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Pricing European and 
Discretely Monitored Exotic 
Options under the Lévy 
Process Framework
Dale Olivier Roberts
Alexander Novikov

In this article we consider both European and discretely 
monitored exotic options (Bermudan and discrete barrier) in a 
market where the underlying asset follows a geometric Lévy 
process. First, we briefly introduce this extended framework. 
Then, using the variance gamma model, we show how to price 
European options and demonstrate the application of the 
recursive quadrature method to Bermudan and discrete barrier 
options.

‡ Introduction
It is well known that the classic Black–Scholes framework cannot capture a number of fi-
nancial  market  phenomena  such  as  the  leptokurtic  property  found  in  empirical  distribu-
tions  of  asset  returns.  A  number  of  new  models  have  been  proposed,  such  as  stochastic
volatility which incorporates a random volatility and generalisations of the classic frame-
work whereby the price process contains a jump component (i.e., the price follows a Lévy
process).

First, we demonstrate how to price European options when the stock price follows the vari-
ance gamma (VG) process and then present a functional programming implementation of
the quadrature method for discretely monitored options where the stock price is modelled
by geometric Brownian motion.
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‡ The Lévy Process Price Model

· Lévy Processes

ü Definition

A stochastic  process Xt  on HW, F , PL  such that  X0 = 0 is  called a Lévy process if  it  has
the following properties.

Ë Stationary increments:

The distribution (or law) of the increment Xt+D - Xt is independent of the time t.

Ë Independent increments:

The increments of the process Xt1 , Xt2 - Xt1 , … , Xtk - Xtk-1  are independent for all
times 0 § t1 < t2 < º⋯ < tk.

Ë Stochastically continuous paths: 

For all e > 0, we have lim
DØ0

P 8 Xt+D - Xt ¥ e< = 0.

ü Infinite Divisibility

The most distinctive property of Lévy processes is that of stationary increments which im-
plies the probability distribution of an increment of length D is the same as the distribution
of an increment of length n D (the sum of n increments). This is called infinite divisibility. 

This may also be expressed in terms of characteristic functions: consider a probability mea-
sure m on R, and its characteristic function F m(z) =ŸR‰

Â x z „m. The distribution is called in-
finitely  divisible  if  for  any  positive  integer  k,  there  exists  a  probability  measure  mk  with
characteristic function F mk such that F m = HF mkL

k.

This property places a restriction on the distributions which may be used for the random
variables X f , but a number of nice distributions with this property exist (e.g., the Student’s
t-distribution,  the  log  normal  distribution,  the  gamma  distribution,  the  Poisson  distribu-
tion, and the VG process).

· Stock Price Model

We consider a market which consists of a riskless bond whose price follows the determinis-
tic process Bt = expHr tL, and a nondividend paying stock St with price process 

where 8Lt<t¥0  is a Lévy process under an appropriate risk-neutral (martingale) measure Q.
According to the Lévy–Khinchin theorem, the Lévy process 8Lt<t¥0 has the decomposition
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(1)Lt = m t +s Wt + Yt,

where Wt  is a standard Wiener process and Yt  is a jump Lévy process that is independent
of Wt; m and s are parameters.

(2)Lt = m t +s Wt + Yt,

The choice of the particular Lévy process used determines the uniqueness of this measure.
If the measure Q is not unique, this leads to the notion of an incomplete market. It is well
known that Q  is unique only for two special cases: (a) there is no jump component Yt  in
(2), or (b) the parameter s = 0 and Yt  has only a fixed size jump (i.e., Yt  is like a Poisson
process). The choice of measure Q is usually provided by use of a utility function.

ü Black–Scholes Model

Setting Lt  to be a Wiener process, we find ourselves in the classic Black–Scholes frame-
work where the bond price is as before and the stock price process follows

(3)„St = mt St „ t + s St „Wt,

where mt  is a deterministic function of t. The stochastic differential equation (SDE) in (3)
has a unique solution

(4)St = S0 exp ‡
0

t
mt „s+ t

s2

2
+s Wt ,

and under the risk-neutral measure Q to obtain a martingale we must have mt = rt, or sim-
ply mt = r if we assume a constant risk-free rate r.

ü Variance Gamma Model

Although the Black–Scholes model has become the de facto standard in the finance indus-
try, it is well known that the fair prices it produces do not reflect what often occurs in the
market for options which are deeply in- or out-of-the-money, as was shown by Rubinstein
in 1985 [1], and Madan, Carr, and Chang [2].

