Introduction

This summary provides an essentially complete but concise description of the standard facilities available in
SMP. The same text is given, supplemented by examples, in the "SMP Reference Manua”. The "SMP Pri-
mer" offers a more pedagogical but incomplete treatment.

The information facility [1.2] in SMP provides on-line keyword-driven access to the contents of this document.

This summary describes all standard system-defined projections [2.3] in SMP. Many enhancements and addi-
tional facilities are provided in the "SMP Library". Contents of the library may be located and perused
through the information facility. Complete documentation on the SMP Library is available separately.

The procedure for initiating an SMP job is described in the "Implementation Notes', together with other
implementation-dependent features.

SMP SUMMARY / Contents

Contents

0. Conventions

1. Basic system operation

11
12
13
14
15
16
17

2. Syntax
2.1
2.2
2.3
2.4
25
2.6
2.7
2.8
29
2.10
211
2.12

Input and output

Information

Globa objects

External files and job recording
Termination and real-time interrupts
Monitor escapes

Edit mode

Numbers

Symbols
Projections

Lists

Expressions
Patterns

Templates
Chameleonic expressions
Commentary input
Input forms

Syntax modification
Output forms

3. Fundamental operations

31 Automatic simplification
32 Assignment and deassignment
33 Replacements and substitutions
34 Numerical evaluation
35 Deferred simplification
3.6 Pre-simplification
3.7 Partial simplification
4. Properties

5. Relational and logical operations

6. Control structures

6.1
6.2
6.3

Conditional statements
Iteration
Procedures and flow control

SMP SUMMARY / Contents

7. Structural operations

7.1
7.2
7.3
74
7.5
7.6
7.7
7.8
7.9
7.10

Projection and list generation

Template application

Part extraction and removal

Structure determination

Content determination

Character determination

List and projection manipulation

Distribution and expansion

Rational expression manipulation and simplification
Statistical expression generation and analysis

8. Mathematical functions

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11

Introduction

Elementary arithmetic operations
Numerical functions

Mathematical constants

Elementary transcendental functions
Combinatorial functions

Gamma, zeta and related functions
Confluent hypergeometric and related functions
Hypergeometric and related functions
Elliptic functions

Number theoretical functions

9. Mathematical operations

10.

9.1
9.2
9.3
9.4
9.5
9.6

Polynomia manipulation

Evaluation of sums and products
Solution of equations

Differentiation and integration

Series approximations and limits
Matrix and explicit tensor manipulation

Non-computational operations

101
10.2
10.3
10.4
10.5
10.6
10.7
10.8
109

Input and output operations
Graphical output

File input and output

Display operations

Textual operations

External operations

Code file input and generation
Resource management and analysis
Asynchronous and parallel operations

SMP SUMMARY / Contents

10.10 Development aids

Appendix External interface
Al Introduction
A2 External files
A3 External operations
A4 Code and program files
A5 Character codes
A.6 Output characteristics
A7 Terminal characteristics
A8 System characteristics
A9 Initialization and termination

Index

0. SMP SUMMARY / Conventions 0.

0. Conventions

Text printedin this font represents literal SMP input or output, to be typed as it appears. Text in italics
stands for SMP input or output expressions. Arbitrary characters or textual forms are given as Otextual form(.
The actual characters corresponding to these textual forms in particular implementations are given in the
"Implementation Notes".

In descriptions of system-defined projections [2.3], the following notations for filters [2.3] are used:

filt Compulsory filter.
filt Filter used in an unsimplified or partially simplified form.
e [3.1, 3.6]
e Smp [4]
(filt: val) Optional filter assumed to have value val if omitted or given as Nul | (a blank

[2.10]). An optional filter may be omitted entirely only when it would appear after
the last filter explicitly specified in a projection.

fi,f2,... Sequence containing any number of similar filters.
{f1,f2,...} Filter to be given as alist of expressions.
4 filt} Filter to be given either as a single expression or as a list of expressions.
J1f1,f2,...} Filter or sequence of filters to be given either as single expressions or as lists of
expressions.
Properties carried by projections are indicated by
<propl, prop2, ...>.

References to sections in the text of this summary are given as [Onumberd]. References to additional or
related material are indicated by e.

1 SMP SUMMARY / Basic system operation 1
1. Basic system operation

1.1 Input and output

In standard mode the prompt for the ith input lineis #1 [i] : : .

Input is terminated by a Onewlinell. [delete character(] may be used in unfinished input lines. All Otabl
and unnecessary [2.10] spaces are ignored, unless they appear in quoted strings [2.2]. Input may be continued
for several lines by placing \ (backslash) at the end of each intermediate line. If no text is entered before the
terminating newline, the input is considered null, and the prompt is reissued.

The result generated by processing an input line is usualy printed. No output is printed if ; (semicolon) is
placed at the end of the input expression [6.3], or in general if the output expressionis Nul | [2.2].

Input of expressions with ambiguous syntax [2] yields a message on the nature of the ambiguity, and causes
edit mode [1.7] to be entered. The input text is placed in the edit buffer, with the cursor positioned under the
point at which the ambiguity was detected.

¢ [2.10]

In display input mode [10.4] a pointer may be used to locate and select parts of displayed expressions.

Printed output is given in a two-dimensional format based on standard mathematical notation. Specification of
certain output characteristics [A.6] will cause printing of large expressions to pause periodically, issuing
<pause> as a prompt. Printing will resume on entry of Onewlinell.

e [2.12]

e Lpr [10.]

Graphical output may also be obtained [10.2].

1.2 Information

(Implementation dependent)

?0keywords]
enters information mode and retrieves available information associated with Ckeywords. Okeywords[
may be a single word or a phrase of several words specifying the topic on which information is sought.
Typographical case is ignored, and some words may be stripped to canonical roots.

? ?0pattern]
enters information mode and retrieves available information associated with the symbols, projectors or
externa files whose names match Opattern]. Opatternd is a single "word" possibly containing the
characters *, which matches an arbitrary sequence of characters, and ., which matches an arbitrary
single character. A literal * isentered by ~*, aliteral . by ~
e Dsp [10.6]

enters information mode and prompts for further input.

When information has been retrieved, a menu of items related to Ckeyword(d or [Opatternd is displayed; the
user is prompted for a command to select an item or to initiate further searching. In information mode, the
command ? displays a summary of the commands available.

Information is provided on externa files in the SMP Library as well as on al standard facilities in SMP.
Facilities enabling users to add information on their own external files to the information mode database are
described in the Implementation Notes.

e Init [10.6]

13 SMP SUMMARY / Basic system operation 13

1.3 Global objects

% The last expression (other than Nul | [2.2]) generated.
#1[i1] Theith (unsmplified) input expression.
<Ldist>
#0O[i] Theith output expression.
<Ldist>
#T[i] The approximate time (in seconds [A.8]) required to generate #O]Ji].
<Ldist>
e Time [10.8]
e Clock [10.9]
@) Equivaent to #O[i].
<Ldist>

o %, %I, %0, %T [6.3]

Pre Symbol whose value (if any) is taken as a template [2.7] and applied as a "preprocessor" on each
input expression.

Post Symbol whose value (if any) is taken as a template and applied as a "postprocessor” on each output
expression.

1.4 External files and job recording

External files are input by <file.
¢ [10.3]

e Dsp, Dir [10.6]

e Load [10.7]

All input and output expressions are entered into a record file usually named smp . out. (Implementation depen-
dent)

e Open, Put [10.3]

e Hard, Save [10.6]

1.5 Termination and real-time interrupts

(Implementation dependent)

Hinput termination characterd
signifies termination of the current procedure. In standard and edit modes, it causes termination of the
present job; in subsidiary mode, it results in return to the previous mode.
e Ret [6.3]
e Exit [10.6]

Oquit interrupt]
attempts to terminate current processing or printing. Subsequent references to incompletely processed
expressions cause their simplification to be completed.

Obreak interruptO]
causes any processing to be suspended and initiates an interactive subsidiary procedure.
e Get [10.3]

Ostatus interrupt]
prints the status of processing, including a stack of the last few projections simplified.
e Mem [10.8]
e Trace [4]

16 SMP SUMMARY / Basic system operation 16

1.6 Monitor escapes

(Implementation dependent)

I' Omonitor commandC
given directly (with no prior characters typed) at an input prompt executes the specified monitor (shell)
command; the original input prompt is then reissued.

e Run [10.6]

1.7 Edit mode

In edit mode, one line of text is treated at a time. The editing of each line proceeds by a repetition of two
steps:

1. The present form of the line is printed.

2. Following the prompt <edi t> any editing commands for the line are entered. The commands are ter-
minated by Onewlinell. Ospacell(Ttab(] and Ccharacter deletell may be used for positioning in local
editing.

If no editing commands are given in step 2 (the terminating newline is entered directly after the <edi t>

prompt), then the present line is left unchanged. If further lines of text exist, the editor moves to the next line;

otherwise, edit mode is exited, and the edited text is returned as an input expression. If at the exit from edit
mode, no editing has actually been performed, the text is discarded, leaving a null line.

Two types of editing may be performed:

Local editing, in which individua characters in the edit command affect the characters appearing
directly above them in the present line.

Global editing, in which an edit command prefaced by \ affects the whole present line or the entire

edit buffer.

Local editing

Delete character above.
Delete the remainder of the present line.

Ospaceld or OtabO Leave character(s) above unchanged.

" OtextO Insert Otextd terminated by a space or tab (not appearing between " ") into the
present line before the character above.

Uother characterd Replace character above by character given.

Global editing
Print

the text in the edit buffer and return to the present line.
720.if 240. Append the text in the edit buffer to the specified

file.
q Exit from edit mode, discarding the edited expression.
\fln Move to the nth line of the edit buffer, leaving the present line unchanged.

\+n and \-n move n lines forward and backward respectively; \+ and \ -

move one line.
Undo the most recent edit command which effected changes in the edit buffer.
Undo all changes made during the current editing session, restoring the original

contents of the edit buffer.
m Display levels of parentheses, braces and brackets in the present line.

1.7 SMP SUMMARY / Basic system operation 1.7

mg Display levels of parentheses, braces and brackets throughout the text.

\ s/0Oelll/ Oe20 Textually substitute 0e200 for the character string Oelld throughout the present
line. (The delimiter here given as / may be replaced by any character.)

\ sn/Oelll/ Oe20 Textually substitute [0e20 for the nth occurrence of character string Oeld in the
present line.

\ g/ 0ell/Oe20 Textually substitute for Oel throughout the text.

\e Invoke external editor [A.9] on the text in the edit buffer and return the modified

text. (Implementaion dependent)

\ ! Omonitor command(]
Execute the specified monitor command [2.7].

The typographical case of the commands d, p, q, etc. isignored.
e Ed, Edh [10.5]

2. SMP SUMMARY / Syntax 2.
2. Syntax

2.1 Numbers

Numbers input with no decimal point are taken as exact integers.
Floating point numbers may be entered in the form x* “p representing x x10°.

Numbers are output if possible in integer or rational form, except when the corresponding input expression
contains explicit floating point numbers or N projections [3.4]. Output floating point numbers are given to
the precision specified in input N projections, or, by default, to 6 significant figures.
Numbers are by default treated to a finite precision (fractional accuracy of order 1073).
Further numerical constructs (which may be used in any numerical operations) are:
Alx,(p:0)]
Arbitrary magnitude number xx10P. Floating point numbers are usually converted to this form when the
modulus of their exponent exceeds 10.
B[nk,...,n2,n1,n0]
Arbitrary length integer n0 + n1x10* + n2x10% + - - - generated when integers with more than 10
digits are input.
F[n1,n2,...,(expt:0),(dig:6)]
Floating point number (n1x10™ + n2x1078 + - - -)x10®" with dig significant digits. F projections
are generated if possible when the precision specified in an N projection exceeds 10. Expressions
involving several F projections are treated to the numerical accuracy of the least precise F given.
Err[x,dx]
Number x with one-standard-deviation error dx (X = dx). Errors are combined assuming statistical
independence, and are evaluated for all projections carrying property Ldi st [4].
Cx[x.,y]
Complex number x + | y. Automatically generated when required.

The presence of any A, B or F projectionsin an expression forces conversion of al numbers to these forms.

2.2 Symbols

Symbols are the basic objects of SMP. They may be assigned values [3.2] and properties [4].
Symbol names may be

Strings of arbitrary length containing only alphanumeric characters, together with #, $ and % and not
starting with numeric characters.

Arbitrary character strings (possibly containing control characters) enclosed between " ". The " "
serve only to delimit the symbol name and do not affect simplification of the symbol; they are printed
on output only when necessary.

o [A5]

Symbols whose names have the following forms are taken to have special characteristics (ccc represents any
valid symbol name):

$cce Generic symbol (representing an arbitrary expression [2.6]).
e Gen [4, 2.6]

$$cce Multi-generic symbol (representing an arbitrary sequence of expressions [2.6]).
e Mgen [4]

##ccc Chameleonic symbol (whose name changes whenever it is evaluated [2.8]).
e Cham [4]

No values may be assigned to symbols of these types.

2.2 SMP SUMMARY / Syntax 2.2

The following naming conventions are used (C denotes any upper case alphabetic character):

Cccc System-defined symbol.

#tcee Internally-generated symbol.

%ccc Symbol used locally within a procedure [6.3].

Some specia system-defined symbols are:

Nul | Input and output as a blank [2.10]. Often used to indicate "default” filters [0, 2.3].

Inf Infinity. Used primarily to specify indefinite continuation of a process, rather than as a signal for

mathematical infinities.
| The imaginary unit.

e %, #|, #O, #T [1.3]
e %%, %Il , %O, %T [6.3]
e Pi, E, etc. [84]

e Terminal [10.3]

2.3 Projections

Projections specify parts of general structures. They are analogous to array subscriptings or function calls.

In for example the projection f[x,y] the symbol f is termed the "projector, and x,y its "filters'.
These filters are used to select a part in the value of f.
e Proj [7.3

Unless the projector f carries the properties Tier, Flat, Conmor Reor [4], f[Xx,y] isequivaent
to f[x][y], and the filters x and y are used successively (from left to right) to select a part in the value
of f. Thevalueof f[x] isfound first, and then the projection of the resulting expression with the filter y
isobtained. When f doescarry Ti er properties, filters separated by commas are instead used together.

Projections from f whose values were assigned before the Tier, Flat, Comm or Reor properties
were assigned may be converted to tiered format by the projection Ti er [7.7].

Common system-defined projections may be input in special forms [2.10].

Filters for system-defined projections input as Nul | [2.2] (a blank [2.10]) are taken to have their default
values.

e L [104]

[x1,x2,...] or Np[x1,x2,...]

is a specia system-defined null projection representing a sequence of expressions. A first step in the
simplification of any projection is the replacement of null projections appearing as its filters by explicit
sequences of filters. Sequences of values in contiguous lists may also be given as null projections [2.4].
The value of alist element whose index is a null projection is extracted by projection with a sequence of
filters corresponding to al those of the null projection. Such list elements are generated by assignments
for projections carrying the properties Tier, Flat, Commor Reor [4], or containing explicit null
projections as filters (the partial simplification in Set [3.2] does not replace such null projections). No
values may be assigned [3.2] directly to null projections.

e Seq, Repl [7.3]

“expr or Mark[expr]
isused in a variety of cases to designate expressions with special characteristics.
(Prefix form is "backquote" or "grave accent” character.)

o [2.7]

24 SMP SUMMARY / Syntax 24

24 Lists

Lists are indexed and ordered sets of expressions.

