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This article describes the use of the SACI package—a package for calculat-
ing  the  energy  levels  and  wavefunctions  of  a  multi-electron  quantum  dot
modelled  as  a  2D  harmonic  well  with  electrons  interacting  through  a
Coulomb  potential  and  under  the  influence  of  a  perpendicular  magnetic
field.

‡ Introduction
Quantum  dots  are  artificially  fabricated  atoms,  in  which  charge  carriers  are
confined  in all  three  dimensions  just  like electrons  in real  atoms.  Consequently,
they  exhibit  properties  normally  associated  with  real  atoms  such  as  quantised
energy levels and shell structures.  These properties are described by the electron
wavefunctions whose evolution is governed by the Schrödinger equation and the
Pauli exclusion principle. 

There are many  methods  available  to solve  the Schrödinger  equation for  multi-
ple  electrons.  They  roughly  fall  into  the  categories  of  the  diagonalisation
method,  mean-field  density-functional  theory,  and  the  self-consistent  field
approach. One of the first theoretical studies of quantum dots was by Pfannkuche
et  al.  [1], who compared  the  results  of  Hartree–Fock  self-consistent  calculations
and  exact  diagonalisation  of  the  Hamiltonian  for  two  electrons  in  a  circularly
symmetric  parabolic  potential.  They  found  good  agreement  between  the  two
methods for the triplet state but marked differences for the singlet state, indicat-
ing  important  spin  correlations  were  not  included  properly  in  their  Hartree–
Fock model.  This  suggests  that  the proper  treatment  of electron spins  is  crucial
for correctly obtaining the electronic structures in quantum dots.

Examples of self-consistent  field approaches  in the literature include Yannouleas
and  Landman  [2,  3],  who  studied  circularly  symmetric  quantum  dots  using  an
unrestricted  spin-space  Hartree–Fock  approach,  and  McCarthy  et  al.  [4],  who
developed  a  Hartree–Fock  Mathematica  package.  Macucci  et  al.  [5]  studied
quantum dots with up to 24 electrons using a mean-field local-density-functional
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approach,  in which the spin exchange-correlation  potential was approximated by
an  empirical  polynomial  expression.  Lee  et  al.  [6]  also  studied  an  N-electron
quantum  dot  using  density-functional  theory,  where  the  generalised-gradient
approximation  was  used  for  exchange-correlation  potentials.  Exchange  interac-
tion comes directly from the antisymmetrisation of wavefunctions  as required by
Pauli’s  exclusion  principle.  In  density-functional  theory  this  is  a  major  problem
since  the  mathematical  object  is  the  electron  density  rather  than  the  electron
wavefunction,  making  evaluation  of  the  exchange  interaction  intrinsically
difficult.

Diagonalisation  approaches  in  the  literature  include  Ezaki  et  al.  [7,  8],  Eto  [9,
10],  Reimann  et  al.  [11],  and  Reimann  and  Manninen  [12],  who  each  applied  a
brute  force  approach  by  numerically  diagonalising  the  N-electron  Hamiltonian
using  Slater  determinants  composed  of  single-electron  eigenstates  as  the  basis
functions.  This  approach,  namely  the  configuration  interaction  (CI)  method,
takes  into  account  the  full  interaction  and  correlation  of  the  electrons  in  the
system  as  long  as  the  numerical  results  converge  with  an  increasing  number  of
basis  functions.  However,  such  an  approach  involves  the  calculation  of  a  very
large  number  of  interaction  integrals  and the  inversion  of  large  matrices,  which
can  be  prohibitively  expensive  in  terms  of  computer  resources.  Reimann  et  al.
[11]  employed  matrices  of  dimensions  up  to  108,375  with  67,521,121  nonzero
elements  for a  six-electron quantum  dot.  Calculations  for any  higher number  of
electrons  were  not  considered  numerically  viable  using  the  conventional  CI
formalism, even with state-of-the-art computing facilities.

We  have  recently  developed  a  spin-adapted  configuration  interaction  (SACI)
method  to  study  the  electronic  structure  of  multi-electron  quantum  dots  [13].
This method is based on earlier work by quantum chemist R. Pauncz [14], which
expands  the  multi-electron  wavefunctions  as  linear  combinations  of  antisymme-
trised  products  of  spatial  wavefunctions  and  spin  eigenfunctions.  The  SACI
method has an advantage over using Slater determinants in that a smaller basis is
used.  This  reduces  the  computational  resources  required,  allowing  calculations
for dots with more than six electrons on a desktop computer. 

After  some  theoretical  background,  we  present  results  from  a  Mathematica
package  which  employs  the  SACI  method  to  calculate  the  energy  levels  and
wavefunctions  of  multiple  electrons  confined  by  a  2D harmonic  well  and  under
the  influence  of  a  perpendicular  magnetic  field.  Mathematica  enables  the  exact
calculation  of  interaction  integrals  which  greatly  improves  the  speed  and  accu-
racy of calculations.

‡ SACI Package
The  SACI  package  encapsulates  all  the  functionality  needed  to  calculate  the
energy  levels  and  wavefunctions  for  electrons  in  a  2D  harmonic  well  potential
with/without the influence of a perpendicular magnetic field. 

Ensure that SACI.m is on your $Path and load the package.
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In[1]:= AppendTo�$Path, DirectoryName�ToFileName�
"FileName" �. NotebookInformation�EvaluationNotebook������;

In[2]:= �� SACI‘;

You can also choose  Input  @ Get File  Path  to locate SACI.m on your computer.
This  package  will  be  used  in  the  Theory  section  to  demonstrate  results  and
produce examples, as well as in the Calculations section to calculate energy levels
and wavefunctions.

