  database,  which  contains  20  recordings  of  sick
patients  and  18  of  healthy  patients.  Then  we  do  a  diagnostic  test  on
the  entire  data.  First,  we  use  the  linear  kernel  of  the  SVM  classifier.
Then  we  do  a  second  diagnostic  test  while  using  the  RBF  kernel.  We
calculate  some  measures  like  accuracy,  sensitivity  and  specificity
employing  the  formula  below  in  order  to  measure  the  SVM
performance [8]: 

Accuracy 
TP +TN

TP +TN + FP + FN
(3)

Sensitivity 
TP

TP + FN
(4)

Specificity 
TN

TN + FP
. (5)

FN  is  a  false  negative:  healthy  patients  who  were  incorrectly  classi-
fied,  and  TP  is  a  true  positive:  healthy  patients  who  were  correctly
classified. FP is a false positive: the PD patients who were incorrectly
categorized,  and  TN  is  a  true  negative:  the  PD  patients  who  were
correctly  categorized.  The  calculation  of  the  percentage  accuracy,
sensitivity  and  specificity  of  the  entire  set  of  recordings  from  the

Figure 5. Parkinson’s disease diagnosis process.
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training  base,  which  was  made  between  the  input  of  the  SVM  block
and  the  MFCC  block  output  (accounts  for  73%  of  the  database)
using  the  linear  kernel,  and  then  their  percentage  by  using  the  RBF
kernel,  are  given  in  Figure  6  and  results  without  using  the  DWT  are
given in Figure 7. 

Figure 6. The classification results by the use of DWT and kernel SVM.

Figure 7. Results of classification without the use of DWT.

Conclusion6.

This  paper  has  come  up  with  a  sample  of  Parkinson’s  disease  detec-
tion  based  on  a  cepstral  analysis  after  using  a  signal  transformation
by  the  time-frequency  treatment  by  the  discrete  wavelet  transform
(DWT)  applying  this  sample  on  a  database  of  voice  recordings  of
patients  while  uttering  the  vowel  “a.”  Daubechies  wavelet  was  used
in  order  to  transform  the  vocal  signals  by  the  third-scale  approxi-
mation.  The  extraction  of  the  first  12  mel  frequency  cepstral  coeffi-
cients (MFCCs) was realized by the insertion of the approximation a3
into the MFCC block. Those cepstral coefficients  are employed in the
classification  applying  the  support  vector  machine  (SVM)  with  two
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kernels  linear  and  radial  basis  function  (RBF).  When  we  do  the  test
with the training base, which accounts for 73% of the database, using
the  linear  kernel,  we  obtain  an  accuracy  of  79%,  whereas  the  test
while  using  the  RBF  kernel  gives  an  accuracy  of  81%.  From  that  we
notice  that  the  RBF  kernel  is  more  accurate  than  the  linear  kernel,
and  also  by  using  the  wavelet  we  got  better  results  than  the  method
without the wavelet: 7% higher using the linear SVM kernel and 14%
higher using the RBF SVM kernel. 
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