Lists may be input directly in the form {[index1]: valuel, [index2]: value2, ...}. Entries with
delayed rather than immediate values [3.2] are input with : : instead of

If the expressions indexi are successive integers starting at 1, they may be omitted. The list may then be input
as {valuel, value2, ...}. Such lists are termed "contiguous’.

e List[7]]
{} isazero-length list containing no entries.
List entries may also be specified indirectly through assignments for projections [3.2].

A value in a list may be extracted by a projection [2.3] with its index as a filter. Values corresponding to
indices consisting of null projections [2.3] (as generated by assignments for projections with properties Ti er,
Flat or Reor [4]) are extracted by sequences of filters.

o Ar [7.]

2.5 Expressions

Expressions are combinations of symbols, projections and lists.

Parts of expressions are selected by projections [2.3, 7.3]. Vauesin a list are specified by their indices [2.4].
Parts in projections are specified by numerical filters: 0 specifies the projector (which is aways in a "held"
form [3.5]) and 1,2,3, ... label each of its filters. Numerical coefficients of symbols and projections are
specified by the filter -1. The O part of a symbol is the symbol itself, without any associated numerical
coefficients.

e Nc [7.9]

e Pos, Dis[7.3

e L [10.4]

e At [7.2]

The nth "level" in an expression is the set of parts which may be selected by n filters (when n is a positive
integer). The "depth" of an expression is one plus the maximum number of filters necessary to specify any
part [7.4]. The -nthlevel in an expression is the set of parts which have depth n.

A domain is a set of parts in an expression. Domains may be specified by a parameter levspec giving the lev-
els at which its elements may occur (ni are positive integers):

n Levels O through n.

-n Levels -1 through -n.

{xn} Level £n.

{£nl, £n2} Levels £nl through +n2.

{-nl1,n2} The intersection of levels - 1 through -n1 and levels O through n2.

{11,12, levcrit} Levels specified by {11,112} on which application of the template [2.7] levcrit does
not yield false [5].

Domains may also be selected by requiring that application of a template [2.7] domcrit to any of their parts
should yield true [5].

Many system-defined projections may carry filters which select particular domains. A repeat count rpt is usu-
ally given to specify the number of times an operation is to be performed successively on a particular domain
(I nf causes repetition to continue until the domain no longer changes or a processing impasse is reached). A
parameter max is used to determine the total maximum number of operations performed on any domain. The
filters levspec, rpt, domcrit, max (or some subset of these) constitute a "domain specification™. In treatment of
a domain containing positive levels, larger subparts of an expression are treated first, following by their pro-
gressively smaller subparts. In a domain containing negative levels, the smallest subparts are treated first. Dif-
ferent parts at the same level are ordered by their "positions' (the sequences of filters necessary to select
them). When rpt is specified, the subparts appearing in a domain are re-determined each time the operation is

25 SMP SUMMARY / Syntax 2.5

performed.

2.6 Patterns

A "pattern” or "generic expression” is an expression containing generic symbols [2.2]. A pattern represents a
possibly infinite set of expressions, in which arbitrary expressions replace the generic symbols. Every
occurrence of a particular generic symbol in a pattern corresponds to the same expression.

Two patterns are considered equivalent if the sets of expressions which they represent are identical; they are
literally equivalent if all their parts are identical.

Determination of literal equivalence takes account of filter reordering [4, 7.7] properties of projections, and of
the correspondence between numerical coefficients [2.5] and explicit Mu |l t projections.

A pattern p2 "matches’ pl if it represents a superset of the expressions represented by pl (so that p1 may be
obtained by replacing some or al of the generic symbols in p2). pl is then considered "more specific" than
p2.

Mat ch|[expr2, exprl]
yields 0 if expr2 does not match exprl, 1 if expr2 is equivalent to exprl, or alist of replacements for
generic symbols in expr2 necessary to obtain exprl.

A pattern p2 matches pl if the simplified form of p2 after replacement of generic symbols is literally
equivalent to pl. However, for at least one occurrence of each generic symbol in p2 the necessary replace-
ment must follow from literal comparison with p1l (and must thus appear as an explicit part of pl).

The value t of the property [4] _$x[Gen] redtricts all occurrences of the generic symbol x to match only
those expressions on which application of the template t yields "true" [5].

pat = cond or Gen|pat,cond]
represents a pattern equivalent to pat, but restricted to match only those expressions for which cond is
determined to be true [5] after necessary replacements for generic symbols.
Multi-generic symbols [2.2] are a specia class of generic symbols which represent sequences of expressions,
corresponding to null projections [2.3] of any length. In a projection (or list), the sequence of filters matched
by a multi-generic symbol is terminated when all subsequent filters can be otherwise matched. For projections
with Comm or Reor [4] properties, al but one multi-generic symbol is taken to match a zero-length
sequence of expressions []. In a projection from a projector f with property Flat [4], a multi-generic
symbol matches a sequence of filters corresponding to a further projection from f. Although this further pro-
jection may be considered as a single filter in the original projection, it is not represented by a single ordinary
generic symbol.

2.7 Templates

A template t is an expression specifying an action to be taken on a set of expressions {sl, s2, ...}.
The result from an application of t depends on its structure:

number or Nul | t

pattern The value of t obtained by replacement of generic symbols di occurring in it by any
corresponding si. The association of s with di is determined by first sorting the di
into canonical order. If any of the di are multi-generic symbols, the first is paired
with the maximal set of si. Any unpaired di are left unreplaced.

“u or Mark[u] u.
other expression t[sl,s2,...].
e Ap [7.2]

2.8 SMP SUMMARY / Syntax 2.8

2.8 Chameleonic expressions

A chameleonic expression is an expression containing chameleonic symbols [2.2]. |f a chameleonic expression
is assigned as a delayed value [3.2], then each chameleonic symbol which it contains is given a unique new
name whenever the value is used.

e Make [10.5]

2.9 Commentary input

Any input (including Onewlinell’s) between /* and */ is treated as commentary, and is not processed.
Comments may be nested.

2.10 Input forms

SMP SUMMARY / Syntax

2.10

input form projection grouping

x) (parentheses)

{x1, x2, x3, ...} (list)

{[i1]:x1, [i2]:x2, ...} (list)

x1*"x2 x1* 10°x2 (x1*"x2)*"x3

@x #O[X]

X Prop[X]

f[x1,x2,x3] (projection) fx1,x2,x3] (_f[Tier]:0)
((FIDx2DIx3] (f[Tier]:1)

[x1,x2,x3] Np[x1,x2,x3] [x1,x2,x3]

<X Get[X]

x!! Dfctl[X] (xan!

x! Fctl[x]

x1.x2.x3 Dot[x1,x2,x3] x1.X2.x3

X1 ** x2 ** x3 Omult[x1,x2,x3] x1 ** x2 ** x3

x1"x2 Pow[x1,x2] x1"(x2°x3)

-X Mult[-1,x

x1/x2 Div[x1,x2 (x1/x2)/x3

x1* x2* x3 Mult[x1,x2,x3] x1* x2 * x3 (see aso below)

x1 + X2 + x3 Plug[x1,x2,x3] x1 + X2 + x3

x1 - x2 + x3 Plug[x1,-x2,x3] x1 + (-x2) + x3

x1=x2 Eq[x1,x2] See note below

x1 ™= x2 Uneq[x1,x2] See note below

x1 > x2 Gt[x1,x2] See note below

x1 >= x2 Ge[x1,x2] See note below

x1 < x2 Gt[x2,x1] See note below

x1 <= x2 Ge[x2,x1] See note below

X Not[x]

x1& x2 & x3 And[x1,x2,x3] X1 & x2 & x3

x11x21x3 Or[x1,x2,x3] x11x21x3

x11x21x3 Xor[x1,x2,x3] x11x21x3

x1 =>x2 Imp[x1,x2] x1=>(x2=>x3)

XL =x2 Gen[x1,x2 (x1 =x2) =x3

x1 .. x2 Seq[x1,x2] (x1..x2) .. x3

x1: x2 Set[x1,x2] x1: (X2 : x3)

X: Set[X]

x1:: x2 Setd[x1,x2] X1 (X2 x3)

x1 -> x2 Rep[x1,x2] X1 -> (X2 -> x3)

x1 --> x2 Repd[x1,x2] x1 --> (X2 --> x3)

x1 :x2 Prset[x1,x2] x1 :(x2 _:x3)

x1 x2 Tyset[x1,x2] xI (x2 _ x3)

x1:=x2 Sxset[x1,x2] x1:= (X2 := x3)

X1 := Sxset[x1]

X1; X2; x3 Proc[x1,x2,x3] x1; x2; x3

X1; X2; ...; xn; Proc[x1,x2,...,xn,] x1; X2; ... xm;

Ix (pre-simplification)

"X Hold[X]

X Mark[x]

2.10 SMP SUMMARY / Syntax 2.10

Forms given in the same box have the same precedence; the boxes are in order of decreasing precedence.

If @@ is aform with precedence higher than ##, then x1 @@ x2 ## x3 is treated as (X1 @@ x2) ## x3, while
X1 ##x2 @@ x3 is treated as x1 ## (X2 @@ x3).

The last column of the table indicates how multiple appearances of the same form are grouped. When no
parentheses appear, the corresponding projection is Fl at [4,7.7]. These groupings also govern the treatment
of different forms with the same precedence.

Combinations of the relational operators[5] =, "=, >, >=, <,and <= may be input together; if # and ##
represent input forms for two such operators, then x1 # x2 ## x3 is treated as (x1 # x2) & (x2 ## x3).
However, x1 "=x2 "= x3istreatedas (x1 "=x2) & (x2 "=x3) & (x1 "= x3); in general, com-
binations of the form exprl ~= expr2 ~=expr3 ~ = ... assert inequality of all the expri.

Products may be input without explicit * when their terms are suitably distinguished. For any numbers n,
symbols s and f and expressions x the following input forms are taken as products:

n n s n f[x]n (x)n {x}n
ns ss f[x]s (x)s {x}s
nf{x] s f[x] f[x]f[x] (x)f[x] {x}f[x]
n(x) s(x) fx](x) (x)(x) {x}(x)
n{x} s{x} fIxI{x} Co{xt {x{x}

Precedence of such forms is as when explicit * are given.

The symbol Nul | [2.2] may be input as a blank when it appears as the value of an entry in a list, or as a
filter in a projection given in standard form. Hence f[] is equivalent to f[Null] and g[,,] to
g[Nul I ,Null ,Null].

2.11 Syntax modification

cc:=dd or Sxset[cc,dd,(class:0), (prec:0)]
assigns the name Occl of the symbol cc to be replaced textually on input by OddO according to one of
the following classes of transformations

Occ— OddO
OccO x — OddO[x]
x Occ—- OddO[x]

x1 Occl x2

x1 OccO x2
x1 OccO x2

5 x1 Occl x2
x1 Occl x2

A W DN PF O

Occ x3 - OddO[x1,x2,x3]

- OddO[x1,x2]

Occ x3 - OddO[x1, dddO[x2,x3]]
- OddO[x1,x2]

Occ x3 - OddO[OddO[x1,x2] , x3]

and with precedence prec. Textua replacements are performed before input expressions are simplified.
Input text, excluding any strings enclosed in " ", is scanned once only from the beginning, and at each
point, textual replacements for the longest possible character strings are made. Transformations 1
through 5 may carry precedences from 1 to 3: 1 isthe sameas Input, 2 a Plus and 3 as

Info.

cc:=or Sxset[cc] removes any textual replacements assigned for cc.

Sxset [] removes al assignments for textual replacements.

212 SMP SUMMARY / Syntax 212

2.12 Output forms

Most input forms are also used for output.

Parentheses are omitted in output when the required groupings follow the precedences of forms given in
[2.10].

Common additional output forms:

Mult[x1,x2,x3] x1 x2 x3
x1
Div[x1,x2] --
X2
X2
Pow[x1,x2] x1

The output form of the projection Pl ot [10.2] isa "plot".
Fmt and Sx are printed in a special formatted form.
Assignment of a Pr property [4] defines a specia output form for a projection.

The presence of special forms in an output expression is indicated by * at the beginning of the output. The
labelling of parts in such special output forms may not be manifest. A direct and unambiguous representation
of any expression is printed by Lpr [10.1].

o L [104]

3. SMP SUMMARY / Fundamental operations 3.
3. Fundamental operations

3.1 Automatic simplification

Any input expression is automatically "simplified" to the maximum extent possible. Unless further assignments
are made, the resulting output expression can be simplified no further; if it is input again, it will be output
unchanged.

Even if part of an expression is apparently meaningless, no message is printed; that part is merely returned
without further ssimplification. Processing impasses occur if simplification apparently requires infinite time or
memory space.

The simplification of expressions proceeds as follows:

Numbers Ordinary numbers remain unchanged.
Symbols A symbol is replaced by the simplified form of any value assigned [3.2] to it.
Projections

1 Each filter is smplified in turn, unless the value (k) of any corresponding Smp pro-
perty carried by the projector is 0. The simplification of a filter is carried out until
its value no longer changes, or until any projectors not carrying property Rec have
appeared recursively at most k times (see below). If any filter is found to be extended
[4] with respect to the projector, then the projection is replaced or encased as specified
in the relevant property list [4].

2. Projections with Flat, Comm or Reor properties [4, 7.7] are cast into canonical
form. If the projector carries the property Sy s [4] built-in simplification routines are
invoked for system-defined projections. External programs are used when applicable
if the projector carries the property Cons [4, 10.7].

3. If a value v has been assigned for the projector, then the filters of the projection are
used in an attempt to select a part of v. The filters are used together if the projector
carries the properties Tier, Flat, Comm or Reor. If the required part is
present, any necessary replacements for generic symbols are performed (and values
defined by generic assignments [3.2] are inserted); the projection is then replaced by
the simplified value of the part. When v is a lit, its entries are scanned sequentially
until one is found whose indices match [2.6] the filters of the projection. Sequences
of filters in the projection are used together in matching null projections appearing as
list indices. Flat, Comm, and Reor properties are accounted for in this match-
ing process.

Lists Immediate values [3.2] for entries of a list are simplified in turn. Indices are not simplified.

Whenever an expression to which an immediate value has been assigned (through : [3.2]) is simplified, the
old value is replaced by the new simplified form. Deayed values (assigned by :: [3.2]) are simplified
whenever they are required, but are not replaced by the resulting simplified forms.

Simplification of a projection may involve further projections from the same projector (recursion). Unless a
projector g carries the property Rec, it may appear recursively at most k times in the simplification of a filter
in a projection from f before steps 2 and 3 in the simplification of the f projection are performed. The vaue
of k for a particular filter is determined by the value of any corresponding Smp property for f. The default
is I nf, causing each filter to be simplified until it no longer changes, regardless of the number of recursive
appearances of g. Other values of k allow steps 2 and 3 in the simplification of the projection from f to be
performed even though the filter may not be "completely simplified". When k is 0, the filter is left entirely
unsimplified. The Smp properties of projectors such as Mult and Plus have value 1 since simplifica
tions of their projections are valid regardless of the state of simplification of their filters.