The VG process introduces the notion that market information comes at random time inter-
vals. This concept is modelled by a Wiener process with constant drift evaluated at a ran-
dom time change given by a gamma process which leads to a pure jump process. The VG
model has three parameters that allow us to control volatility, kurtosis and skewness and
therefore provide a way to calibrate the model to the prices found in the market. Pricing un-
der the VG framework was first proposed by Madan and Seneta in 1990 [3] and was ex-
tended in 1991 [4], 1998 [2], and 2003 [5].
Under the VG framework, the log stock price is defined in terms of a Wiener process with
drift q and volatility s

(5)BHt, q, sL = qt +s WHtL,

Pricing European and Discretely Monitored Exotic Options under the Lévy Process Framework 3

The Mathematica Journal 10:3 © 2007 Wolfram Media, Inc.



where the time t  follows a gamma process THt, nL~gHt, 1, nL  with mean rate 1 per unit of
time and variance n which results in the pure jump process that has an infinite number of
jumps in any interval of time:

(6)XHt, q, s, nL = BHTHt, nL, q, sL,

which may be calibrated by three parameters: s, q, and n. Under an equivalent martingale
measure, the mean rate of return of the stock is the continuously compounded interest rate
r, and the price then evolves as

St = S0 expHrt + XHt, q, s, nL+wtL,

where w = logJ1- q n - 1
2 s

2 nN í n is a compensator to ensure that we have a martingale.

Madan and Seneta [3] showed the characteristic function to be

(7)FHuL = E@expHÂ u XtLD =
1

1- Â q n u+ Is2 n
2 M u2

t
n

,

and the density hHzL for the log price relative to z = logHSt ê S0L to be written in terms of the
modified Bessel function of the second kind Kn HzL as

(8)hHzL =
K2 ‰

qx

s2 O

n
t
n 2 p s GI t

n
M

x2

q2 + 2s2

n

t
2 n
-
1
4

K t
n
-
1
2

x2 Jq2 + 2s2

n
N

s2
,

where x = z- r t -w t.

· Simulating Variance Gamma Price Paths

The random variables of the underlying jump process XHt, q, s, nL  may be generated by
first drawing a random variable from the gamma process for the time parameter t and then
one from the standard normal distribution denoted n, and then our random variable x from
XHt, q, s, nL is x = q t + s t n.

distGamma = GammaDistribution
tee

nu
, nu ;

distNormal = NormalDistributionH0, 1L;
XHt_, q_, s_, n_L :=
BlockB8T, N, tee = t, nu = n, w<, T = Random@distGammaD;

N = Random@distNormalD; N T s+ q TF
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A path of a VG process may be simulated by taking a discrete approximation of the time
dimension. By plotting a simulated path we can clearly see its random jump behaviour.

BlockA8n = 365, r = 0.10, s = 0.12, n = 0.20, q = -0.14, D, w<, D = 1 ê n;
w = LogA1- q n - n s2 ë 2E ë n;
ListPlotAFoldListAð1 „r D+wD+ð2 &, 1, Array@X@D, q, s, nD &, 8n<DE,
PlotRange Æ 80, Automatic<EE
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It should be noted that even though the price process looks continuous over some regions,
it is actually composed of many very small jumps with sudden larger jumps. The stochas-
tic continuity condition of the Lévy process means that for any given time t, the probabil-
ity  of  seeing  a  jump  at  t  is  zero.  The  discontinuities  of  the  path  must  occur  at  random
times; this excludes a process with jumps at predetermined (nonrandom) times.

‡ Pricing European Options with Variance Gamma
To introduce the notion of pricing under the VG process, we start by pricing a simple Euro-
pean option where the payoff is only a function of the price at expiry. In the case of a Euro-
pean put with strike price K, we have the payoff

(9)f HSTL = maxH0, K - STL,

where T  is the time of expiry, K is the strike price of the option, and ST is the stock price at
time T. The arbitrage-free price Vt of the option at time t = 0 is the present value of the ex-
pectation, with respect to the risk-neutral martingale measure Q, of the option payoff

(10)V0 = DEQ@maxH0, K - STLD,

where D = expH-r TL is the discounting factor.
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· Monte-Carlo Simulation

VG options may easily be priced using a Monte-Carlo simulation. To derive the expected
value for  a  European option as in (10),  we only need to simulate a  large number of  out-
comes for the stock price at expiry and then take the average overall outcomes. The option
price is then the present value of this average.
First,  we define a function to give a 95% confidence interval for the price given a list of
price outcomes.