‡ Theory
· Spin Eigenfunctions

When measuring the component of an electron’s spin angular momentum along

an axis, the result is either + —ÅÅÅÅÅ
2

 or - —ÅÅÅÅÅ
2

. Conventionally, we denote this axis as the

z-axis and work in units in which — is one. The two spin eigenstates  in which we
are  certain  of  the  electron’s  spin projection  are denoted  a  and b,  which  are  the

eigenfunctions  of  the  projection  S
`

z  operator.  To  find  projected  spin
eigenfunctions for multiple electrons we can simply multiply single electron spin
eigenstates  (e.g.,  abbaa  or  baaba  for  five  electrons).  We  call  these  simple
multiplications  of  a’s  and  b’s  elementary  spin  eigenfunctions.  Quantum
mechanics  also  allows linear combinations  of projected spin eigenfunctions  (e.g.,

j = 1ÅÅÅÅÅ
2

abbaa + 1ÅÅÅÅÅ
2

baaba). As long as each term in the spin function has the same

number  of  a’s  and  b’s,  we  will  still  have  an  eigenfunction  of  S
`

z ,  that  is

S
`

z  j = Mj,  where  M  is  the  spin  projection  quantum  number  given  by  half  the
number  of  spin  up  electrons  minus  half  the  number  of  spin  down  electrons

(M = 1ÅÅÅÅÅ
2

 in this case).

The square of the total spin is also quantised:

(1)S
` 2

 X = S
ikjjjS +

1
ÅÅÅÅÅÅ
2

y{zzz X ,

where  X  is  a multi-electron  spin eigenfunction (spin eigenfunction)  and S  is  the
total  spin  quantum  number.  Elementary  spin  eigenfunctions  with  the  same

number of a’s and b’s will be eigenfunctions of S
`

z , each with the same projected

spin quantum number M , but they are not in general eigenfunctions of S
` 2

. Thus
X  will in general be a linear combination of elementary spin eigenfunctions.

One way to calculate the spin eigenfunction  is to use the Dirac identity to write

the S
` 2

operator in terms of permutations

(2)S
` 2

 X = ‚
i< j

N -1

P
`

i j  X +
N
ÅÅÅÅÅÅÅÅ
4

 H4 - N L X ,

where  N  is  the number  of  electrons confined in the quantum dot and P
`

i j  is  the

permutation operator. To form eigenfunctions of S
` 2

, we can calculate the action
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of S
` 2

on each of the elementary  spin eigenfunctions.  We convert S
` 2

into a matrix
with  X  the  vector  of  coefficients  of  the  elementary  spin  eigenfunctions  in  the
linear  combination.  We can  then  solve  the  matrix  eigenvalue  problem to  calcu-
late all the spin eigenfunctions. There may be more than one eigenfunction for a
given  total  spin  quantum  number,  and  so  we  carry  out  an  orthonormalisation
procedure to calculate an orthonormal spin eigenspace.

In  the  SACI  package,  we  define  N  and  M  implicitly  using  ElectronList,  in
which 1 represents a spin up electron and 0 represents a spin down electron.

In[3]:= ElectronList � �1, 1, 0�;

N  is the length of the list  and M  is  defined by the number  of ones and zeros in

the  list.  In  this  case  N = 3 and  M = 1ÅÅÅÅÅ
2

.  We  then define  the  total  spin  quantum

number S. 

In[4]:= S �
1
����
2
;

S  must  be  compatible  with  the  number  of  electrons  and  M  to  get  meaningful
results.  With  S,  M ,  and  N  in  place  we  can  calculate  the  spin  basis  and  then
display it.

In[5]:= CalculateSpinBasis��

In[6]:= ShowSpinBasis��

Out[6]//TableForm=
�Α,Β,Α����������������������������

2
� �Β,Α,Α����������������������������

2

������2�����3 �Α, Α, Β� � �Α,Β,Α����������������������������
6

� �Β,Α,Α����������������������������
6

We  can  see  that  we  have  a  2D  spin  eigenspace  as  there  are  two  basis  vectors
produced.  Calculating  the spin eigenfunctions  is  a prerequisite  to the rest of the
calculations.  Henceforth,  we  label  spin  eigenvectors  X HN , S, M ; iL,  where  N  is
the  number  of  electrons,  M  and  S  are  the  spin  quantum  numbers,  and  i  is  an
index to identify vectors in a multi-dimensional basis.

·  Fock–Darwin Solutions
The  solution  for  a  single  electron  moving  in  a  2D  harmonic  well  under  the
influence  of  a  perpendicular  magnetic  field  was  solved  independently  by  Fock
[15] and Darwin [16]. With the Hamiltonian

(3)H
`

0 =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2 m*

 J p̀ -
e
ÅÅÅÅÅ
c

 A
` N2 +

1
ÅÅÅÅÅÅ
2

 m*  w0
2  r̀2

we get the energy eigenvalues

(4)Enm = H2 n + †m§ + 1L — $%%%%%%%%%%%%%%%%%%%%%%%%1
ÅÅÅÅÅÅ
4

 wc
2 + w0

2 -
1
ÅÅÅÅÅÅ
2

 m — wc
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and the wavefunctions 

(5)ynm Hr, qL = ikjj2 k†m§+1  
n !