"Static" (manifestly non-terminating) recursive assignments in which the literal form of an expression appears
in its simplified value are evaluated once only.
e Dep [74]

31 SMP SUMMARY / Fundamental operations 31

Smp [expr, (levspec: 1), (rpt: 1), (domerit: 1), (max: 1)]
simplifies parts of expr in the domain specified by levspec and domcrit, simplifying at most rpt times
per pass through the expression and making at most max passes.
e Smp [4]

3.2 Assignment and deassignment

Assignment is used to define a value for an expression. Simplification [3.1] replaces an expression by any
value assigned to it.

Values for expressions come in two types:

Immediate The value is simplified when it is assigned, and is maintained in a simplified form, being
updated, if necessary, whenever it is used.
Delayed The value is maintained in an unsimplified form; a new simplified form is obtained when-

ever it is used.
exprl: expr2 or Set[exprl,expr2]
assigns expr2 to be the immediate value of the expression exprl.

exprl:: expr2 or Setd[exprl,expr2]
assigns expr2 to be the delayed value of the expression exprl.

e Ev [3.7]

Values expr2 are assigned to expressions exprl of different types as follows:

Numbers No assignment is made.

Symbols expr2 replaces any value previously assigned to exprl. No assignment is made for generic
and chameleonic symbols [2.2].

Projections Firgt, the filters of exprl are simplified in turn, and any Flat, Comm, or Reor proper-

ties [4] of its projector f are used. Then the specified part in the simplified form v of f is
assigned the value expr2. The actions of the assignment for various types of v are as fol-

lows:

Symbols The value of f becomes a list (or nested set of lists) with one entry whose
indices give the filters of exprl and whose value is expr2.

Lists If the indices of an existing entry of v are equivalent [2.6] to the filters of

exprl. then the value of that entry is replaced by expr2. If no such entry
is present, then an additional entry with indices given by the filters of
exprl and with value expr2 is introduced. New entries are positioned in
the list immediately after any entries with more specific [2.6] indices.

Projections Unless the relevant filter of exprl is -1, 0, or a positive integer, no
assignment is made. If the filter corresponds to an existing part of v, this
part is replaced by the expression expr2; otherwise, additional Nul |
filters are introduced so as to include the specified part.

Lists If expr2 is a ligt, then each entry in exprl is assigned (in parallel) the value of the
corresponding expr2 entry (or Nul | if no such entry exists); otherwise, all entries in exprl
are assigned the value expr2.

expr: orexpr:Nul | or Set[expr] or Set[expr,Nul |]
removes any values assigned for the literal expression expr. If filters in projections are removed, the
projections are correspondingly shortened. "Removal" of a projector results in its replacement by Np
[2.3]. If expr isalist, values for each entry are removed. _ symb: removes properties [4] assigned to
the symbol symb (restoring any initial properties if symb is system-defined).
e Lcl [6.3]
e Del [7.3]

32 SMP SUMMARY / Fundamental operations 3.2

Set[]
removes values assigned to all expressions.

Inc[expr,(step: 1)]
increments the value of expr by step.
e Do [6.2]
Dec[expr, (step:1)]
decrements the value of expr by step.
Assignment and deassignment projections have the special capability to effect permanent changes on their
filters; all other system projections must leave their filters unchanged.

3.3 Replacements and substitutions

Values assigned for expressions [3.2] are used whenever they are applicable. More controlled evaluation is
provided by the use of substitution projections.

exprl -> expr2 or Rep[exprl,expr2, (levspec:Inf),(rpt: Inf),(max: I nf)]
is a purely syntactic construct which represents a replacement of exprl by expr2. The replacement is
specified to be active when used in S projection substitutions on an expression expr only for the first
max occurrences of exprl appearing at or below level lev in expr, and during the first rpt passes
through expr

exprl -->expr2 or Repd[exprl,expr2,(levspec: I nf),(rpt: Inf),(max: 1 nf)]
represents a replacement in which expr2 is maintained in an unsimplified form; a new simplified form is
obtained whenever the replacement is performed.

S[expr,{repl,rep2,...;,(rpt: 1), (levspec: I nf), (domerit: 1)]

performs substitutions in expr specified by the replacements repl, rep2, ... in the domain defined by
levspec and domcrit [2.5]. Each successive subpart of expr is compared with the left members of each
active replacement repi in turn; if a match [2.6] is found, then the part is replaced by the corresponding
right member, with any necessary substitutions for generic symbols made. The resulting complete
expression is scanned until no further replacements can be used, or at most rpt times. (rpt may be
I nf). When a replacement is used, the resulting subexpression is not scanned for possible further sub-
gtitutions until it is reached on at least the next pass through the complete expression.

Many relations involving mathematical functions are given in externa files [1.4] in the form of replacements,
to be applied using S.

Si[exprl,{repl,rep2,...},(levspec: I nf), (domcrit: 1)]
isequivaent to S[expr,{repl,rep2,...},Inf,(levspec: I nf), (domerit: 1)]
]; therepi are repeatedly used in expr until the result no longer changes.
Arep[<{repl,rep2,...}]
performs explicit assignments using Set or Setd projections [3.2] on the Rep or Repd replace-
ments repi.

Irep[{repl,rep2,...}]
yields a list of "inverted” replacements.

3.4 Numerical evaluation

N[expr, (acc: 6), (trunc: 0)]

<Ldist>
yields the numerical value of expr in terms of real or complex decimal numbers, maintaining if possible
an accuracy of at most acc significant figures, and setting all numerical coefficients smaller in magni-
tude than trunc to zero.

A, F,and Cx projections [2.1] are generated when required.

34 SMP SUMMARY / Fundamental operations 34

Numerical values for arbitrary expressons may be defined by assignments [3.2] for the corresponding
N[expr] or N[expr,n].
Neq[exprl,expr2,(acc:1* " -8),(n:2),(range:{-10,10})]
tests for numerical equality of exprl and expr2 within fractional accuracy acc by evaluating them at
least n times with random numerical choices (in the specified range) for all symbolic parameters appear-

ing in them. Complex numerical values are treated when possible.
e Eq[5

e Sum, Prod [9.2]
e D, Int [94]

3.5 Deferred simplification

“expr or Hol d[expr]

"~ yields an expression entirely equivalent to expr but all of whose parts are "held" in an unsimplified
form, until "released” by Rel.
(Prefix form is "forward-quote" or "acute accent” character.)

Rel [expr]
releases all "held" parts of expr for simplification.
e Ev [3.7]
Projectors in simplified projections are maintained in "held" form.

3.6 Pre-simplification
I expr

represents the simplified form of expr regardless of its environment.
Simplifications indicated by ! are performed during input.

I may be used to insert simplified forms as filters in projections for which the Smp property [4] has the
value 0.

3.7 Partial simplification

Ev[expr]
yields a held form obtained by simplifying expr but leaving unsimplified any delayed values which
appear.

4. SMP SUMMARY / Properties 4.

4. Properties

_symb or Prop[symb]
isalist giving properties of the symbol symb used to specify treatment of symb or its projections.

The operations of projection [2.3, 7.3], assignment [3.2] and deassignment [3.2] may be applied to _symb just
as to symbols.

_symb: causes the properties of a system-defined symbol symb to revert to their initial form [3.2].
A symbol is considered to "carry” a particular property p if the value of _symb[p] is not "false" [5].

The properties Gen, Mgen, Cham, Smp, Tier, Flat, Reor and Comm, which affect treatment of
assignments for projections, must be defined before the projections are assigned.

The following are system-defined properties for a symbol s:

Sys Symbol with system-defined values for projections.
Cons Symbol for which some projections are evaluated by binary code internally loaded by Cons or
Load [10.7].

Inline When a program invoking a projection from s is constructed by Cons or Prog [10.7], the
program will use directly the value of the projection rather than call an intermediate language
function corresponding to s.

Gen Generic symbol [2.2], representing the class of expressions on which application of the template
_s[Gen] yields a non-zero number [2.6].

Mgen Multi-generic symbol [2.2].

Cham Chameleonic symbol [2.2].

Init Any value assigned for _s[I ni t] is simplified, and then removed, when s next appears as a
projector.

Smp The ith filter in a projection from s is simplified until any projector not carrying the property

Rec has appeared recursively a most _s[Smp][i] times [3.1]. If the vaue of
_s[Smp] [i] is O, the filter is left unsimplified. If no value is given, it is taken by default as
Inf, and the filter is simplified until it no longer changes. If the value of _s[Smp] is a
number or symboal, it is taken to apply to all filters.

Ser Filters in projections from s are simplified from left to right even when paralel processing is
possible.

Rec Arbitrary recursive appearances of s as a projector are permitted [3.1].

Pr The value of _s[Pr] is used as the printing format for s and its projections.
e Fmt, Sx [10.1]

Trace If the value of _s[Trace] is "true", then any projections from s are printed before evalua
tion. Any other values are applied as templates to projections from s.
¢ [10.10]

Tier The projections s[x] [y] and s[x,y] are distinguished [2.3]; filters separated by commas

are used together in the extraction of parts specified by projections. Values assigned to projec-
tions are represented by list entries with null projection indices containing the complete
sequences of filters in the projections.

Flat All projections from s are flattened [7.7], so that s is treated as an "associative n-ary function”.
Assignments for projections are made as if s carried the property Ti er.
Reor Filters of projections from s are placed in canonical order, by reordering them using permuta-

tion symmetries given as the value of _s[Reor] [7.7]. Assignments for projections are made
as if s carried the property Ti er.

4. SMP SUMMARY / Properties 4.

Comm Equivalent to _s[Reor] : Sym [7.7]. Causes filters of projections from s to be placed in
canonical order, so that s represents a "commutative function".
Di st _f[Dist]: 34 g1,(hl:gl),(kL:f),(pspecl: I nf)}} defines f to be distributive over projections

from gi appearing as its filters in positions specified by pspeci, yielding projections of hi and ki.
The definitions are used as defaults in Ex [7.8].
Powdist f[Powdist]: {{gl(hLPlus)}} defines projections of f to be "power expandable" over

projections of hi appearing as their first filters, and yielding projections from gi. The definitions
are used as defaults in Ex [7.8].

Ldi st Projections from s are "distributed” over the entries of lists appearing as filters in projections
from s [7.7].

Const s istreated as a numerical constant for differentiation [9.4] and other purposes.

Extr The projector f of a projection containing s (as an isolated symbol or as a projector) in its
filters is replaced by a template given as the value of _s[Extr ,f] (see below).

Exte The value of s[Exte] isapplied as a template to any projection whose filters involve s (as

an isolated wrﬁbol or as a projector), and for whose projector f no entry s[Extr ,f] exists
(see below). EXxt e isaso effective for entries in lists.

Type s is treated as carrying the additional properties assigned to a symbol given as the value of
_s[Type]. These additional properties are considered only if properties given directly for s
are inadequate. Any number of Type indirection levels may be used.

File The value of _s[Fi | e] is used as the default format [A.6] entry in any filespec for the file s
[10.3]. _s[File] isreassigned automatically when format is modified in a filespec or when
the graphics code gcode [A.6] is modified in an Open [10.3] projection.

All system-defined symbols carry the property Ti er.

symb : p or Prset[symb,p]
is equivalent to _symb[p] : 1 and assigns the property p to the symbol symb.

symb _stor Tyset[symb,st]
isequivalent to _symb[Type] : :st and assigns the symbol symb to have the type of the symbol st.

Entries s[Extr] and _s[Exte] in the property list of a symbol s allow for "type extension". Standard
projections may be replaced by specia projections if some of their filters are of some specia extended type.
Hence, for example, a product may be entered as a projection of Mul t, but is replaced by a projection of
Psmul t if one or more of its filters is a power series (Ps projection [9.5]). Projections reached by type
extension are usually not described separately in this document.

Type extension is carried out before any Flat, Comm, or Reor properties of the origina operator are
used. Thus such properties must be specifically given to "relacement extensions' if they are desired.

5. SMP SUMMARY / Relational and logical operations 5.

5. Relational and logical operations

An expression is treated as "false" if it is zero, and "true" if it is any non-zero number.
P[expr]

yields 1 if expr is"true’, and O otherwise.
The relational and logical projections described below yield 0 or 1 if their "truth" or "falsity” can be deter-
mined (by syntactic comparison or linear elimination of symbolic parameters); otherwise they yield simplified
forms of undetermined truth value. When only one filter is given, the relational projections defined below
yield as images that filter. When more than two filters are given, they yield the conjunction of results for each
successive pair of filters, however, Uneq is an exception, yielding the conjunction of results for all possible
pairs of filters.

exprl = expr2 or Eq[exprl, expr2]

<Comm>
represents an equation asserting the equality of exprl and expr2. Equations represented by Eq projec-
tions are used in Sol [9.3].
e Neq [34]

exprl "= expr2 or Uneq[exprl, expr2]

<Comm>
asserts the inequality of exprl and expr2. Uneq[exprl,expr2,...] asserts inequality of al the
expri.

exprl > expr2 or Gt|[exprl,expr2]
asserts that exprl is numerically larger than expr2.

exprl >= expr2 or Ge[exprl,expr2]
asserts that exprl is numerically larger than or equal to expr2.

exprl < expr2
is equivalent to expr2 > exprl.

exprl <= expr2
is equivalent to expr2 >= exprl.

The assignment [3.2] exprl > expr2 : 1 definesthe expression expr 1 to be greater than expr 2.
The projection Ge tests for assignments of relevant Gt projections.

If # and ## represent specia input forms for relational projections then exprl # expr2 ## expr3 is converted
to (exprl #expr2) & (expr2 ## expr3) [2.10]. However, combinations of the form exprl ~= expr2 ~ =
expr3 "= ... aeconvertedto (exprl “=expr2) & (expr2 "=expr3) & (exprl "=expr3) & ...,
asserting inequality of al the expri.

“expr or Not [expr]
yields "true" if expr is 0 and O if expr is "true".

exprl & expr2 & expr3 ...or And[exprl,expr2,expr3,...]
<Comm, Flat>
forms the conjunction of the expri.

exprl | expr2 | expr3 ...or Or [exprl,expr2,expr3,...]
<Comm, Flat>
forms the inclusive digunction of the expri.

exprl || expr2 || expr3 ...or Xor [exprl,expr2,expr3,...]
<Comm, Fl at>
forms the exclusive digunction of the expri.

5. SMP SUMMARY / Relational and logical operations 5.

exprl => expr2
or Imp[exprl,expr2]
represents the logical implication "if exprl then expr2 ".

I s[expr]
yields 1 if expr represents a logica tautology "true" regardless of the "truth" or "falsity" of any sym-
bols appearing in it, and yields 0 otherwise.
e Neq [34]

o | f [6.1]
e Intp, etc. [7.6]

Ord[exprl, expr2]
yields +1 if expr1l is lexicaly [10.5] ordered before expr2, -1 if exprl is lexically ordered
after expr2, and O if they are literally equivalent [2.6].
e Reor, Sort [7.7]

6. SMP SUMMARY / Control structures 6.

6. Control structures

6.1 Conditional statements

| f[pred, (exprl:Null),(expr2:Null), (expr3:Nul l)]
yields exprl if the predicate expression pred is determined to be "true" [5]; expr2 if it is determined to
be "false", and expr3 if its truth or falsity cannot be determined [5]. Only the expri selected by evalua-
tion of pred is simplified.