ConfidenceInterval@list_D :=
ModuleB8s = StandardDeviation@listD, n = Length@listD, m = Mean@listD<,

IntervalB:m -
1.96s

n
, m +

1.96s

n
>FF

Then we define the option payoff function.

L@S_, K_D := Max@0, K - SD

Here are our parameters for the option and the market.

K = 100.00; S0 = 100.00; T = 1.00; r = 0.10; s = 0.12;
n = 0.20; q = -0.14;

w = LogA1 - q n - n s2 ë 2E ë n;

Finally, we proceed with the simulation.

mcResult = ModuleA8outcomes, payoffs, n = 10 000<,
outcomes = ArrayAS0 „r T+w T+X@T,q,s,nD &, 8n<E;
payoffs = I„-r T L@ð1, KD &M êû outcomes;
ConfidenceInterval@payoffsDE êê Timing

80.723984, Interval@81.70771, 1.89002<D<

This example may be extended to path-dependant options by simulating a discrete approxi-
mation  of  the  price  process  path  (as  performed  earlier),  calculating  the  payoff  for  each
path, taking the average and discounting.
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· Numerical Integration

For European options, we may alternatively compute the expectation numerically using nu-
merical integration by integrating the payoff of the price process against the density of the
normal distribution and the density of the gamma distribution.

N@z_D = PDF@NormalDistribution@0, 1D, zD;
G@g_D = PDF@GammaDistribution@T ê n, nD, gD;

f @g_, z_D := LBS0 ExpBr T +w T + g q + g zsF, KF;

quadResult = „-r T NIntegrate@ f @g, zD N@zD G@gD, 8z, -•, •<, 8g, 0, •<D êê Timing

80.727047, 1.85377<

This is within the 95% confidence interval found by our Monte-Carlo approach.

IntervalMemberQ@Last@mcResultD, Last@quadResultDD

True

‡ Pricing Discretely Monitored Options
Discretely  monitored options  have payoffs  that  are  triggered by events  occurring on dis-
crete times before expiry (e.g., Bermudan options, barrier options, and lookback options).
We shall limit ourselves to the cases of Bermudan and discrete barrier options.

· Bermudan Options

A Bermudan option is a variation of the American option whereby the early exercise dates
are restricted to a finite number throughout the life of the option. This gives the holder of
a Bermudan option more rights than holding a European equivalent and less than the Amer-
ican equivalent. Thus from an economic point of view, it should be obvious that the risk-
neutral  price of  a  Bermudan is  bounded above by the American and below by the Euro-
pean. Although uncommon in equity and foreign exchange markets, it is often found with
an underlying fixed income. For example, a Bermudan swaption can be exercised only on
the dates when swap payments are exchanged. By letting the number of exercise dates go
to infinity, we may approximate the value of an American option by a Bermudan option.
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· Discrete Barrier Options

A  discrete  barrier  option  is  monitored  at  discrete  dates  before  maturity  and  is  either
knocked in (comes into existence) or knocked out (is terminated) if the spot price is across
the barrier  at  the time it  is  monitored.  As there is  a positive probability of the spot price
crossing (or not crossing), barrier options are generally cheaper than ‘vanilla’ equivalents.
Analytical  pricing  formulas  are  known but  assume continuous  monitoring  of  the  barrier;
however, this may not reflect an accurate price. In the real world, barrier options are typi-
cally monitored at discrete times (e.g., at the close of the market). This should not be ne-
glected as the frequency of monitoring has a strong effect on an option’s price.

There are six characteristics of a barrier option that define how it should be priced: the bar-
rier could be above or below the initial value of spot (up or down), the barrier could knock
in or knock out the option and the option could be a call or a put. This leads to eight bar-
rier options types.

· The Recursive Quadrature Approach

ü Introduction to the Method

Quadrature is a useful tool for the probability theorist as it allows numerically calculating
the expectations in a natural manner without the need to repose the problem in terms of a
differential equation or a lattice.
Discretely monitored options may be priced by first identifying the times where a certain
condition must hold and then formulating the expectation of the option in a recursive man-
ner such that the expectation of each discrete time step is a function of the expectation of
the previous step. This technique easily applies to a range of path-dependant options such
as discrete barrier, American, and Bermudan options.
We shall  present  an  implementation  of  the  method proposed  by  Huang,  Subrahmanyam,
and Yu [6],  Sullivan [7] and Andricopoulos,  Widdicks,  Duck, and Newton [8] who pose
the  value  of  the  option  at  each  step  i  in  terms  of  the  risk-neutral  expectation  of  the  step
i+ 1 which gives