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅHn + †m§L !
y{zz

1ÅÅÅÅÅ
2

 r †m§  ‰ -kÅÅÅÅÅÅÅÅ
2

 r2

 Ln
†m§ Hk r2 L 1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!
2 p

 ‰i m q ,

where  m*  is  the  effective  mass,  w0  the  harmonic  well  constant,  wc = e BÅÅÅÅÅÅÅÅÅÅÅm* c  the

cyclotron frequency, k = bÅÅÅÅÅÅÅÅÅ
2 l0

 the effective harmonic well constant, l0 = "########—cÅÅÅÅÅÅÅÅe B  the

magnetic length, b = $%%%%%%%%%%%%%%%%%%%%%1 + 4 w0
2

ÅÅÅÅÅÅÅÅwc
2 , B the magnetic field,  and Ln

†m§ HxL the genera-

lised Laguerre polynomials. 

To  coincide with  experiments  done on a  circularly  symmetric  quantum,  we will
choose  solid-state  parameters  appropriate  for  GaAs  (i.e.,  m* = 0.067 me  and
e = 13.1 e0 , where me  is the electron mass and e0  is the vacuum permittivity).

In[7]:= relativeeffectivemass � 0.067;

In[8]:= relativepermittivity � 13.1;

When we are working in effective atomic units,  the unit of length is the effective
Bohr  radius.  This  is  given  by  the  function  lengthscale  with  the  result  in
nanometers.

In[9]:= lengthscale�relativeeffectivemass, relativepermittivity�

Out[9]= 10.3466

Here is a plot of the probability density for y2,1 Hr, qL in GaAs in a harmonic well
in which the gap between the first and second energy levels is 10 meV and there
is no magnetic field. Fixing the first energy gap is a convenient way to define the
harmonic  well  constant  as  it  can be determined  experimentally.  We also  set  the
magnetic  field to 1 Tesla and plot six effective  Bohr radii from the centre of the
well.

In[10]:= firstenergygap � 10.0;
magneticfield � 1;

In[12]:= SingleElectronProbabilityDensity�2, 1,
firstenergygap, magneticfield, relativeeffectivemass,
relativepermittivity, 6, BoxRatios � �1, 1, .3��

-50

0

50
-50

0

50

0
0.2
0.4

0.6

-50

0

50

400 Ranga D. Muhandiramge and Jingbo Wang

The Mathematica  Journal 10:2 © 2006 Wolfram  Media, Inc.



The base scale is in nanometers and indicates the scale of the quantum dot.

Multiplying  one-electron  functions  together  (e.g.,  F = y1,0  y1,0  y2,0  y2,0  y2,1 )
allows us to form multi-electron spatial wavefunctions that can be combined with
the spin eigenfunctions. However, the combinations of spin and spatial wavefunc-
tions must obey Pauli’s exclusion principle as described in the next section.

·  The Antisymmetry and Representation Matrices
The  Pauli  exclusion  principle  states  that  because  electrons  are  indistinguishable
fermions (half-integer spin particles), any wavefunction that describes the motion
of electrons must change sign if both the spin and spatial coordinates of any pair
of  electrons  are  interchanged.  Consequently  in the N-electron  case,  if  we  apply
any permutation P to the electrons, the following holds:

(6)P Y = H-1Lp Y,

where Y is the multi-electron wavefunction and H-1Lp  is the parity of the permuta-
tion.  To  antisymmetrise  a  wavefunction  we  apply  the  antisymmetrisation
operator

(7)A =
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!!!!!
N !

 ‚
PœSN

H-1Lp  P,

where  SN  is  the  symmetric  group  (the  set  of  all  permutations  of  N  electrons
under composition). A wavefunction must be an eigenfunction of the antisymme-
trisation operator if it is to fully describe the physical properties of the electrons.

Since the permutation and spin operators commute, if we apply a permutation to
a  spin  eigenfunction,  the  result  is  another  spin  eigenfunction.  This  new  spin
eigenfunction  is  not,  in  general,  one  of  the  functions  already  calculated  but  a
linear  combination  of  them.  In  fact,  the  coefficients  of  the  linear  combination
form  matrices  which  together  form  a  representation  of  the  symmetric  group.
Explicitly

(8)P X HN , S, M ; kL = ‚
i=1

d

U HPLik  X HN , S, M ; iL,
where X HN , S, M ; kL is the kth  spin eigenfunction for N  electrons with total spin
quantum numbers  S  and M  in  an eigenspace  of  dimension  d,  and  U HPLi k  is  theHi, kLth  element  of  the  representation  matrix  U HPL.  It  can  be shown  that  for  any
two permutations R and P 

(9)U HR PL = U HRL U HPL,
where  R P  is  the  composite  permutation  derived  by  acting  with  P  first  then  R.
Equation (9) satisfies  the condition for a representation  of the symmetric group.
These  representation  matrices  and  their  properties  are  useful  in  simplifying  the
calculation of the Hamiltonian matrix. 
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We can see that our spin eigenfunctions are eigenfunctions of P1,2  by the repre-

sentation  matrix  of  P1,2 .  The  permutation  is  given  by  a  reordering  of  the
list 81, 2, 3, … , N <. For  example,  in a  three-electron system, 82, 1, 3<  represents
the transposition  of electrons 1 and 2 and 81, 3, 2<  the transposition of electrons
2 and 3.