Sel [predl, exprl, pred2, expr2,...]
tests predl, pred2, ... in turn, selecting the expri associated with the first one determined to be "true"
[5] (Nul | if none are "true"). Only the predi tested and the expri selected are ssimplified.

6.2 Iteration

Rpt[expr,(n:1)]
simplifies expr n times, yielding the last value found.

Loop|[(precond: 1), expr , (postcond: 1)]
repeatedly simplifies precond, expr and postcond in turn, yielding the last value of expr found before
precond or postcond ceases to be "true" [5].

For [init, test, next, expr |

first simplifies init, and then repeatedly simplifies expr and next in turn until test fails to be "true"
(according to the sequence init <test expr next>), yielding the last form of expr found.

Do| var, (start: 1),end, (step: 1), expr]
“first sets var to start and then repeatedly evaluates expr, successively incrementing the value of var by
step until it reaches the value end ; the image is the last form of expr found.
e Inc, Dec [3.2]
e Ret, Jmp [6.3]

6.3 Procedures and flow control

exprl;expr2;...exprn or Proc[exprl,expr2,...,exprn]
represents a procedure in which the expressions expri are smplified in turn, yielding finally the value of
exprn.

In the form exprl; expr2;...; exprk; the last filter of Proc istakentobe Nul | [1.1].

The unsimplified form of each expri is maintained throughout the execution of a Pr oc, so asto alow resim-
plification if required by a control transfer.

Unless specified otherwise by Lcl projections, al expressions may be accessed and affected in any pro-
cedure. Objects local to a procedure are (cf. [1.3]):

%% The last expression (other than Nul | [2.2]) generated by simplification of a segment in the pro-
cedure.
%I [i] The ith (unsimplified) segment.
<Ldist>
%O0[i] The value of the ith segment.
<Ldist>
%T[i] The approximate time (in seconds [A.8]) required to generate %0[i].
<Ldist>

Get [] initiates an interactive procedure, terminated by Oinput termination characterd [1.5] or a Ret pro-
jection. A prompt %l [i]: : isgiven for the ith input segment.

6.3 SMP SUMMARY / Control structures 6.3

Lcl[sl,s2,...]
declares the symbols s1,s2, to be "local variables' in the current Pr oc (and any nested within it); the
origina values and properties of the s are removed, to be restored upon exit from the Pr oc.

Local variables are conventionally given names beginning with the character % [2.2].
Lc| may be used in interactive procedures.

Lbl [expr]
represents a "label" within a Pr oc; its "identifier" expr is resmplified when a Jmp might transfer
control to its position.

Jmp [expr]
causes "control" to be "transferred" to the nearest label which matches Lbl [expr]. The current
Pr oc and then any successive enclosing Pr oc are scanned to find a suitable Lbl. After Jmp has
acted, the remaining segments of the Proc containing the Lbl are (re)simplified. For positive
integer n, Jmp [n] transfers control to the nth segment in the current procedure. Jmp may be used in
interactive procedures: if the specified Lbl is not present, input lines are read without simplification
until it is encountered.

Ret [expr,(n:1)]
exits a most n nested control structures, yielding expr as the value of the outermost one. Ret is
effective in Proc, Rpt, Loop, For and Do. It may be used to exit interactive subsidiary pro-
cedures. Ret [expr, | nf] returns from any number of nested procedures to standard input mode.

SMP SUMMARY / Structural operations 7.

7. Structural operations

7.1 Projection and list generation

X

y or Seq[x,y]
yields if possible a null projection [2.3] consisting of a sequence of expressions whose integer parame-
ters form linear progressions between those in x and y. For two integers m and n (withn>m), m. .n
yields [m,m+1,m+2,...,n-1,n].
Similarly, f[ml, m2] . .f[nl,n2] yields
[f[ml, m2] ,f[ml+1,m2+i], f[ml+2, m2+2i],...,f[nl,n2]]
if i = (n2-m2)/(n1-ml) is an integer. Only the values of integer parameters may differ between x and y,
and all such differences must be integer multiples of the smallest.

Ar [spec, (temp: Eq), (icrit: 1), (verit: 1)]

generates a list whose entries have sets of indices with ranges specified by spec, and whose values are
obtained by application of the template temp to these indices. Sequences of indices at each leve in the
list are defined by

n 1,2,...,n

{s,e,(i:1)} s, s +i,s + 2i,..., s + k*i where k is the largest integer such that s +
k*i is not greater than e.

{{x1,x2,...}} x1, X2, ...

and collected into a complete specification {specl,spec2,...}. For a contiguous [2.4] list with one
level, spec may be given as n. Entries with sets of indices on which application of the template icrit
would yield O are omitted. Entries whose values would yield O on application of the template vcrit
are also omitted.

e Outer [9.6]

e Dim[7.4]

Repl [expr,(n:1)]

yields a null projection [2.3] containing n replications of expr.

List[exprl,expr2,...]

yields the contiguous list {exprl,expr2,...}.

7.2 Template application

Ap[temp, {exprl, (expr2,...)}]

applies the template temp to the expri [2.7].

At [temp, expr, (partspec:L[expr])]

yields the expression obtained from expr by applying (if possible) the template temp to parts specified by
partspec. partspec may consist of alist giving the filters necessary to select a particular part of expr, or
of alist of such lists, representing a sequence of parts. The template is applied in turn to each specified
part; for overlapping part specifications it is applied first to the deepest parts. partspec is obtained by
default by graphical part selection in expr using L [10.4].

Map [temp, expr , (levspec: 1) , (domcrit: 1), (Itemp:Nul), (max: Inf)]

yields the expression obtained by recursively applying the template temp at most max times to the parts
of expr in the domain specified by levspec and domcrit [2.5]. Any non-Nul | result obtained by
applying the template Itemp to the (positive or negative) integer specifying the level in expr reached is
used as a second expression on which to apply temp.

7.3 SMP SUMMARY / Structural operations 7.3

7.3 Part extraction and removal

expr[filtl,filt2,...] or Proj [expr, {filtl, filt2,...}]
extracts the part of expr specified by successive projections with the filters filtd, filt2, ... [2.3].

Pos|[{ forml} ,expr,(temp:List),(lev:Inf),(max: Inf)]
gives a list of the results obtained by applying the template temp to sets of filters specifying the posi-
tions of (at most max) occurrences of parts in expr (at or below level lev [2.5]) matching any of the
formi.
e In[75

Elem[expr,{nl,n2,...}]
extracts successively the nith values in the list expr, irrespective of their indices.

Last [list]
yields the value of the last entry in list.

Ind[list,n]
yields the index of the nth entry in list.

Dis[expr,(lev:1)]
yields a list in which all projections in expr (below level lev) are "disassembled” into lists with the same
parts.

As|[expr,(lev:1)]
yields an expression in which any suitable lists (at or below level lev) in expr are "assembled" into pro-
jections with the same parts.

Del [form,expr,(lev:Inf),(n:Inf)]
yields an expression in which (at most n) parts matching form (and appearing at or below level lev) in
expr have been deleted.
e Set [3.2]

7.4 Structure determination

Tree[expr,(nlev:1)]
yields a list of successive replacements specifying the construction of expr from its level -nlev parts.
e Dis[73

Len[expr]
the number of filters or entries in a projection or list expr, and O for a symbol expr. (The "length" of
expr).

Dep[expr]
the maximum number of filters necessary to specify any part of expr. (The "depth" of expr [2.5]).
Yields I nf for a"static recursive’ expression [3.1].

Dim[list, (llev: I nf)]
gives the ranges of contiguous indices at or below level llev in list (in the form used by Ar [7.1]).

Hash[expr,(n:2"15)]
a positive integer less than n which provides an almost unique "hash code" for expr.

75 SMP SUMMARY / Structural operations 75

7.5 Content determination

In[{forml},expr,(lev:Inf)]
yields 1 if a part matching any of the formi occursin expr at or below level lev, and 0O otherwise.

Cont [(expr: (al symbols)), (crit: 1)]
yields a held ordered list of the symbols in expr on which application of the template crit does not yield
0 (default isto omit symbols appearing as projectors).

7.6 Character determination

The following projections yield 1 if expr is determined to be of the specified character, and O otherwise.
The determination includes use of any assignments made for the testing projection; Intp[x]:1 thus
defines x to be an integer.

Symbp [expr] Single symbol.

Numbp [expr] Real or complex number.

Real p[expr] Real number.

Imagp [expr] Purely imaginary number.
Intp[expr] Integer.

Natp[expr] Natural number (positive integer).
Evenp|[expr] Even integer.

Oddp|[expr] Odd integer.

Ratp|[expr,(maxden:1* “5),(acc: 1* " -12)]
Rational number (to within accuracy acc) with denominator not greater than maxden.

Projp[expr] Projection.
Listp[expr] List.

Contp[expr,(lev:Inf)]
List or list of lists contiguous [2.4] to at least level lev.

Ful Ip[expr,(lev: I nf)]
"Full" list whose indices (and those of its sublists at or below level lev) are "contigu-
ous' and have ranges independent of the values of any other indices (so that the list is

"rectangular").
Valp[expr] Value other than Nul I.
Heldp[expr] "Held" expression [3.5].

Polyp[expr,({ forml})]
Polynomial in "bases’ matching formi [9.1].

7.7 List and projection manipulation

Cat [list1,list2,...]

<Flat>
yields a contiguous list [2.4] obtained by concatenating the entries in listl, list2, Cat [list]
renders the indices of entries in list contiguous, without affecting their values.

Sor t[list,(card:Nul), (ord:Ord)]
yields a list v obtained by sorting the top-level entries in list so that either the expressions
Ap[card,{Elem[v,{i} 1] are in canonical order (for increasing i), or
Apf[ord, {Elem[v,{i}] ,Elem[v,{j}]1}] isnhon-negative for i <j and is hon-positive for i > j.

Cyc[expr,(n:1)]
gives a list or projection obtained by cycling entries or filters in expr to the left by n positions with

7.7 SMP SUMMARY / Structural operations 7.7

respect to their first index.

Rev [expr]
yields a list or projection obtained from expr by reversing the order of entries or filters with respect to
their first index.

Reor [expr, (f:expr[0]), (reord: Sym)]
places filters of projections from f in expr in canonical order using the reordering (permutation) sym-
metries specified by reord. Symmetries are represented by the following codes (or lists of such codes
applied in the order given):

Sym Completely symmetric under interchange of all filters.
Asym Completely antisymmetric.
e Sig[9.6]
Cyclic Completely cyclic.
Sym[il,i2,...] Symmetric with respect to interchanges of filtersil, i2,
Asyml[il,i2,...] Antisymmetric with respect to interchanges of filtersii, i2,

Cycliclil,i2,...] Symmetric under cyclic interchange of filtersil, i2,

Greor [{perml, (wtl: 1)} , {perm2, (Wt2: 1)} ,...]
Projections are multiplied by the weights obtained by application of wti to
them when their filters are permuted so that the jth becomes the permi[j] th.

Projections from a symbol f are automatically reordered according to any permutation symmetries given
(using the above codes) as the value of the property f[Reor] [4].

e Comm [4]

Ldist[expr,(f:expr[0]), (levspec: I nf), (domcrit: 1), (max: 1)]
"distributes’ projections from f in the domain of expr specified by levspec and domcrit over lists
appearing as their filters, making at most max passes through expr.
fr{ri1]:vi1,[i2]:v1z2,..},{[i1l]:v21,[i2]:v22,..},a,..] becomes
{ri1]:f[vi1,v21,a,..],[i2]:f[v1l2,v22,a,..],..} where aisnotalist.
Projections from symbols carrying the property Ldi st [4] are automatically distributed over lists
appearing as their filters.

Flat[expr,(levspec: I nf),(f:expr[0] or List),(domcrit:1)]
"flattens’ nested projections from f or lists in expr in the domain specified by levspec and domcrit
[2.5]. f projections appearing as filters within f projections are replaced by null projections [2.3]. Sub-
listsin lists are "unraveled”. Indices in flattened lists are contiguous [2.4].
Projections from symbols carrying the property F 1 at [4] are automatically "flattened”.

Tier [list]
generates a single level list in which the complete sequence of indices specifying each expression in list
appear in null projections.
Assignments for projections from symbols carrying the property Ti er automatically generate lists with
asingle level in which the filters of the projections appear in indices as null projections [2.3].

Union[listl,list2,...]
<Comm, Flat>
yields a sorted contiguous [2.4] list of all entries appearing in listl, list2,

Inter [listl,list2,...]
<Comm, Fl at>
yields a sorted contiguous [2.4] list of the entries common to listl, list2,

7.8 SMP SUMMARY / Structural operations 7.8

7.8 Distribution and expansion

Ex [expr, (dlist), (ndlist: {}),(rpt: I nf), (levspec: I nf), (domcrit: 1)]
"expands' expr in the domain specified by levcrit and domcerit [2.5] using distributive replacements for
projections specified in dlist but not in ndlist, performing replacements on a particular level at most rpt
times. The default replacements in dlist are standard mathematical results for Mul t, Div, Dot,
Pow, Exp, Log, and their extensions [4], together with any replacements defined by Di st or
Powdi st properties[4].

Dist[expr,{ {f1,g1,((h1:g1),(k1:f1)),(pspecl:Inf)}},
(rpt: Inf),(levspec: I nf), (domcrit: 1)]

distributes occurrences of the projectors fi in expr (in the domain specified by levspec and domcrit [2.5])
over projections from gi appearing as their filters, yielding projections of hi and ki. Distributions on a
particular level are performed at most rpt times. A distribution specified by {f,g,h,k, pspec}
corresponds to the replacement
fI$$1.9[x1,x2,...],$%$2] ->
h[K[$$1,x1,$%$2] ,k[$81,x2, $%$2],...].

The possible positions at which the g projection may appear in f are specified by pspec according to

i 1 through i.

{i} i only.

{i,j} i through j.

{i,j,pcrit} i through j and such that application of the template pcrit yields "true".

Powdi st [expr ,{ {fpowl, fmultl, (fplusl:Plus)}},(rpt: Inf), (levspec: I nf),
(domcrit: 1)]
performs a "power expansion” on projections from fpowi appearing in expr (in the domain specified by
levspec and domcrit) over projections from fplus appearing as their first filters, and yielding projections
from fmult. Expansions on a particular level are performed at most rpt times. A power expansion speci-
fied by {fpow, fmult,fplus} corresponds to the replacement fpow[fplus[$$1],$n =Natp[$n]]
-> fmult[Rep | [fplus[$$1] , $n] followed by expansion of the result.

o Ldist [47.7]

7.9 Rational expression manipulation and simplification

Nc[expr]

gives the overall numerical coefficient of expr.

e [2.5]
Coef [term, expr, (temp:Plus)]

yields the result of applying temp to the set of coefficients of term in expr.
Expt [form, expr , (temp:Max)]

yields the result of applying temp to the set of exponents for form in expr.
Num[expr]

numerator of expr.
Den|[expr]

denominator of expr.
Rat [expr, (crit: 1), (levspec: Inf), (rpt: I nf), (domerit: 1)]

combines over a common denominator terms in the domain of expr specified by levspec and domcerit

[2.5], and on which application of the template crit does not yield 0, repeating the process until the
result no longer changes, or at most rpt times.