Vi = Di EQ@Vi+1D,

where  Di = expI-r Iti+1 - t jMM  is  the  discounting  factor  between  time  steps,  and  Vi  is  the
value of the option at step i. At the terminal step, we have VN = f  where f  is the payoff of
the option. It can be noted that this method allows time steps to be nonequidistant, though
in  the  following  implementation  we  will  take  time  steps  of  equal  length  to  simplify  our
exposition.
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· Application to a Bermudan Put

Before  pricing  our  Bermudan  put  option  we  must  first  set  some parameters  for  the  con-
tract,  the  stock  and  the  market:  M  is  the  time  to  expiry  of  the  option  in  years,  K  is  the
strike price, r is the risk-free rate, s is the volatility of the underlying stock and S is the cur-
rent price of the stock.

M = 0.3333; K = 40.00; r = 0.0488; s = 0.30; S = 40.00;

We  also  introduce  the  parameter  l  which  represents  the  number  of  standard  deviations
away from the boundary. Modifying both l and the accuracy goal of the numerical integra-
tion allows tuning of the accuracy and speed of this method as needed.

l = 10;
SetOptions@NIntegrate, AccuracyGoal Æ 4D;

We  price  this  option  under  the  Black–Scholes  framework,  so  we  define  the  conditional
PDF of  the  risk-neutral  distribution  with  respect  to  the  previous  price  x  and  the  CDF of
the  standard  normal,  noting  that  we  transform  the  prices  so  that  y = logHSi+1 êKL  and
x = logHSi êKL where Si is the price at time step i.

uz = Ir -s2 ë 2MD; sz = s D ;

YHx_L = CDFHNormalDistributionH0, 1L, xL;
FHy_, x_L = PDFHNormalDistributionHuz+ x, szL, yL;

The risk-neutral expectation of the value is broken into two integrals at the implicit bound-
ary b. In the case of a put option, below the boundary we have the Black–Scholes analytic
solution.

d2@x_, y_D := HLog@y ê xD- uzL ê sz;
d1@x_, y_D := d2@x, yD- sz;

belowBoundary@b_Real, x_RealD :=
K „-r D YAd2AK „x, K „bEE- K „x YAd1AK „x, K „bEE

The  upper  integral  takes  a  function  approximation  of  the  previous  step  (working  back-
wards)  and  computes  the  expectation  numerically.  Using  function  approximation  allows
us to not indulge in a recursive calculation at each step.

aboveBoundary@func_, b_Real, ymax_Real, x_RealD :=
„-r D NIntegrate@func@yDF@y, xD, 8y, b, ymax<D

Thus the value at each step is the sum of these integrals.

putValue@func_, b_Real, x_RealD :=
belowBoundary@b, xD+ aboveBoundary@func, b, q, xD

The difficulty of Bermudan and American options is the implicit or moving boundary; at
each step we must numerically identify the price where we are indifferent to holding the
option or exercising the option. Again, as finding this point requires a number of iterations
of the value function, function approximation simplifies this greatly.
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The difficulty of Bermudan and American options is the implicit or moving boundary; at
each step we must numerically identify the price where we are indifferent to holding the
option or exercising the option. Again, as finding this point requires a number of iterations
of the value function, function approximation simplifies this greatly.
At each step we must find the boundary of the previous calculated step, calculate the expec-
tation, and create a new function approximation to pass along to the next step.

valueStep@data_D :=
Block@8h<,
h = Interpolation@dataD;
b = z ê.FindRoot@h@zD ‡ K H1- „zL, 8z, 0.0<D;
generateData@h, bDD

Our  function  approximation  is  created  by  sampling  the  value  at  evenly  spaced  points
within l standard deviations distance from the boundary.

Ys := Range@Log@S ê KD- q, Log@S ê KD+ q, 2 q êND;
generateData@func_, b_D := 8ð, putValue@func, b, ðD< & êûYs

To find our option value, we now simply step backwards through time to the present day
which  gives  us  a  function  approximation  for  a  range  of  stock  prices.  The  function  takes
two arguments: the first  is the number of exercise dates and the second is the number of
evenly spaced sampling points for each step. Our option value is equal to the value for our
current stock price.

Off@InterpolatingFunction::"dmval"D;
bermudanPut@nDates_, qPoints_D :=

BlockB:v0, b = Log
S

K
, D, T, N, Y>, T = nDates; N = qPoints; D =

M

T
;

q = ls D ; v0 = H8ð1, belowBoundaryHb, ð1L< &L êûYs;
Interpolation@Nest@valueStep, v0, T - 1DD@0.0DF

bermudanPut@16, 32D êê Timing

828.5189, 2.47801<

We can compare these results with the paper by Sullivan [7], where the number of points
q = 32.