In[13]:= RepresentationMatrix��2, 1, 3�� �� TableForm

Out[13]//TableForm=

�1 0

0 1

This  shows  spin  eigenfunction  two  is  unchanged  by  the  permutation  and  spin
eigenfunction one changes sign under the permutation. In general the action of a
permutation can lead to a linear combination of the spin eigenfunctions.

In[14]:= RepresentationMatrix��1, 3, 2�� �� TableForm

Out[14]//TableForm=

1�����
2

�
����
3�������������
2

�
����
3�������������2 � 1�����2

This  shows  that  under  the  permutation  P2,3  the  spin  eigenfunctions  transform
via  a  linear  combination.  The  following  demonstrates  the  relation  given  by
equation (9).

In[15]:= RepresentationMatrix��2, 1, 3�� .RepresentationMatrix��1, 3, 2�� ��
RepresentationMatrix��3, 1, 2��

Out[15]= True

·  Spin-Adapted Basis
To get  an N -electron  spin-spatial  basis  function we can multiply  N  single-elec-
tron wavefunctions,  given by equation (5),  combine  them with a spin eigenfunc-

tion  of  S
` 2

 and  S
`

z ,  and  then  antisymmetrise  the  result.  The  antisymmetrisation
process  restricts  which  spatial  and  spin  combinations  give  nonzero  results  as
discussed in detail in reference [13]. 

We use a five-electron quantum dot as an example,  where the system wavefunc-
tion F = y1,0  y1,0  y2,0  y2,0  y2,1  and there are two doubly occupied spatial orbitals.

Two possible spin eigenfunctions for S = 1ÅÅÅÅÅ
2

, M = 1ÅÅÅÅÅ
2

 are 

(10)

X H1L = -
1
ÅÅÅÅÅÅ
2

ababa +
1
ÅÅÅÅÅÅ
2

abbaa +
1
ÅÅÅÅÅÅ
2

baaba -
1
ÅÅÅÅÅÅ
2

babaa,

X H2L = -
abaab
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!

3
+

ababa
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2
è!!!!

3
+

abbaa
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2
è!!!!

3
+

baaab
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅè!!!!

3
-

baaba
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2
è!!!!

3
-

babaa
ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
2
è!!!!

3
.

Both  X H1L and  X H2L  are  antisymmetric  under  permutation  P1, 2 ,  but  X H1L  is
antisymmetric  under  permutation P3, 4 ,  while X H2L  is  symmetric under permuta-
tion P3, 4 . This means A F X H2L vanishes but A F X H1L is nonzero. 

402 Ranga D. Muhandiramge and Jingbo Wang

The Mathematica  Journal 10:2 © 2006 Wolfram  Media, Inc.



The CalculateSpinBasis  function applies  a procedure to ensure the spin basis
functions  are  also eigenfunctions  of the permutations  P1, 2 , P3, 4 ,  … . This prop-
erty  is  required  for  the  Hamiltonian  matrix  element  formulae,  described  in  the
Matrix Elements Rules section, to be valid. A basis whose spin eigenfunctions are
simultaneously  eigenfunctions  of  P1, 2 , P3, 4 ,  …  are  guaranteed  to  exist  as  the

permutation operators together with S
` 2

 and S
`

z  pairwise commute.

· Diagonalisation
The multi-electron Hamiltonian is given as the following:

(11)H
`

= ‚
i=1

N

H
`

0 i + „
j=2

N

„
i=1

j

e2

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅ
4 pe

 
1

ÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅÅ†r◊i - r
◊

j § .

This  is  simply  the  sum  of  the  single-electron  energies  defined  by  equation  (3)
plus  the pairwise  Coulomb interactions.  The fact  that  we are  working in a solid
state  media  is  modelled  by using  the relative  effective  mass  m*  and the effective
permittivity e. 

We wish to solve the following equation:

(12)H
`

 Y = E Y

for  the  energy  levels  E  and  wavefunctions  Y.  The  standard  diagonalisation
method is  to approximate  Y  as  a  sum of  a  finite  sum of basis  functions  with  the
convergence  improving  as  we  increase  the  size  of  the  basis.  This  converts  the
problem  into  a  matrix  eigenvalue  problem.  However,  to  get  a  good  approxima-
tion to  the solution  we need to choose  the basis  wisely as  there  is  a  limit  to the
size  of  the  matrix  that  is  computationally  feasible.  We  also  need  to  be  able  to
efficiently calculate the Hamiltonian matrix elements.

· Basis Choice
The SACI method uses normalised, antisymmetrised products of spin eigenfunc-
tions  and  spatial  wavefunctions  given  by  products  of  Fock–Darwin  solutions  as
basis  elements.  The  elements  of  our  Hamiltonian  matrix  are  thenYNF  AF X HiL » H

` » NY  AY X H jL]  for  various  spatial  wavefunctions  F  and  Y,  spin

eigenfunctions X HiL and X H jL, and normalisation constants NF  and NY . 

The  SACI  method  reduces  the  number  of  basis  elements  required  by  ensuring
the  wavefunction  satisfies  the  Pauli  exclusion  principle  from  the  outset  and
restricting the calculation to specific spin quantum numbers S and M .

Although each of the basis  elements  is  a  sum of  N !  terms, the properties  of  the
antisymmetriser  and  the  spin  eigenfunctions  allow  enormous  simplification  of
the  calculation  similar  to  the  Slater–Condon  rules  for  matrix  elements  between
Slater  determinates.  In  effect,  only  the  product  spatial  wavefunction  and  spin
eigenfunction need to be specified for each basis element with the normalisation
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constant and antisymmetrisation built into the rules for calculating the Hamilto-
nian elements.