Col [expr,(crit: 1), (levspec: I nf), (domcrit: 1)]
collects terms with the same denominator in the domain of expr specified by levspec and domcrit, but
on which application of the template crit does not yield O.

7.9 SMP SUMMARY / Structural operations 7.9

Cb[expr,{ forml} ,(levspec: I nf), (domcrit: 1)]
combines coefficients of terms matching forml, form2, ... in the domain of expr specified by levspec
and domcrit.

e Fac, Pf [9.]]

7.10 Statistical expression generation and analysis

Rex[(n:10), ({{ unitl, (uwtl:1)},...}),({J templ, (twtl:1),(n1:1)},...})]
generates a pseudorandom expression containing on average n "units' selected from the uniti with sta-
tistical weights uwti, and combined by application of templates selected from the tempi with weights
twti; each tempi acts on ni expressions (or an average of -ni expressions for negative ni). Simple
defaults are provided for the uniti and tempi.
e Rand [8.3]

Aex[exprl,expr2,...]
performs a simple dtatistical analysis on the expri and yields a held [3.5] Rex projection necessary to
generate further expressions with the same "statistical properties”.

8. SMP SUMMARY / Mathematical functions 8.

8. Mathematical functions

8.1 Introduction

Reductions of mathematical functions occur through simplification or numerical evaluation. Simplification
yields an exact transformation; numerical evaluation is performed only in the absence of symbolic parameters,
and may be approximate.

Simplifications for arithmetic operations [8.2] and numerical functions [8.3] are automatically performed; ele-
mentary transcendental functions [8.5] are smplified only when the result is a rational number or multiple of a
constant [8.4].

The SMP Library provides many additional relations and transformations as replacements [3.3] defined in
external files and applied selectively by S projections [3.3].

Real or complex numerical values for any of the functions described below may be obtained by N projections
[3.4]. Elementary arithmetic, numerical and transcendental functions, and mathematical constants may be
evaluated to arbitrary numerical precision.

Whenever a mathematical "function" is used to represent solutions of an equation, it may take on severa
values for any particular set of arguments, as conventionally parametrized by Riemann sheets. For such mul-
tivalued "functions’, numerical values are always taken on a single "principal" Riemann sheet; at the conven-
tional positions of branch cuts, the limiting values in a counter-clockwise approach to the cut are given.

Definitions of differentiation [9.4], integration [9.4], and power series expansion [9.5] for elementary arith-
metic and transcendental functions are included; definitions for other functions are given in external files.

All projections representing mathematical functions carry the property Ldi st [4], as well as the properties
Sysand Tier.

Definitions of mathematical functions are based primarily on four references:

AS "Handbook of Mathematical Functions’, ed. M.Abramowitz and |.Stegun, NBS AMS 55 (1964);
Dover (1965).
GR "Table of Integrals, Series and Products’, |.Gradshteyn and 1.Ryzhik, Academic Press (1965).

MOS "Formulas and Theorems for the Special Functions of Mathematica Physics', W.Magnus,
F.Oberhettinger and R.P.Soni, 3rd ed, Springer-Verlag (1966).

BMP "Higher Transcendental Functions’, Bateman Manuscript Project (A.Erdelyi et al.) Vols 1-3,
McGraw-Hill (1953).

Citations in which notations or conventions differ from those used here are indicated by T.

8.2 Elementary arithmetic functions

exprl +expr2 +...orexprl - expr2 +...or Plus[exprl,expr2,...]
<Smp:1,Comm,Flat>

exprl * expr2 * ...or Mult[exprl,expr2,...]
<Smp:1,Comm,Flat>

exprl/expr2 or Div[exprl,expr2]

exprl~expr2 or Pow|[exprl,expr2]

Sqr t [expr]

exprl . expr2or Dot[exprl,expr2,...]

<Flat>
forms the inner product of exprl, expr2, For two lists x and y the inner product is a list obtained
by summing
x[i[1],i[2],...,i[n-2],k] * y[k,j[2],...,j[m]] over al values of the index

k for which entries are present in both x and .

8.2 SMP SUMMARY / Mathematical functions 8.2

e Inner [9.6]

exprl ** expr2 ** ...or Omul t[exprl,expr2,...]
<Comm, Flat>
forms the outer product of exprl, expr2,
e Outer [9.6]
Multiplication of an expression by a numerical coefficient does not involve an explicit Mul t projection.
Such products may nevertheless be matched by a pattern in which a generic symbol representing the coeffi-
cient appearsin a Mul t projection [2.6].
Plus[expr] and Mul t [expr] aretaken asexpr; Plus[] is Oand Mult[] is 1.
e Fctl, Dfctl, Comb [8.6]

8.3 Numerical functions

Floor [x]
the greatest integer not larger than the real number x ("floor" of x).
Ceil [x]
the least integer not smaller than the real number x ("ceiling”" of X).
Mod[n,m]
the real number n modulo the real number m.
Sign[x]
1 or -1ifx isapogtive or negative real number, and O if X is zero.
e P[5
Theta[x]
Heavyside step function 6(x).
Del ta[x]

Dirac’s delta function &(x).
Integrals and derivatives involving Theta and Del t a are treated.

Abs[x]
the absolute value of areal or complex number x.
Conj [expr]
complex conjugate.
Re[expr]
real part.
Im[expr]
imaginary part.
Max[x1,x2,...]
<Comm, Flat>
the numerically largest of x1, x2, ... if this can be determined.
Min[x1,x2,...]
<Comm, Flat>
the numerically smallest of x1, x2, ... if this can be determined.
Rand[(x: 1), (seed)]
pseudorandom number uniformly distributed between 0 and X. A number seed may be used to deter-
mine the sequence of numbers generated.

84 SMP SUMMARY / Mathematical functions 84

8.4 Mathematical constants

Pi = 3.14159...

E e=271828...

Euler Euler-Mascheroni constant y = 0.577216... [AS 6.1.3; GR 9.73; MOS 1.1]
Deg 17180 = 0.0174533... (number of radians in one degree)

Phi Golden ratio ¢ = 1.61803...

Catalan Catalan’s constant 0.915966... [AS 23.2.23; GR 9.73]

e |, INnf[22]

8.5 Elementary transcendental functions

Exp[Z]

Log[z, (base:E)]
Logarithm with branch cut along negative real axis [AS 4.1.1].

Sin[z] Asin[z] Sinh[z] Asinh[Zz]

Cos[z] Acos[z] Cosh[z] Acosh[z]

Tan[z] Atan[z] Tanh[z] Atanh[z]

Csc[z] Acsc[z] Csch[z] Acsch[z]

Sec[z] Asec[z] Sech[z] Asech[z]

Cot[z] Acot[z] Coth[z] Acoth[Zz]
Trigonometric and inverse trigonometric functions with arguments in radians
[AS 4.4.1-4.4.6; AS 4.6.1-4.6.6].
e Deg [84]

Gd|[z] Agd]| z]
Gudermannian functions gd(z), gd™(z) [AS 4.3.117].

8.6 Combinatorial functions

n! or Fctl[n]
Factorial [AS 6.1.6]. (B [2.1] projections are generated when necessary.)
e Gamma [8.7]

n!'! or Dfctl[n]
Double factorial [AS 6.1.49 (footnote); GR p.xliii]. (B [2.1] projections are generated when necessary.)

Comb[n,m[1],(m2],...mk-1],...(mK:n-m1]-m2]-...-mk-1]))]
Multinomial coefficient (n;m[1], m[2], ..., mk-1], mK]) [AS 24.1.2].
Comb [n, m] gives binomial coefficient [r’fn [AS 6.1.21; MOS 1.1].

Stil[n,m]

First kind Stirling numbers S(™ [AS 24.1.3].

Sti2[n,m]

Second kind Stirling numbers S{™ [AS 24.1.4].

Part[n]
Partition function [AS 24.2.1].

wWig[{j1,mi},{j2,m2},{j3,m3}] o
Wigner 3-j symbol (Clebsch-Gordan coefficient) [rj'n]i 12 rlng] [AS 27.9.1].

8.6 SMP SUMMARY / Mathematical functions 8.6

Rac[j1,j2,j3,j4,j5,j6]
Racah 6-j wmbol{

j1j2j3
j4]j5]6

8.7 Gamma, Zeta and related functions

Ber[n,(x:0)]
Bernoulli numbers B, [AS 23.1.2; GR 9.61; MOS 1.5.1; BMP 1.13.(1)] and polynomials B, (x) [AS
23.1.1; GR 9.62; MOS 1.5.1; BMP 1.13.(2)].

Beta[x,y,(a:1)]
Euler B function B(x,y) [AS 6.2.1; GR 8.380; MOS 1.1; BMP 1.5] and incomplete B function B(x,y,a)
[AS 6.6.1; GR 8.391; MOS 9.2.5; BMP 2.5.3].

Catb[n]
Catalan’'s 3 function (n) [AS 23.2.21].
Cosi[z]
Cosine integral function Ci(z) [AS 5.2.2; GR 8.230.2; MOS 9.2.2].
Coshi[z]
Hyperbolic cosine integral function Chi(z) [AS 5.2.4; MOS 9.2.2].
Ei[z]
Exponential integral Ei(z) [AS 5.1.2; GR 8.2; MOS 9.2.1; BMP 6.9.2.(25)].
e Erf [8.9]
Eul [n,(x)]

Euler numbers E,, [AS 23.1.2; GR 9.63; MOS 1.5.2; BMP 1.14.(1)] and Euler polynomias E,(x) [AS
23.1.1; MOS 1.5.2; BMP 1.14.(2)] (note relative normalization between numbers and polynomials).
Expi[(n:1),z]
Exponential integrals E, (z) [AS 5.1.4; MOS 9.2.1].
Gammal[z,(a: 0)]
Euler I' function I'(z) [AS 6.1.4; GR 8.310; MOS 1.1; BMP 1.1] and incomplete I' function '(z,a) [AS
6.5.3; GR 8.350.2; MOS 9.1.1; BMP 6.9.2.21].
e Fctl [8.6]
Ler[z,(s:2),(a:0)]
Lerch’s transcendent ®(z,s,a) [GR 9.55; MOS 1.6; BMP 1.11].
Li[(n:2),2]
Dilogarithm (Spence's function) Liy(z) [t AS 27.7; MOS 1.6; BMP 1.11.1] and polylogarithm function
Li,(z) [BMP 1.11.(14)].
Logi[Z]
Logarithm integral function li(z) [AS 5.1.3; GR 8.24; MOS 9.2.1].
Poc[x,n]
Pochhammer symbol (x), [AS 6.1.22; MOS 1.1].
Psi[z,(n:1)]
Digamma function y(z) [AS 6.3.1; GR 8.360; MOS 1.2; BMP 1.7.1] and polygamma functions Y™ (z)
[AS6.4.1; MOS 1.2; BMP 1.16.1].
Sini[z]
Sine integral function Si(z) [AS 5.2.1; GR 8.230.1; MOS 9.2.2].
Sinhi[Zz]
Hyperbolic sine integral function Shi(z) [AS 5.2.3; MOS 9.2.2].
Zetalz,(a:1)]
Riemann ¢ function ¢(z) [AS 23.2; GR 9.513,9.522; MOS 1.3; BMP 1.12] and generalized ¢ function
{(z,0) [GR 9.511,9.521; MOS 1.4; BMP 1.10].

8.7 SMP SUMMARY / Mathematical functions

8.8 Confluent hypergeometric and related functions

AirAi[z]

Airy’s function Ai(z) [AS 10.4.2].
AirBi|[z]

Airy’s function Bi(z) [AS 10.4.3].
AngJ[n,z]

Anger function J,(z) [AS 12.3.1; GR 8.580.(1)].
Batk|[n,z]

Bateman's function k,(z) [AS 13.6.33; MOS 6.7.2].
BesJ[n,z]

Regular Bessel function J,(z) [AS 9.1.10; GR 8.402; MOS 3.1].
BesY|[n,z]

Irregular Bessdl function (Weber’s function) Y, (z) [AS 9.1.11; GR 8.403.(1); MOS 3.1].
Besj [n,z]

Regular spherical Bessal function j,(z) [AS 10.1.1; MOS 3.3].
Besy|[n,z]

Irregular spherical Bessel function y,(z) [AS 10.1.1; MOS 3.3].
BesK[n,z]

Modified Bessel function K, (z) [AS 9.6.2; GR 8.407.(1); MOS 3.1].
Besl [n,z]

Modified Bessdl function I,(z) [AS 9.6.3; GR 8.406; MOS 3.1].
BesH1[n,z]

Hankel function H®(z) [AS 9.1.3; GR 8.405.(1)].
BesH2[n, z]

Hankel function H{?(z) [AS 9.1.4; GR 8.405.(1)].
ChgJ[a,c,Zz]

Confluent hypergeometric (Kummer) function 1F(a;c;z) [AS 13.1.2; GR 9.210; MOS 6.1.1].
CouF[l,e,r]

Regular Coulomb wave function F_ (n,r) [AS 14.1.3].
CouG|l,e,r]

Irregular Coulomb wave function G, (n,r) [AS 14.1.14].
Erf[z]

Error function erf(z) [AS 7.1.1; GR 8.250.(1)].
Erfc[z]

Complementary error function erfc(z) [AS 7.1.2].
e Gamma, Ei [8.7]
FreClz]
Fresnel’s function C(z) [AS 7.3.1; GR 8.250.(1)].
FreS[z]
Fresnel’s function S(z) [AS 7.3.2; GR 8.250.(2)].
Her [n,z]
Hermite's function H,, (z) [AS 22.2.14; GR 8.950].
Kelbe[n,z]
Complex Kelvin functions ber,,(z) +i bei,(z) [AS 9.9.1; GR 8.561].
Kelke[n,Zz]
Complex Kelvin functions ker,,(z) +i kei,(z) [AS 9.9.2; GR 8.563.(2)].

8.8 SMP SUMMARY / Mathematical functions

KumU[a,b, z]
Kummer's U function U (a,b,z) [AS 13.1.3; GR 9.210.(2); MOS 6.1.1].

Lag[n,(a:1),z]
(Generalized) Laguerre function L®(z) [AS 22.2.12; GR 8.970].

Lom[m,n, z]
Lommel’s function s, ,(z) [GR 8.570.(1); MOS 3.10.1].

Par [p,z]
Parabolic cylinder functions D, (z) [T AS 19.3.7; GR 9.240; MOS 8.1.1].

Pcp[n,v ,Z]
Poisson-Charlier polynomials p,(v,z) [AS 13.6.11; MOS 6.7.2].

StrH[n, z]
Struve function H, (z) [AS 12.1; GR 8.550.(1)].

StrL[n,Zz]
Modified Struve function L, (z) [AS 12.2.1; GR 8.550.(2)].

Tor[m,n,z]
Toronto function T(m,n,z) [AS 13.6.20; MOS 6.7.2].

WebE[n, z]
Weber's function E, (z) [AS 12.3.3; GR 8.580.(2)].

WhiM[Il,m,Zz]
Whittaker's M function M, ,(z) [AS 13.1.32; GR 9.220.(2); MOS 7.1.1].

WhiW[I,m,z]
Whittaker's W function Wi ,(z) [AS 13.1.33; GR 9.220.(4); MOS 7.1.1].

8.9 Hypergeometric and related functions
CheT[n,x]
Chebyshef function of first kind T, (x) [AS 22.2.4;, MOS 5.3.1].

CheU[n,Xx]
Chebyshef function of second kind U, (x) [AS 22.2.5; MOS 5.3.1].