Exercise Dates Mathematica Sullivan  RMSE
16 2.47801 2.4775 0.0005
64 2.47288 2.4812 0.0083

Ú Table 1. Comparison of results to Sullivan with q = 32.
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· Application to a Discrete “Down-And-Out” Barrier Call

We shall now apply this quadrature technique to a discrete “down-and-out” barrier call op-
tion with parameters for time to maturity M , strike price K, risk-free rate r, stock volatility
s, and current price S.

M = 0.3333; K = 40.00; r = 0.0488; s = 0.30; S = 40.00;

In the case of a discrete barrier option, we now also have a list of stock prices for which
the option is knocked out, or in other words rendered useless. Again for simplicity, we re-
strict ourselves to the case where the times are equally spaced but it should be known that
this method works equally well for arbitrary times. We start with one knock-out price, and
append our strike price at expiry to the list.

B = 835.00<; AppendTo@B, KD;

We now know how many equally spaced steps are needed to value this option, and we set
our number of sample points to be N.

T = Length@BD; N = 32;

And, as before, we may tune the accuracy and speed as necessary.

l = 10;
SetOptions@NIntegrate, AccuracyGoal Æ 4D;

We now transform the  boundaries  and  define  the  time  step  D,  and  again  define  q  as  the
price change from the boundary.

B = LogB
B
K
F; D =

M

T
; q = ls D ;

We  define  the  conditional  PDF  of  the  stock  price  change  under  the  transformation
y = logHSi+1 êKL and x = logHSi êKL.

uz = Ir -s2 ë 2MD; sz = s D ;

F@y_, x_D = PDF@NormalDistribution@uz+ x, szD, yD;

Discrete barrier options are somewhat simpler than Bermudan options as we know the loca-
tion of the boundary and for the down-and-out call below the boundary the option is worth
zero. This leaves us with only the upper part of the integral to calculate.

callValue@func_, b_Real, x_RealD := „-r D NIntegrate@func@yDF@y, xD, 8y, b, b+ q<D

At each step we identify the upper and lower bounds of our price range and then generate
a  function  approximation  for  the  next  step,  and  since  we  explicitly  know  the  boundary
points we no longer need to find them.
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valueStep@data_, b_D :=
Block@8h<,
h = Interpolation@dataD;
generateData@h, bDD

Again,  our  function  approximation  is  created  by  sampling  the  value  at  evenly  spaced
points within l standard deviations distance from the boundary.

Ys := Range@Log@S ê KD- q, Log@S ê KD+ q, 2 q êND;
generateData@func_, b_D := 8ð, callValue@func, b, ðD< & êûYs

To value the option we step through each time step and find the value of the expectation
with respect to the previous step, ensuring that below the barrier the option is worth zero.

v0 = 8ð, Max@0, K HExp@ðD- 1LD< & êûYs;
downOutCallResult = Interpolation@Fold@valueStep, v0, Reverse@BDDD@0.0D êê

Timing

82.79884, 3.03218<

We may verify this result using a Monte-Carlo simulation.

DownOutCallMC@S_, K_, M_, s_, r_, Bs_List, m_D :=
BlockB8Ps, Ss, s, dt, n, Path, rv, m, S<,
n = Length@BsD+ 1; dt = M ê n;
Ss :=
SDropBFoldListBð1 ExpBIr -s2 ë 2M dt +s dt ð2F &, 1,

RandomVariate@NormalDistribution@0, 1D, nDF, 1F;
Ps = Table@s = Ss; If@Min@Drop@s, -1D- BsD < 0.0, 0.0,

Exp@-r MDMax@Last@sD- K, 0.0DD, 8m<D;
ConfidenceInterval@PsD

F

downOutCallInterval = DownOutCallMC@S, K, M, s, r, 835<, 100 000D êê Timing

82.91882, Interval@83.02417, 3.08255<D<

IntervalMemberQ@Last@downOutCallIntervalD, Last@downOutCallResultDD

True

‡ Conclusion
In  this  article  we have shown how to quickly price European options under  the variance
gamma  process  and  have  implemented  the  recursive  quadrature  technique,  a  powerful
method  that  is  often  forgotten  in  the  literature  on  option  pricing  and  lacking  the  needed
working examples to allow a quick implementation by industry practitioners.
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