We need to be careful in the selection of basis elements,  however, as we need an
orthonormal  basis  for  the  diagonalisation  expansion  to  be  valid.  Remember,
some  spin  and  spatial  combinations  vanish  and  thus  cannot  be  included  in  the
basis.  We  must  also  make  sure  the  set  of  basis  elements  is  mutually  orthogonal
and  normalised  (i.e.,  XNF  A F X HiL » NY  A Y X H jL\ = 1  if  F = Y  and  i = j,  and  0
otherwise).  To  do  this,  we  select  only  spatial  wavefunctions  that  have  doubly
occupied  orbitals  in the first  and  second position,  the third  and fourth  position,
…  to  match  the  spin  eigenfunctions  symmetry  or  antisymmetry  under  the
operators  P1,2 ,  P3,4 ,  …  .  The  properties  of  the  antisymmetriser  then  guarantee
the production of a complete orthonormal basis.

The  SACI  package  automates  the  process  of  the  orthonormal  basis  generation.
As we can select  only a finite number of basis elements out of an infinite set, we
need  to  have  some  method  of  selecting  appropriate  basis  elements.  As  we  are
usually interested in the ground and first few excited states of a quantum dot, we
have chosen to use basis elements in increasing order of the sum of their compo-
nent one-electron energies.

Elaborating,  with  no  magnetic  field  the  energy  levels  of  the  Fock–Darwin
wavefunctions  are  given  by  En m = H2 n + †m§ + 1L E0 .  If  there  were  no  interac-
tion between the electrons,  the energy of a multi-electron  state would simply be
the  sum  of  the  one-electron  energies,  for  example,  the  energy  of  y1,0  y0,-1  y2,1

would  be  H2 µ 1 + †0§ + 1L E0 + H2 µ 0 + †-1§ + 1L E0 + H2 µ 2 + †1§ + 1L E0 = 11 E0 .
We  select  a  basis  consisting  of  all  those  elements  with  a  noninteracting  energy
less than a certain cutoff.

In[16]:= cutoffenergy � 5;

The variable cutoffenergy is set to a cutoff energy of 5 E0 . We can then create
a basis.

In[17]:= BasisCreate�cutoffenergy�

Out[17]= ����0, 0�, �0, 0�, �0, �1��, 1�,
���0, 0�, �0, 0�, �0, 1��, 1�, ���0, 0�, �0, �1�, �0, 1��, 1�,
���0, 0�, �0, �1�, �0, 1��, 2�, ���0, 0�, �0, 0�, �0, �2��, 1�,
���0, 0�, �0, 0�, �0, 2��, 1�, ���0, 0�, �0, 0�, �1, 0��, 1�,
���0, �1�, �0, �1�, �0, 0��, 1�, ���0, 1�, �0, 1�, �0, 0��, 1��

BasisCreate  produces  a  list  of  basis  elements  with  noninteracting  energy  less
the  specified  cutoff.  The  spatial  component  of  each  basis  element  is  given  by  a
list of pairs of integers  denoting the quantum numbers  n and m for each orbital.
The number at the end of the list denotes the index of the spin eigenfunction (its
position when ShowSpinStatus runs) with which it is combined.

We  notice  that  spin  eigenfunction  “1”  is  antisymmetric  with  respect  to  the
permutation  P1,2 ,  so  it  can  be  combined  with  the  doubly  occupied  orbitals,  but
spin  eigenfunction  “2” is  symmetric  with  respect  to P1,2 ,  so it  can only be  com-
bined with nondoubly occupied orbitals.
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· Matrix Elements Rules
As  mentioned  previously,  there  are  general  rules  for  calculating  Hamiltonian
matrix  elements.  These  rules  are  coded  in  the  function  InteractionHamilto�
nianMatrixElement,  and  their  derivation  can  be  found  in  [13].  In  brief,  when
the  spatial  wavefunctions  of  the  two  basis  elements  differ  by  more  than  two
orbitals  (i.e., after being sorted so the orbitals are in maximum correspondence),
then  the  matrix  element  is  zero;  when  the  spatial  orbitals  differ  by  two  or  less
orbitals,  a  different  rule  applies  for  each  of  the  three  cases  (i.e.,  zero,  one,  and
two  orbitals  differ).  These  formulas  are  quite  general  and  can  be  used  for  any
interaction Hamiltonian that acts pairwise.

In the Hamiltonian element formulas we must calculate the two-electron interac-
tion integral. For the case of electrons in a 2D harmonic well interaction through
a  Coulomb  potential  under  the  influence  of  a  perpendicular  magnetic  field,  the
integral is in the following form: 

(13)‡
0

¶‡
0

¶‡
0

2 p‡
0

2 p

r s
y*

nm Hr, qL y*
pq Hs, fL yab Hr, qL ycd Hs, fL
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We  need  to  be  able  to  do  this  integral  for  many  combinations  of  the  quantum
numbers  n, m, p, q, a, b, c,  and  d.  We  notice  that  when  r = s  and  q = f,  we

have a singularity as the 1ÅÅÅÅÅÅÅr2  Coulomb interaction goes to infinity as the electrons

move closer together.