Geg|[n,l,Xx]
Gegenbauer (ultraspherical) functions C,{)(x) [AS 22.2.3; GR 8.930; MOS 5.3.1].

Ghg[p.q,{al,a2,...},{b1,b2,...},Z7]
Generalized hypergeometric function [MOS 2.9].

Hg[a,b,c,z]
Gauss hypergeometric function ,F4(a,b;c;z) [AS 15.1.1; GR 9.10; MOS 2.1].

JacP[n,a,b,z]
Jacobi functions P,2?)(z) [AS 22.2.1; GR 8.960; MOS 5.2.1].

LegP[l,(m:0),z]
(Associated) Legendre functions P"(z) [AS 8.1.2; GR 8.702; MOS 4.1.2, 5.4.1].

LegQ[!l,(m:0),z]

8.8

(Associated) Legendre functions of second kind Q™(z) [AS 8.1.3; GR 8.703; MOS 4.1.2, 5.4.2].

e Beta[87]

MacE[a,b,z]
MacRobert E function [GR 9.4; MOS 6.7.2].

Mei[m,n,p,q,{al,...,ap},{bl,...,bq},z]
Meijer G function [GR 9.30].

8.10 SMP SUMMARY / Mathematical functions 8.10

8.10 Elliptic functions

El IK[k,(t:Pi/2)]

First kind elliptic integral K (kIt) [t AS 17.2.6; T GR 8.111.(2); MOS 10.1].
EIIE[k,(t:Pi/2)]

Second kind elliptic integral E (kIt) [t AS 17.2.8; T GR 8.111.(3); MOS 10.1].
EIIPi[n,k,(t:Pi/2)]

Third kind eliptic integral M(n,klt) [t AS 17.2.14; 1 GR 8.111.(4); MOS 10.1].

JacSn[x,m] JacCn[x,m] JacDn[x,m]
JacCd[x,m] JacSd[x,m] JacNd[x,m]
JacDc[x,m] JacNc[x,m] JacSc[x,m]
JacNs[x,m] JacDs[x,m] JacCs[x,m]
JacAm[x, m]

Jacobian elliptic functions Sn(x Im) etc. [AS 16.1; GR 8.144; MOS 10.3].
Jacth[i,z,m]

Jacobi © functions 6; (zIm) [AS 16.27; GR 8.18; MOS 10.2].
WeiP[u,g,h]

Weierstrass function P (u;g,h) [AS 18; GR 8.160; MOS 10.5].
Weiz[u,g,h]

Weierstrass ¢ function {(u;g,h) [GR 8.171.(1); MOS 10.5].
Weis[u,g,h]

Weierstrass ¢ function o(u;g,h) [GR 8.171.(2); MOS 10.5].

8.11 Number theoretical functions

Ged[nl,n2,...]

the greatest common divisor of the integersnl, n2,
Divis[n]

alist of the integer divisors of an integer n.
e Mod [8.3]
Nfac[n]

a list of the prime factors of an integer or rational number n, together with their exponents.
Pr ime[n]

the nth prime number.
Divsig[(k:1),n]

Divisor function gy (n) (og(n)=d(n)) [AS 24.3.3].

Jacsym[p,q]

Jacobi symbol [% [BMP 17.5].
Jor [k,n]

Jordan’s function J,(n) (kth totient of n) [BMP 17.1.1].
Lio[n]

Liouville's function v(n) [BMP 17.1.1].
ManL [n]

Mangoldt A function [BMP 17.1.1].

Mob|[(k:1),n]
Mobius p function py (n) of order k [AS 24.3.1].

811 SMP SUMMARY / Mathematical functions 811

Rr s[n]

List containing reduced residue system modulo n.
Totient[n]

Euler's totient function @(n) [AS 24.3.2].

9. SMP SUMMARY / Mathematical operations 9.
9. Mathematical operations

9.1 Polynomial manipulation

Polynomials consist of sums of powers of "base" expressions. The bases in an expression are by default taken
as the literal first filters of Pow projections.
e Polyp [7.6]

Pdiv[exprl, (expr2:1),(form)]
the polynomial quotient of exprl and expr2 with respect to the "base" form.

Pmod [exprl, expr2, (form)]
the remainder from division of exprl by expr2 with respect to form (polynomial modulus).
e Mod [8.3]

Pgcd[exprl, expr2, (form)]
greatest common divisor of the polynomials exprl and expr2 with respect to form.
e Gcd [8.17]

Rsl t[exprl, expr2]
polynomial resultant of exprl and expr2 with respect to the "base" form.

Fac[expr,(lev:1),{ forml}), (crit: 1), (repl})]
factors polynomials appearing a or below level lev in expr (and not yielding "false" on application of
the template crit) with respect to "bases’ matching forml, form2, The smallest available bases are
taken as default. (The replacements repl, rep2, ... will specify polynomia equations defining algebraic
extensions to the default real integer factorization field.)
e Nfac [8.11]

e Ex [7.8]
e Ch, Col [7.9]

Pf [expr, (form)]
yields a partial fraction form of expr with respect to the "base" form.

9.2 Evaluation of sums and products

Sum[expr ,{{ var1l, (lowerl:0), (upperl:varl), (stepl: 1), (testl: 1), (endtestl: 0)},...}]
forms the sum of the values of expr when the symbols vari successively take on values from loweri to
upperi with increments stepi. If the value of testi is 0, the current value of expr is not included in the
sum. The summation terminates if projection of endtesti onto the list {vari,curexpr,cursum}, where
curexpr is the current value of expr and cursum is the current partial sum, yields true.

Prod|[expr,{{varl, (lowerl:0), (upperl:varl), (stepl:1),(testl: 1), (endtestl: 0)},...}]
forms the product of the values of expr when the symbols vari successively take on values from loweri
to upperi with increments stepi. If the value of testi is 0, the current value of expr is not included in
the product. The product terminates if projection of endtesti onto the list {vari,curexpr,curprod}, where
curexpr is the current value of expr and curprod is the current partial product, yields true.

In multiple sums or products, varl is taken as the innermost summation or product variable.

The default upperi yield indefinite sums or products; if no loweri is specified, it is taken as an internally-
generated symbol [2.2].

After each new term is added in a sum or product, any endtesti is applied as a template to a list consisting of
the current value of vari, the last term added, and the current partial sum or product. If the result is determined
to be true, no further terms are added, and the current partial sum or product is taken as the complete sum or
product.

Sums and products with infinite limits may be evaluated numerically with an N projection [3.4].

9.2 SMP SUMMARY / Mathematical operations 9.2

Indefinite sums or products which cannot be performed explicitly are converted into a canonical form with
internally-generated symbols for the vari.
e D0 [6.2]

9.3 Solution of equations

Sol [{ egnl} ,{ forml},(eliml})]
takes the equations eqnl, ... (represented as Eq projections [6]) and yields a list of simplified equa-

tions or, if possible, replacements giving solutions for forms matching formi, ... after eliminating forms
matching eliml, ... where possible. Undetermined parameters in solutions appear as indices in the
resulting list.

Solutions for classes of equations may be defined by assignments for the relevant Sol projections [3.2]. The
assignment Sol [f[$x]=8y,$x]::Sol[$x=fi[$y],$x] thus defines an "inverse" for the "func-
tion" f.

o Mdiv [9.6]

9.4 Differentiation and integration

A "variable" is an expression containing a single symbol (either on its own or in a projection; in the latter case
the necessary Jacobian factors are extracted).

D[expr,{varl,(nl:1),(ptl:varl)} ,{var2,(n2:1), (pt2:var2);...]
forms the partial derivative of expr successively ni times with respect to the "variables' vari, evaluating
the final result at the point vari — pti.
Dt [expr,{varl,(nl:1),(ptl:varl)} ,{var2,(n2:1),(pt2:var2);...]
forms the total derivative of expr with respect to the variables vari. Dt [expr] forms the total dif-
ferential of expr.
Derivatives which cannot be performed explicitly are converted into a canonical form with internally-generated
symbols [2.2] for the vari, and explicit values for ni and pti.
Derivatives may be defined by assgnments for the relevant D or Dt projections.
D[f[$x,%y],{$x,1,%z}]:9[%$z,By] defines the derivative of the "function" f with respect to its
first "argument”.
In D projections, distinct symbols are assumed independent, while in Dt projections, they are assumed to be
interdependent, unless the corresponding derivative has explicitly been assigned the value 0. Symbols or
projections carrying the property Const [4] are assumed independent of all variables.

N projections [3.4] yield when possible numerical values for derivatives with definite pti.

Int[expr,{{varl,(lowerl), (upperl:varl);...;,(iterml})]
forms the integral of expr successively with respect to the variables varl, ... between the limits lower1,
... and upperl, The default upperi yield indefinite integrals; if no loweri is specified, it is taken as
an internally-generated symbol [2.2].

Any integral whose indefinite form involves only elementary arithmetic [8.2] and transcendental [8.5] func-
tions is performed explicitly. Any itermi are taken as candidate additional terms in the integral.

Integrals which cannot be performed explicitly are converted into a canonical form with internally-generated
symbols for the vari.

Integrals may be defined by assignments for the relevant | nt projections.
All distinct symbols are assumed independent.
N projections [3.4] yield when possible numerical values for integrals with definite limits loweri and upperi.

9.5 SMP SUMMARY / Mathematical operations 9.5

9.5 Series approximations and limits

Ps[(expr:1),{varl} ,{ ptl},{4 (sordl:0),ord1l}},
(ser:{[sord1]:0,...,[-1]:0,[0]:1,[1]:0,...,[ord1]:0})]

Power (Taylor-Laurent) series in varl, ... about the points ptl, ... to a most order ordl, Terms
proportional to varljl var2’j2 ... are given when j1, j2, ... lie within a smplex with vertices
(dji:sordi), (jl:ordl, ji:sordi), (j2:ord2, ji:sordi), ser[i] gives the coefficient of varl”i in the

power series. Composition of a function f with a power series will be carried out only if f carries the
property Ldi st.

Ra[expr,var, pt,{ degn, (degd: degn)} , (crit: $1=degn& $2=degd) ,
(sern:{[0]:1,...,[degn] : 0}),(serd:{[0]:1,...,[degd] : 0})]
Rational (Pade) approximants in var about the point pt, to at most order degn in numerator and degd in
denominator series. All order (mn) approximants with m+n<degn+degd such that application of the
template crit to m,n yields "true" are given (in alist if necessary). sern[i] is the coefficient of var~i in
the numerator series, and serd[j] of var”j in the denominator.

Cf [expr,(var:1),(pt:0),{ (sord:0),(ord:0)} ,(ser:{[0]:1,[1]:0,...,[ord] : O})]

Continued fraction approximation in var about the point pt. ser[i] gives the coefficient of var in the
ith partial quotient of the continued fraction.

expr gives an overall factor for the series. Input Ps, Ra and Cf projections are simplified so that all possi-
ble terms are transferred from expr to coefficients in the series serk.

Arithmetic and mathematical operations and substitutions (compositions) may be performed on series approxi-
mations. the results are taken to the highest permissible order.

Ax [expr]
yields an ordinary expression obtained by truncating all higher order terms in the series approximation
expr.

If the expression expr in Ps, Ra and Cf is a series approximation, it is converted to the specified form,
maintaining the highest permissible order.

Series approximations may be defined by assignments for Ps projections.
Ps[exp[$x],%$x,0,$n]:Ps[1,%$x,0,%$n,{[$i]:1/%i!}] defines the power series for the
exponential function around the origin. Ra and Cf use assignments made for Ps projections.

Numerical values for series approximations are obtained using N.

L im[expr,var, pt]
forms the limit of expr as var tendsto pt. A sequence of Ps projections of increasing order is formed
until a definite limit is found.

9.6 Matrix and explicit tensor manipulation

Out er [temp, listl, list2,...]
forms the generalized outer "product” of the lists listl, list2, ... with respect to the template temp. If

entries in the lists t and u are specifiedas t[il,i2,..,ik] and u[j1,j2,..,jk] then
Outer[f,t,u] is a list whose entries are given by
Ap[f. {t[i1,i2,..,ik],u[j1,j2,..,jk]}].

Inner [(templ:Mul t),listl,list2, (temp2:Plus)]
forms the generalized inner "product” of listl and list2 with respect to the templates templ, temp2.
e Dot [82]

Trans|list, (levs: 2), (temp:Eq)]
yields a list obtained from list by transposing entries between two levels specified by levs (the ni are
positive integers):

9.6 SMP SUMMARY / Mathematical operations 9.6

n landn
{n1,n2} nl and n2
and applying the template temp to each entry of the resulting list.

Tr[list, (temp:Plus)]
the generalized trace obtained by applying temp to the set of entriesin list whose indices are al equal.

Sig[list,(base: {1,2,3,...})]
the signature of the permutation between base and list (O if no permutation suffices). (If base is omit-
ted, entries of list may appear directly as filters for Si g).
e Asym|[7.7]

Det [list]
the determinant of a "full” list.

Minv[list]
the inverse of a non-singular matrix represented by list.

Mdi v [listl,list2]
yields a matrix mat such that list2. mat is equal to listl.

Triang[list]
gives the triangularized form of a matrix represented by list.
Eig[list]

yields a list of eigenvalues and normalized eigenvectors for the matrix list.

Simtran([list]
yields the similarity transformation matrix necessary to place list in diagonal or Jordan canonical form.

10. SMP SUMMARY / Non-computational operations 10.
10. Non-computational operations

10.1 Input and output operations

Lpr [expr,(filespec: Terminal)]
prints expr to the file specified by filespec [10.3] in a direct linear format suitable for use as input and
in which labelling of parts is manifest [2.10]. The default filespec is the standard input/output medium
(usually the terminal). Lpr yields Nul | asan image.

Pr[exprl, (expr2,...)]

prints exprl, expr2, ... in turn (separated by tabs) with standard two-dimensional format [2.12], and
yields the last expri as an image.

e Pr [4]

e Fmt [10.1]

Prh[exprl, (expr2,...)]
prints the unsimplified forms of the expri.

Rd[(prompt:Nul I), (filespec: Terminal), (eofval :Nul 1)]
prints the expression prompt, then reads and simplifies one line of input (terminated by Onewlined) from
the file specified by filespec [10.3]. The default is input from the standard input/output medium (usually
the terminal). Rd yields the value eofval if it encounters the end of the file.

Rdh[(prompt:Nul I), (filespec: Terminal), (eofval :Nul 1)]
prints the expression prompt, then reads one line of input from the file filespec [10.3] and yields its
"held" [3.5] form. The default is input from the standard input/output medium (usually the terminal).
Rdh yields the value eofval if it encounters the end of the file.

Fmt [(prspec:Nul I),exprl,expr2,...]
when output prints the expri in a format specified by prspec:

Nul | exprl followed immediately by expr2,

positive integer n exprl followed after n blank spaces by expr2,

negative integer -n exprl, expr2, ... printed in tabular format, with tab positions every n
spaces.

list expri appear with horizontal and vertical offsets defined by prspec[i],

according to 4 hori, veri}. expri with equal horizontal or vertical offsets
are aligned. Those with larger horizontal offsets are further to the right,
and those with larger vertical offsets are higher up. If no entry exists in
prspec for a particular expri, it appears immediately to the right of the last
printed expression. A horizontal or vertical offset | nf specifies a posi-
tion to the right or above all other expressions.
Prsize[expr]
yields a list of two elements, the number of horizontal character positions and the number of vertica
character positions occupied by the printed form of expr.

Sx[cc,{x1,x2,...} ,(class: 1), (prec:1)]
when output prints the xi in association with OccO with a syntax and precedence defined by class and
prec as specified in [2.11].

Special output forms may be defined by assigning a suitable printing format as the value of _s[Pr] [4].

10.2 SMP SUMMARY / Non-computational operations 10.2

10.2 Graphical output

Graph[{{ (x1),y1,(z1)t+,{ u,(v)F,$ umin, (vmin); ,{ umax, (vmax) ,

{forml} ,{ (xv:0),(yv:0),(zv: Inf)} ,{ upt, (vpt)},

{ ¢ (xmin), xmax}) < (ymin) , ymax; , § (zmin), zmax;)}]
generates a Pl ot projection which prints as a plot of curves or surfaces defined by the numerical
values of xi, yi and Z as functions of the parameters u and v, between umin and umax (with upt sam-
ples), and vmin and vmax (with vpt samples). xv, yv, zv specify the point of observation for three-
dimensional plots (contour plots by default). The formi define the style of curves plotted: integer codes
give standard curve styles; other formi are printed explicitly on the curves. Only points in the region
bounded by xmin, xmax, ymin, ymax, zmin, zmax are plotted.

Plot [plist,{ (xv:0),(yv:0),(zv: Inf)},
{ @ (xmin), xmax;),4 (ymin) , ymax; , { (zmin), zmax;)]
prints as a plot containing points, lines, curves, surfaces and regions specified in plist. Ranges of coordi-
nates default to include al forms given in plist. xmin, xmax, ... define boundaries of the region in
which points are plotted. In two-dimensional plots, forms given later in plist overwrite those given ear-
lier when they overlap. In three (and higher) dimensions, explicit intersections and perspective are used.

Plot[] clearsthe plotting area. (Implementation dependent)
The list plist (whose sublists are flattened [7.7]) contains:

Pt[{x.y.(@}.(form),{ (c1:2){)]

represents a point with coordinates x, y and z to be printed as form. Additional coordinates ci
may be used to define contours on surfaces. When form does not print as a single character, the
coordinates are taken to specify its lower left corner.

Line[ptlist, (form)]
represents a succession of straight lines between the point specified by Pt projections in the list
ptlist: form specifies the style of line.

Curve|ptlist, (form)]
represents a smooth curve through the points specified by Pt projections in the list ptlist: form
specifies the style of curve.

Sur f [ptlist, (form)]
represents a three-dimensional surface spanned by points specified by Pt projections in ptlist.
The surface is ruled with contour lines at integer spacings in each of the additional coordinates ci.

Axes[{(x:0),(y:0),(z:0)} , { (xtemp) , (ytemp) , (ztemp)}]
represents a labelled set of orthogonal axes intersecting at Pt [x,y,z]. xtemp is a template
applied to xmin and xmax to obtain a list of x values at which the x axis is to be labelled. ytemp
and ztemp are analogous templates for the y and z axes. If xtemp, ytemp, ztemp are omitted, a
heuristic procedure is used.

High-resolution graphics output is generated if a suitable device is available.

10.3 File input and output

In projections which perform input/output operations, a file is specified by a filespec filter of the form
{file, (lines), (format)}. lines and format may be used to specify portions of file or to specify output format
characterigtics for file. If lines and format are omitted, filespec may be given simply as file, without braces;
however, alist of such file specifications must be nested as { {filel} , {file2} ,...}.

file is given as a single symbol, enclosed in " " if necessary [2.2].

lines may be given as n, identifying the nth line of the file; as -n, identifying the nth line from the end of the
file; or as {nl,n2}, identifying lines n1 through n2. In input operations, {file,n} represents the portion of
file from line n to the end of the file. When lines is omitted, the filespec represents the entire file. In output
operations, {file,n} specifies that output is to be appended after the nth line of file; contents of file from line
n to the end of the file are overwritten. When lines is omitted, output is appended to file.

10.3 SMP SUMMARY / Non-computational operations 10.3

format, a list of the form { (width), (length), (prstyle), (tabs), (gcode)}, specifies output format characteristics
for file. A detailed treatment of output characteristics may be found in [A.6].

Terminal
is a system-defined symbol used to denote the standard input/output medium (usually the terminal).
e Open [10.3]

<filespec or Get [(filespec: Terminal)]
enters subsidiary mode [6.3] and reads input up to the first Oinput termination character] from the
specified file filespec. If ambiguous syntax [1.1, 2] is encountered, a message is printed, and no further
input occurs. If filespec is successfully input, the projection yields the last output line generated. A
blank line yields Nul I.
e Rd, Rdh [10.1]
e Load [10.7]
e Dir [10.6]

Put [exprl, (expr2,...), (filespec: Terminal)]
outputs assignments defining values given for the expri to the specified file filespec in a form suitable
for subsequent input.

Open| (filespec: Terminal), (gcode)]
causes al subsequent standard and graphics [10.2] mode input and output expressions to be entered into
the specified file filespec [10.3]. If the graphics code gcode [A.6] is given, its value overrides any gcode
value in filespec and modifies the value of _file[Fi | e] [4] accordingly. Terminal hardware charac-
teristics [A.7] may be specified by 1 ni t [10.6].

Close[filel,file2,...]
terminates entry of input and output expressions into the specified files.

Close[] stopsthe printing of any output on the standard output medium until Open|[] occurs.

10.4 Display operations

(Implementation dependent)

In display input mode, the pointer (often a display cursor) of an interactive display terminal may be used to
locate and select parts of displayed expressions. The pointer is positioned either through an analog device, or
from the termina keyboard: OupOTldownOleftl] and Orightl] move the pointer one position up, down, left
or right respectively; Otab up etc. move severa positions. [select] selects the minimal expression covering
the current pointer position and any previous pointer positions indicated by OmarkD. Oscroll forwardC and
Oscroll back display subsequent and previous sections of output.

An Init projection [10.6] may be used to specify the character sequences typed from the terminal to indi-
cate OupO etc. and the corresponding character sequences sent to the terminal to perform these operations.

o [A7]

L[expr,(temp:List)]
enters display input mode displaying the expression expr and yields the result from application of the
template temp to the set of filters corresponding to the subexpressions selected.
e At [7.2]

10.5 Textual operations

Ed|[expr, (filespec)]
enters edit mode [1.7], with the textual form of expr, as printed by Lpr, in the edit buffer, and yields
as a result the edited expression. If filespec [10.3] is given, the specified file (or portion thereof), with
the textual form of expr appended, is placed in the edit buffer; upon exit from Ed, Nul | is returned
and the edited text is written back to the file.

10.5 SMP SUMMARY / Non-computational operations 10.5

Edh [expr, (filespec)]
enters edit mode [1.7] with the text of a partially simplified form [3.5] of expr in the edit buffer. If
filespec [10.3] is given, the specified file (or portion thereof), with the text of a partially simplified form
[3.5] of expr appended, is placed in the edit buffer; upon exit from Edh, Nul | is returned and the
edited text is written back to the file.
e Ev [3.7]

Mak e[(start: #), (expr : (next integer))]
generates a symbol with name obtained by concatenating the textual form of start with the textual form
of expr, or, by default, with the smallest positive integer necessary to form a previously unused name.
Expl [expr,(n)]
gives a list of numerical codes for each of the characters appearing in the textual form of expr (as
printed by Lpr). A second filter yields the nth code in the list. Characters are numbered from O to
94 in the order:
0123456789abcdefghijkImnopqr stuvwxyzABCDEFGH| JKLMNOPQRSTUWVXYZ
#®o$0space! "& " () *+,-./:;<=>2@[\]~ {1}~
Negative integers -c correspond to absolute character codes c in the native system character set.
o [A5]
Impl[{n1,n2,n3,...}]
generates a symbol whose name consists of the characters specified by the numerical codes nl, n2, n3,

10.6 External operations

Init[(parl,par2,...)]
assigns various external parameters as specified in [A.9], and yields a list of the values of all the
assigned parameters. Any filter or part of a filter given as Nul | is taken to represent the previous
value of that filter or part.

Exi t [(expr)]
terminates the current job, passing expr as an "exit code" [A.3] to the monitor (shell).

Run[expr,(argl,arg2,...)]
executes the textual form of expr (printed by Lpr [10.1]) as a monitor (shell) command or program
[A.3], using the textual forms of the argi as input; the text of any output generated is simplified and
given as the image.
e [1.6]

Dsp|(file: smp.out),(sect: I nf)]
prints the section of file specified by sect:
n First n lines
-n Last n lines
{nl,n2} Lines nl through n2

Har d[(expr), (code) , (gcode)]
generates a hard copy of expr on the device specified by code. Har d[] yields a hard copy of al input
and output expressions. Graphics output is given if possible.

Save|[(rec: smp.out),file]
creates a permanent copy file of the record file rec.

Send [(unamel, uname2,...)]
enters send mode: arbitrary text terminated by Oinput termination character(is sent to the locations or
users identified by unamei. [Obreak interruptl] may be used to include SMP expressions. Send[]
sends the text to a central SMP report file at each installation.

10.6 SMP SUMMARY / Non-computational operations 10.6

Dir [dir]
changes the default "user” file directory [A.2] to dir. Dir [] resetsto the directory given at initializa-
tion.

10.7 Code file input and generation

(Implementation dependent)

Cons[{{proj1}, ({11 progfilelf, (lang);), (codefile),

(suppfilel}), symspeclt), (lang)]
generates if possible definitions in intermediate language lang for the projectors proji which are defined

in the current SMP session. These definitions are compiled together with the program files prodfilei.
The resulting machine code, together with the code files suppfilei, is either written into the code file
codefile or, if codefile is not specified, used for the remainder of the SMP session to evaluate projections
from the proji. symspeci [10.7] may be used to specify characteristics of the proji and of functions in
the prodfilei.

Cons returns a list of the proji for which functions were generated.

A Cons projection is egquivalent to a sequence of Prog, Code, and (if no codefile is specified)
Load projections.

e Prog, Code, Load [10.7]

e Cons [4]

Prog[{{proj1}},(progfile:Terminal), ({ symspecl}), (lang)]
generates if possible definitions in intermediate language lang for the projectors proji which are defined

in the current SMP session; these definitions are written to the file progdfile (terminal as default). sym-
speci [10.7] may be used to specify characteristics of the proji.
Pr og returns alist of the proji for which functions were generated.

Prog[expr, (progfileTerminal), § symspecl}), (lang)]
generates if possible code in intermediate language lang corresponding to expr.

e Cons, Code, Load [10.7]

Code[< proj1f, (<< progfilel; , (lang)!), codefile, § suppfilelt), ({ symspeclt)]
compiles intermediate language definitions for the projectors proji in the program files prodfilei; the
resulting machine code, together with the code files suppfilei, is written into codefile, a code file suitable
for loading with Load or Cons. symspeci [10.7] may be used to specify characteristics of functions
in the prodfilei.
Code returns{ proj1}.
e Cons, Prog, Load [10.7]

Load[< proj1} , codefile]
loads machine code definitions for the projectors proji in the code file codefile; these definitions are
used for the remainder of the SMP session to evaluate projections from the proji.

Load returns{ proj1}t.
e Cons, Prog, Load [10.7]
e Cons [4]

A program file [A.4] contains definitions in an intermediate compilable language (such as C or FORTRAN).

An object file contains definitions in the native machine language and is typically the output of a compiler and
an assembler.

A code file [A.4] is afile generated by Code or Cons containing machine language definitions to evaluate
SMP projections in a form suitable for loading with Load or Cons. When a code file is generated, charac-
teristics of these definitions may be specified in symspeci; this information is entered into the file and used
when the definitions are loaded into SMP. Code files may also contain instructions to operating system pro-
grams such as the linker. The contents and format of a code file are implementation-dependent.

10.7 SMP SUMMARY / Non-computational operations 10.7

Following is a detailed treatment of the filterstaken by Cons, Prog, Code, and Load.

lang

lang is a numerical code specifying the language of any progfilei supplied to Code or Cons, the language
of the definitions to be generated by Prog or Cons, and the default objlang for any symspeci. Available
languages and their numerical codes are given in the Implementation Notes. A default lang isset by Init
[10.6].

proj

Ina Prog or Cons projection,<4 proj1-+ specifies the projectors for which intermediate language defini-
tions are to be generated. A Nul | entry specifies that functions are to be generated for all projectors on
which the previous list entry depends. (Entries in<{ proj1tF may be listss {{f,g},} and {f,,g,} are
equivalent, both specifying the generation of functions for all projectors invoked by either f or g, aswell as
for f and g.)If no Nul | entries are present in{{ projit, Prog and Cons do not generate functions for
such projectors, except when Cons is invoked without codefile, progfile, or suppfile arguments.

Ina Code projection,{ proj1} specifies projectors for which information is to be entered in codefile to permit
calling of the machine language definitions from SMP when codefile is loaded. Such projectors may aso be
specified to Cons.

Ina Load projection,{ proj1} specifies projectors from which projections are to be evaluated by compiled
functions in the codefilei. (The names of the projectors must be identical to those used by Code or Cons
when the code files were generated.)

progfile

In<{ progfilel}, (lang)), lang specifies to Code or Cons the language of the files in< progfilel}; e.g.,
{{{fl.c,f2.c},1},{src,2}} specifiesthat thefiles f1.c and f2.c areinlanguage 1 and that
the file src isin language 2.

0 is a special numerical code specifying the native machine language, used only to identify object files sup-
pliedto Code or Cons. A code of O may not be specified as the lang filter ina Prog or Cons pro-
jection.

codefile

codefilei are code files generated by Code or Cons. When a code file is generated, any information sup-
pliedto Code or Cons in symspeci or in suppfilei is entered into the file.

suppfile
suppfilei are code files suppliedto Load or Cons. Ina Load or Cons projection, it is not necessary to
provide symspeci for any functions in the suppfilei.

Symspec

symspec is a list of the form

{ ¢ symbol1}), (object) , (objtype) , (narg) , € argtype}) , (objlang)}. symspeci are used to specify the charac-
teristics of functions or variables in definitions to be generated by Prog or Cons, and in progfilel supplied
to Code or Cons.

symboll is an SMP projector or symbol and object is the intermediate language function or variable
corresponding to symboll. Unless object is given, the name of the function or variable is derived from sym-
bol1; the method of derivation is given in the Implementation Notes, and is dependent on objlang. If object is
a variable, objtype specifies the data type of the variable. If object is a function, objtype specifies the data
type of the value it returns, narg is the number of its arguments,{ argtype} specifies the data types of the argu-
ments, and objlang is the intermediate language in which the function is written.

10.7 SMP SUMMARY / Non-computational operations 10.7

Data types are given by numerical codes:

1 integer

2 single-precision floating-point

3 double-precision floating-point

The default type and any additional types available are given in the Implementation Notes.

A symspec may give a single symbol, a list of symboli, or the symbol Nul I. If alist of symboli is given,
any values specified in the symspec are applied as characteristics for each of the symboli. If the symbol
Nul | is given, values are applied to all objects for which those characteristics are not otherwise specified;
this form of symspec may be used to override default values.