However  by  using  Mathematica  and  a  little  ingenuity,  we  can  do  this  integral
exactly  in  all  cases  needed  in  computation.  The  detailed  derivation  (breaking
down and transforming  the integral  into  a  sum of  components)  can be found in
[13].  For  example,  we  set  the  quantum  numbers  n, m, p, q, a, b, c,  and  d  in
order.

In[18]:= InteractionIntegral�2, 1, 2, 1, 0, 0, 0, 2�

Out[18]=
735

����Π
�������������������������������
32768

We also note that if b + d ∫ m + q (i.e., the sum or the orbital angular momentum
quantum numbers are not equal), the interaction integral is zero.

In[19]:= InteractionIntegral�2, 1, 2, 1, 0, 1, 0, 2�

Out[19]= 0

These integrals  are  done with the effective  harmonic  well  constant  k  set to one.
Values  of  the  interaction  integral  for  the  effective  harmonic  well  constant  k = 1
can  easily  be  transformed  to  any  value  of  k.  Thus  when  we  do  an  interaction
integral, it is done for k = 1 and transformed to the correct value of k afterwards.
This  allows  us  to  store  interaction  integral  values  for  various  combinations  of
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n, m, p, q, a, b, c, and d as function definitions and save them to use later. This
process is done dynamically so that values are saved as definitions only if they are
used. 

Here  are  some  examples  of  interaction  Hamiltonian  matrix  elements  indicating
that they can be done exactly.

In[20]:= InteractionHamiltonianMatrixElement�
���0, 0�, �0, 0�, �0, �1��, 1�, ���0, 0�, �0, 0�, �0, �1��, 1��

Out[20]=
9�����Π�����

2���������������������������
4

In[21]:= InteractionHamiltonianMatrixElement�
���0, 0�, �0, 0�, �1, 1��, 1�, ���0, 0�, �0, 0�, �0, 1��, 1��

Out[21]=
7
����Π

�����������������������
32

In[22]:= InteractionHamiltonianMatrixElement�
���0, 0�, �0, 0�, �0, 1��, 1�, ���0, 0�, �0, 0�, �0, 2��, 1��

Out[22]= 0

It can also be proved that the interaction element is zero if the sum of the orbital
angular  momentum  quantum numbers  are  not the same,  hence,  the last  calcula-
tion leads to zero.

In[23]:= InteractionHamiltonianMatrixElement�
���0, 0�, �0, �1�, �0, 1��, 2�, ���0, 0�, �0, 0�, �1, 0��, 1��

Out[23]= �
������
3 Π

�����������������������
32

In[24]:= InteractionHamiltonianMatrixElement�
���0, 0�, �0, �1�, �0, 1��, 1�, ���0, 0�, �0, 0�, �1, 0��, 1��

Out[24]= �
����Π
�����������������
32

The preceding calculations show that the spin eigenfunction with which a spatial
wavefunction  is  combined  makes  a  nontrivial  contribution  to  the  Hamiltonian
matrix element calculation.

‡ Calculations
In  this  section  we  will  demonstrate  how  the  package  can  be  used  to  do  various
calculations  such as  energy  levels,  wavefunctions,  convergence  plots,  and energy
level evolutions with magnetic fields.

· Energy Levels
To calculate  energy  levels,  we need  to  choose  a  basis.  For  larger  basis  sizes  the
calculation  will  take  longer  and  require  more  memory  (the  size  of  the  matrix  is
the size of the basis squared) but the convergence will be better.

406 Ranga D. Muhandiramge and Jingbo Wang

The Mathematica  Journal 10:2 © 2006 Wolfram  Media, Inc.



In[25]:= cutoffenergy � 12;
L � 0;

In[27]:= Length�basisLzero � BasisCreateOneL�cutoffenergy, L��

Out[27]= 123

We  choose  a  basis  with  a  single  total  orbital  angular  momentum  quantum
number  L.  The  properties  of  the  circularly  symmetric  quantum  dot  allow  us  to
separate calculations  for different values  of L,  thus reducing  the size  of the basis
needed for each calculation allowing for greater accuracy.  We then calculate the
interaction Hamiltonian using the function InteractionHamiltonian.

In[28]:= LoadIntegralandHamiltonianData��

File ’Ideffile’ not found in directory:
	Users	TMJ � File being created.

The size of the Hamiltonian matrix
element definition file ’Ideffile’ is 52 Bytes.

In[29]:= Timing�Hint � InteractionHamiltonian�basisLzero� �

Out[29]= �41.328 Second, SparseArray
�7557	, �123, 123���
In[30]:= SaveIntegralandHamiltonianData��;

The calculation of this matrix can be time-consuming, so it is worthwhile to save
the  result,  as  the  interaction  Hamiltonian  calculated  for  a  particular  number  of
electrons  and spin quantum numbers  S  and L  can then be used for any  value of
the  harmonic  well  constant,  magnetic  field,  relative  effective  mass,  and  relative
permittivity. We have also loaded previously calculated integral definitions using
the  function  LoadIntegralandHamiltonianData  to  speed  up  our  calculation
and saved the data afterward using SaveIntegralandHamiltonianData to speed
up future calculations run in other sessions.

Next we set the magnetic field strength to 0 Tesla remembering that firstener�
gygap was set to 10 meV previously and relativeeffectivemass and relative�
permittivity are set to the parameters for GaAs.

In[31]:= magneticfield � 0;

We then can calculate the Hamiltonian  for  GaAs with these  particular  values  of
the harmonic well constant and magnetic field and plot the energy levels.

In[32]:= H � TotalHamiltonian�Hint, basisLzero, firstenergygap,
magneticfield, relativeeffectivemass, relativepermittivity�;

In[33]:= numberoflevels � 10;
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In[34]:= EnergyLevelPlot�H, numberoflevels,
relativeeffectivemass, relativepermittivity,
PlotStyle � �PointSize�.02�, Hue�.02��, Frame � True,
FrameLabel � �"Level Number", "Energy �eV	", "Energy Level Plot", ""�,
RotateLabel � False, Axes � False�

2 4 6 8 10
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0.085
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Energy Level Plot

The plot shows the first 10 energy levels for a GaAs quantum dot system of three

electrons with spin quantum numbers  S = 1ÅÅÅÅÅ
2

, M = 1ÅÅÅÅÅ
2

, and total angular momen-

tum  quantum  number  L = 0  in  a  zero  magnetic  field.  The  harmonic  well  con-
stant is implicitly defined by a first energy gap of 10 meV.

· Convergence Plots
As  mentioned,  the  accuracy  of  our  result  as  well  as  the  computational  time
required  increases  with  the  size  of  the  basis.  We  can  test  the  convergence  with
the following series of functions.

As the interaction Hamiltonian for lower cutoff energies is a submatrix of interac-
tion Hamiltonians with higher cutoff energies, we can do convergence tests using
a single  interaction  Hamiltonian.  We will use the interaction  Hamiltonian  from
the previous section.

The Convergence  function takes submatrices of the Hamiltonian using different
basis  sizes  as  specified  by  the  input  sizelist  and  calculates  the  energy  of  the
levels  specified  by  wantedlevels.  The  ground  state  is  specified  by  1,  the  first
excited  state  by  2,  and  so  on.  This  allows  the  convergence  properties  of  the
solution to be ascertained.

The  list  basis  size  can  be  specified  manually,  but  a  convenient  method  is  to
choose all the basis sizes that correspond to the different cutoff energies.

In[35]:= wantedlevels � �1, 2�;
cutoffmin �

Catch�Do�If�Length�BasisCreateOneL�cut, L�� � Max�wantedlevels�,
Throw�cut��, �cut, cutoffenergy���;

cutoffmax � cutoffenergy;

In  the  preceding  code,  we have specified  wantedlevels  to  examine  the  ground
state  and first  excited state.  We set cutoffmin  to be  the first  cutoff  energy that
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will  produce  the  highest  energy  level  requested,  as  we can  only  approximate  up
to N  levels when we have N  basis elements.

In[38]:= cutoffbasis � Table� Length�BasisCreateOneL�Energy, L��,
�Energy, cutoffmin, cutoffmax, 2��

Out[38]= �3, 15, 48, 123�

As there may be large gaps in the basis sizes, we can also add in points at interme-
diate intervals. Here, we add a basis size of 85.

In[39]:= sizelist � Sort�cutoffbasis�Join� �85��

Out[39]= �3, 15, 48, 85, 123�

We can then  calculate the  energies  of  the ground  state and  first  excited state  as
we increase the basis size. The energies are in meV.

In[40]:= �conlist �
1000 Transpose�Convergence�Hint, basisLzero, firstenergygap,

magneticfield, relativeeffectivemass, relativepermittivity,
L, sizelist, wantedlevels�� 	 �� TableForm

Out[40]//TableForm=

76.6437 73.3202 73.0706 72.9689 72.912

79.0659 75.0315 74.6208 74.529 74.4597

The following plot shows convergence of energies of the two lowest states. 

In[41]:= g1 � ListPlot�Transpose��sizelist, conlist��1����, PlotStyle �
�PointSize�.02�, Hue�.02��, DisplayFunction � Identity�;

g2 � ListPlot�Transpose��sizelist, conlist��2����, PlotStyle �
�PointSize�.02�, Hue�.3��, DisplayFunction � Identity�;

Show�g1, g2, DisplayFunction � $DisplayFunction, Frame � True,
FrameLabel � �"Basis Size", "Energy �meV	", "Convergence Plot", ""�,
RotateLabel � False, Axes � False�
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We can see that  the convergence  is  quite  good  for relatively  small  basis sizes  in
this case.

· Electron Density Plots
We can extract electron density plots for various energy levels by calculating the
normalised  energy  eigenvectors  of  the  full  Hamiltonian  and  using  the  function
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ElectronDensity.  We can then plot the electron density and use lengthscale
to give the length dimensions in nanometers.

First we calculate the energy eigenvectors for the first six energy levels.

In[44]:= highestlevel � 6;

In[45]:= energyeigenvectors � Eigenvectors�H, �highestlevel�;

Next  we  use  ElectronDensityFunction  to  convert  the  normalised  energy
eigenvector  into  a  probability  density  function  by  combining  it  with  the  basis
basisLzero.  This  is  then  simplified  to  cancel  out  the complex  components.  As
the density function is a measurable quantity, we are guaranteed that the complex
components  will  cancel.  Chop  is  used  to  remove  any  complex  components  that
remain due to rounding.

In[46]:= ElectronDensityFunctionTable � Table�ElectronDensityFunction�
Normalize�energyeigenvectors��highestlevel � n���, basisLzero,
r, Α, firstenergygap, magneticfield, relativeeffectivemass,
relativepermittivity�, �n, 0, highestlevel � 1��;

In[47]:= ElectronDensityFunctionTableSimplified � Table�
Expand�ComplexExpand�ElectronDensityFunctionTable��n� � �� Chop��,
�n, 1, highestlevel��;

We can see that we end up with a numerical approximation to the wavefunction.
Here is an example. 

In[48]:= ElectronDensityFunctionTableSimplified��1��

Out[48]= 0.647537 
�0.941276 r2 � 0.452761 
�0.941276 r2 r2 � 0.0693917 
�0.941276 r2 r4 �
0.0160081 
�0.941276 r2 r6 � 0.000113611 
�0.941276 r2 r8 �
9.19624�10�6 
�0.941276 r2 r10 � 7.84521�10�7 
�0.941276 r2 r12 �
6.72418�10�11 
�0.941276 r2 r14 � 7.01335�10�11 
�0.941276 r2 r16

The following  plot  shows the  electron probability  density  functions  for  the first

six  energy levels  with S = 1ÅÅÅÅÅ
2

, M = 1ÅÅÅÅÅ
2

,  and L = 0 for the three-electron  quantum

dot system that has been the subject of our examples.

In[49]:= WavefunctionTable �
Table �ParametricPlot3D��r lengthscale�relativeeffectivemass,

relativepermittivity� Cos�Α�,
r lengthscale�relativeeffectivemass, relativepermittivity�
Sin�Α�, ElectronDensityFunctionTableSimplified��3 m 	 n���,

�r, 0, 7�, �Α, 0, 2 Π�, BoxRatios � �1, 1, .3�,
DisplayFunction � Identity�, �m, 0, 1�, �n, 1, 3��;
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In[50]:= Show�GraphicsArray�WavefunctionTable��
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· Energy Levels versus Magnetic Fields
The SACI package also allows the calculation of the evolution of the ground state
with a magnetic field using a single interaction Hamiltonian.

We  can  use  LevelVsField  to  calculate  a  list  of  energy  levels  for  a  range  of
magnetic fields defined by magmin, magmax, and step  given in Tesla, and for the
levels  defined  by  wantedlevels.  Here  we choose  the  first  six  energy  levels  and
plot for the magnetic field range of 0 to 4 Tesla at intervals of every 0.5 Tesla.

In[51]:= magmin � 0;
magmax � 4;
step � .5;
wantedlevels � �1, 2, 3, 4, 5, 6�;

In[55]:= maglevlist �
Transpose�LevelVsField�Hint, basisLzero, firstenergygap,

relativeeffectivemass, relativepermittivity,
L, magmin, magmax, step, wantedlevels��

Out[55]= ��0, 0.5, 1., 1.5, 2., 2.5, 3., 3.5, 4.�,
�0.072912, 0.0729707, 0.0731466, 0.0734385,
0.0738447, 0.0743628, 0.07499, 0.0757227, 0.0765571�,

�0.0744597, 0.0745195, 0.0746985, 0.0749957, 0.0754092,
0.0759367, 0.076575, 0.0773208, 0.07817�,

�0.0744597, 0.0745195, 0.0746985, 0.0749957, 0.0754092,
0.0759367, 0.076575, 0.0773208, 0.07817�,

�0.0856832, 0.0857561, 0.0859744, 0.0863367, 0.086841,
0.0874844, 0.0882636, 0.0891743, 0.090212�,

�0.0880509, 0.088125, 0.088347, 0.0887156, 0.0892286,
0.0898831, 0.0906756, 0.0916019, 0.0926572�,

�0.0880509, 0.088125, 0.088347, 0.0887156, 0.0892286,
0.0898831, 0.0906756, 0.0916019, 0.0926572��
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Calculating the energy levels for one L value at a time has the benefit of produc-
ing more accurate  results  for a given matrix size and allows for easier separation
of different energy states from the table of eigenvalues. The following plot shows
the results.

In[56]:= magplot �
Table�ListPlot�Transpose��maglevlist��1��, maglevlist��n����,

PlotStyle � �PointSize�.02�, Hue�.03 n��,
PlotJoined � True, DisplayFunction � Identity�, �n, 2, 7��;

In[57]:= Show�magplot, DisplayFunction � $DisplayFunction,
Frame � True, FrameLabel �
�"Magnetic Field �T	", "Energy �eV	", "Magnetic Field Plot", ""�,

RotateLabel � False, Axes � False�
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Note that although we are plotting six levels, two pairs of these remain degener-
ate as  the magnetic  field changes,  so we only  see four lines in the plot. Running
the  program several  times,  it  is  possible  to  plot  curves with  different  spin quan-
tum  numbers  and  total  orbital  angular  momentum  quantum  numbers  on  the
same  graph.  From  this,  it  is  possible  to  see  the  graphs  for  different  quantum
numbers  intersecting  as  the  magnetic  field  increases.  This  corresponds  to  mag-
netic transitions in the energy levels.  Magnetic transitions in the ground state of
quantum dots have been measured experimentally.

‡ Conclusion
This  article  presents  a  Mathematica  implementation  of  the  SACI  method  for
calculating  the  energies  and  wavefunctions  of  multi-electron  quantum  dot
systems.  The results  obtained  from this  package  are  highly  accurate  with  estab-
lished confidence  for  up to  eight  electrons when  using  a PC with  a Pentium IV
2.4GHz  processor,  which  can  be  readily  extended  by  using  more  powerful
computers.  Such  numerically  exact  calculations  provide  important  benchmarks
against  which one  can test  other approximate  schemes  developed  to  study  more
complex systems. 
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