If the intermediate language function object is being supplied in a progdfile as the definition for the projector
symbol (where symbol is one of the proji), narg specifies the number of filters taken by symbol. Ina Cons
projection, if narg is not given in the symspec for symbol, SMP attempts to determine narg from an invocation
of symbol in the SMP definition of another of the proji. If such an invocation does not exist, or if object is
being supplied to Code, an unspecified narg causes projections from symbol to call object with two argu-
ments, the number of filters in the projection and an array of the filters.

e Inline[4]

10.8 Resource management and analysis

Time[expr,(n:1)]
simplifies expr n times, and yields an Er r projection [2.1] giving the approximate average CPU time
in seconds [A.8] used for each simplification.
o #T [1.3]
e %T [6.3]
e Clock [10.9]

Gce | (frac)]
reclaims memory (store) not required for further processing (by "compacting garbage collection").
Gc[] reclaims memory as soon as possible, Gc[frac] whenever a fraction frac of the total available
memory has been used. Gc [I nf] inhibits al further memory reclamation.
e Init [10.6]

Mem[]
yields a list giving the number of memory "blocks' used (after last memory reclamation, at present, and
maximum so far). (When a finite absolute maximum memory is available [A.8], it is given as a fourth
element of the list.) One block is the memory required to store a single symbol (usually 16 bytes [A.8]).
e Init [10.6]

Size[expr]
yields a list whose first entry is the actual number of memory blocks occupied by expr, and whose
second entry is the number which would be occupied if al subexpressions were stored separately.
e Struct [10.10]

Shar e[expr]
minimizes memory used to store expr (by sharing memory for identical subexpressions). Shar e[]
shares memory for all identical expressions.

10.9 SMP SUMMARY / Non-computational operations 10.9

10.9 Asynchronous and parallel operations

(Implementation dependent)

Some implementations allow a set of independent processes to be performed in parallel, either as asynchronous
jobs on a single computing unit, or as jobs in separate computing units.

Processes (including procedures within them) are specified by a unique expression used as a name: the basic
processis Nul |. A particular expression may be modified by only one of a set of parallel processes. The
order of operations in different processes is usually not determined.

Fork[(expr:Nul I), (name: (next integer)), (pri:1)]
initiates the named parallel process to simplify expr at priority pri, yielding name. If name is not speci-
fied, a unique integer name is assigned to the process. Any existing process name is terminated. Several
processes competing for a single computing unit are executed at higher priorities for lower pri.
Processes on separate computing units are executed when possible with instruction times in ratios given

by pri.
Wai t [{ namel, name2,...}]
waits for completion of the processes namel, name2, ... , yielding the resulting< exprl, expr2,...}.

Para[exprl,expr2,...]
is equivalent to Wai t [{Fork[exprl] ,Fork[expr2],...}] and simplifies the expri in paraldl,
yielding a list of the results.

For k [mess, code] may be used to transfer messto Waii t [code] in another process.
For k[,name] terminates the process name, possibly from within name.

Cl ock|[(name: (present process))]
yields a list of the total elapsed CPU time and total elapsed real time (both in seconds [A.8]) since the
initiation of the specified process (0 if the process is not executing).

10.10 Development aids

Step[expr, (nest:1)]
steps through the simplification of expr. Each segment in procedures [6.3] or iteration structures [6.2]
nested to depth less than nest is printed, and an interactive subsidiary procedure is initiated.
e Trace [4]
e Ev [3.7]

Struct[expr]
prints a schematic picture of the internal representation of expr.

Appendix. SMP SUMMARY / External interface Appendix.
Appendix. External interface

A_.1 Introduction

This appendix describes in general terms features of SMP affected by its external environment. Details of these
features vary between different implementations of SMP. Information for a particular implementation is given
in the "Implementation Notes'.

A .2 External files

If no explicit file directory is specified for an external file to be input by Get, a sequence of file directories
defined by Init is searched in order. The first external file to be found with the required name is used.
Typicaly one or severa default "user” directories are searched first, followed by a central "library” directory.

External files for output generated by Lpr, Put or Open are taken to be in the current file directory,
unless explicitly specified otherwise.

The record file for each SMP job, usually opened in the initialization file smp.ini [A.9], is typicaly
placed in the "user" directory and named smp.out.
e Dir [10.5]

The names of external files in the SMP Library begin by convention with the letter X. Names of files con-
taining syntax modifications [2.11] end with SX.

Comments in external files are taken by convention to begin with the following codes:
[** File or section title

/*K: Keywords

[*A: Author

/*S: Site

/*D: Date

/*U: Modification date

[*: Projection or symbol description
/*R: References

/*QV: Related SMP objects or external files
/*E: Example

/* General commentary

[*P: Prerequisite external files

[*W: Warnings

[*1: Implementation dependencies
[*F: Future enhancements

/*B: Bugs

A preprocessor described in the Implementation Notes may be used to place such external files in a form suit-
able for typesetting, as in this document. Three fonts are typically used: a text font, an SMP expres-
sion font, and an italic font to represent generic objects. Unless specified otherwise, commentary text is
given in the text font. Words beginning with $ are given in italics, while words beginning with $# are given
in underlined italics. Text in nested comments is given in SMP expression font. Text not given as commen-
tary (and thus intended as SMP input) is placed in SMP expression font.

A detailed treatment of the external file formatting conventions may be found in the SMP Library. The con-
tents of external files following these conventions may be included in the information mode database using
external programs described in the Implementation Notes.

A.2 SMP SUMMARY / External interface A.2

A_3 External operations

Monitor (shell) commands specified by arbitrary text strings may be executed using Run [10.5]. When no
explicit file directory is specified for external programs appearing in the commands, a sequence of file direc-
tories defined by I nit issearched in order. The first program to be found with the correct name is used.

Input from SMP to external programs executed by Run is usually directed through a channel other than that
used for standard terminal input (as specified in the Implementation Notes). Similarly, output to SMP from the
external programs is through a channel other than that used for standard terminal output. External programs
may thus receive input or generate output on the terminal independent of SMP.

Monitor programs are typically provided to redirect input and output from Run to the standard terminal input
and output channels for the external program. Typically a program fr omsmp takes a sequence or list of
numbers from Run, converts them to floating point form (using xxEee rather than xx* ~ee format if neces-
sary), and passes them on the standard input channel. tosmp typicaly takes a sequence of numbers
(separated by white space) on the standard output channel, converts them if necessary from xxEee to xx* “ee
format, and passes them on the SMP input channel. The program smpi o is typically provided to combine
these operations; the monitor command to run a numerical external program from Run using standard input
and output isthen smpi o program.

Most projections for external operations [10.6] execute monitor commands specified by Init. The monitor
command executed by Run takes arguments searchpath infile outfile comm, where comm is the command to
be executed, searchpath is a list of file directories to be searched for comm, infile is a file of input containing
the textual forms of the second and later filters of the Run projection, and outfile is a file in which output
from comm is to be placed. The monitor command executed by Har d takes arguments file code and prints
file on the device specified by code, deleting file on completion. Send executes a monitor command with
arguments file uname which sends text in file to the location or user identified by uname. Save executes a
monitor command with arguments old new which copies the contents of the file old to the file new.

The command \ e in edit mode [1.7] executes a monitor command with argument file specified in I ni t,
which invokes an interactive text editor on file and leaves the edited text in the same named file.

A.4 Code and program files

The file directories searched for code files to be input by Load [10.7] are the same as for Get [A.2]. Code
and program files generated by Prog and Code are placed in the current file directory, unless explicitly
specified otherwise.

The names of code files in the SMP Library begin by convention with the letter C. Files giving additional
definitions and commentary associated with code files have names beginning with CX.

The monitor command to be executed for compilation of intermediate language program files by Code and
Cons is specified by I nit, and typicaly takes arguments outfile filel file2 The outfile argument is
implementation-dependent. On some systems, it may be a relocatable binary output from the compilation and
linking of the filei. On others, it may be a set of instructions enabling the system linker to collect the files
comprising the output from compilation of the filei and any suppfilei in future Load or Cons operations.
Similarly, Load and Cons execute a monitor command to prepare code files for loading with arguments
infile outfile adr. The code contained or referred to in infile (corresponding to the meaning of outfile above) is
relocated to allow loading at hexadecimal address adr, and the resulting absolute binary code is placed in out-
file. The code for the intermediate language function corresponding to the SMP projection to be defined may
be required to appear at the beginning of outfile.

The default intermediate language for program files is specified in Init. The value 1 typicaly
corresponds to the C language (B.W.Kernighan and D.M.Ritchie, "The C Programming Language", Prentice-
Hall 1978). The names of variables or functions are if possible taken the same as those of the corresponding
SMP symbols or projectors. Textual replacements suichas $-d_, #-h_ ,and %-p_ are performed if
necessary. The Implementation Notes give details specific to particular installations.

Intermediate language libraries are often included in programs generated by Pr og, as specified in the Imple-
mentation Notes.

A4 SMP SUMMARY / External interface A4

A5 Character codes

The following table correlates characters in the SMP character set with their SMP character codes and octal
ASCII equivalents:

0 0 (060) M 48 (115)
1 1 (061) N 49 (116)
2 2 (062) o] 50 (117)
3 3 (063) P 51 (120)
4 4 (064) Q 52 (121)
5 5 (065) R 53 (122
6 6 (066) S 54 (123)
7 7 (067) T 55 (124)
8 8 (070) U 56 (125)
9 9 (0712) Y 57 (126)
a 10 (141) w 58 (127)
b 11 (142) X 59 (130)
c 12 (143) Y 60 (131)
d 13 (144) Z 61 (132
e 14 (145) # 62 (043)
f 15 (146) % 63 (045)
g 16 (147) $ 64 (044)
h 17 (150) Ospacel] 65 (040)

i 18 (152) ! 66 (0412)
j 19 (152) " 67 (042
k 20 (153) & 68 (046)
I 21 (154) ’ 69 (047)
m 22 (155) (70 (050)
n 23 (156)) 71 (051)
o} 24 (157) * 72 (052)
p 25 (160) + 73 (053)
q 26 (161) , 74 (054)
r 27 (162) - 75 (055)
s 28 (163) . 76 (056)
t 29 (164) / 77 (057)
u 30 (165) : 78 (072)
% 31 (166) ; 79 (073)
w 32 (167) < 80 (074)
X 33 (170) = 81 (075)
y 34 171) > 82 (076)
z 35 172 ? 83 (077)
A 36 (1012) @ 84 (100)
B 37 (102) [85 (133)
C 38 (103) \ 86 (134)
D 39 (104)] 87 (135)
E 40 (105) - 88 (136)
F 41 (106) B 89 (137)
G 42 (107)) 90 (140)
H 43 (120) { 91 (173)
I 44 (112) I 92 (174)
J 45 (112 } 93 (175)
K 46 (113) - 94 (176)
L 47 (124)

A5 SMP SUMMARY / External interface A5

The Implementation Notes provide a table of character codes for installations using other character sets. Any
numerical code c in the native system character set may be represented with SMP character code -c.
e Expl, Impl [10.5]

Replacements for input text may be specified using Sxset [2.11].

A_6 Output characteristics

Characteristics of standard and graphics mode output are specified by codes in Open projections or by file
specifications in filespec filters [10.3]. Output characteristics are often initialized in smp . ini [A.9].

e Open [10.3]

e Init [10.6]

In a filespec {file, (lines), (format)}, format is given a a lit of the form
{ (width) , (length) , (prstyle) , (tabs) , (gcode)}. (file and lines are described in [10.3].)

width may be given either as a single number specifying the maximum width of a line or as a list
{leftmar , rightmar} setting the left and right margins. The default value for width is {1, 80}.

length is given as a single number specifying the number of lines to be printed before pausing [1.1]. The
default valueis Inf.

prstyle specifies the maximum length of expressions to be printed in standard two-dimensional format; expres-
sions which would require more than the specified number of lines are to be printed in a direct linear format.
prstyle may be given as alist {max, Iprmax}, where Iprmax applies to printing by Lpr [10.1] and max to
all other printing, or as a single number to be taken as the value for both max and Iprmax. The default value
for prstyleis {0, 0}; however, at the start of every SMP job, prstyle is initidlized in the Fi | e property of
the input/output medium Terminal to {Inf,h 0}.

e Lpr [10.1]

tabs may be given either as a single number n, indicating that termina hardware tab stops are set every n
columns starting at 1, or as a list of the tab stop positions. The default value for tabs is 0. tabsis used to
inform SMP of the hardware tab stop positions, not to reset them.

gcode is a numerical code specifying graphics mode output characteristics. gcode may also be given as afilter
inan Open projection [10.3]. Available numerical codes are described in the Implementation Notes and typ-
icaly include:

0 Generate output suitable for devices without special graphics capabilities.

1 Generate device-independent codes suitable for input to an external plotting program specified in
Init.

2 Generate output by executing an external plotting program specified in I ni t using device-independent
codes.

3 Generate output suitable for Tektronix 4010 or equivalent.

4 Generate output suitable for DEC GIGI, VT125, or equivalent.
5 Generate output suitable for Tektronix 4025 or equivalent.
The default value of gcode is 0.

Parts of file[Fi | e], used as the default value for format, are automatically reassigned when format is
modified in a filespec or when gcode is modified in an Open projection. Any part of format given as
Nul | istaken to represent the previous value of that part.

o Filel[4]

A7 SMP SUMMARY / External interface A7

A.7 Terminal characteristics

Terminal characteristics are typically given as a parameter to 1 ni t [10.6] of the form {listl,list2}.

listl specifies the character sequences typed by the user in display mode [10.4] to indicate OupOdown
OleftOright0dT0tab upOtab downOtab leftCTtab rightCMscroll forwardTscroll backdTImarkd and
Osdlectd. These character sequences are represented as lists of SMP character codes [A.5] and are given in
listl as values indexed respectively by the symbols Up, Down, Left, Right, TabUp, TabDown,
TabLeft, TabRight, Forward, Back, Mark, and Sel ect.

Default values for the character sequences to be given as display mode commands are typically:

Oupd u
Odown(d
OleftO I
Oright™

Otab upO

Otab downO
Otab leftd

Otab rightO
Oscroll forward
Oscroll backO -
OmarkO

Oselect (Mreturn

These defaults may be overridden by execution of an external program described in the Implementation Notes
which prompts the user for direct typing of the character sequences, generates an | ni t projection assigning
appropriate values for listl, and placesthe I nit projection in an initiaization file.

If terminal capabilities have been specified in list2 (see below), keysmarked t , | , — , and - are equivaent
to OupdXMdownOleftd and Oright.

list2 specifies various capabilities of the terminal, and is often generated on initialization. A monitor com-
mand executed in smp.par [A.9] attempts to ascertain the make and model of the user's terminal and
searches for information on the terminal’s capabilities in a database typically named termcap from a cen-
tral system file directory. Any information retrieved is placed in a list indexed by symbols representing the
terminal capabilities.

Details on the format of termina descriptionsin termcap and in list2 may be found in the Implementation
Notes.

+ - OC -

A .8 System characteristics

The "block" is the basic unit of memory used in SMP. Its physical size is specified in the Implementation
Notes, and is typically 16 bytes. SMP jobs usualy alocate memory dynamically. If necessary or desirable,
an absolute maximum on memory space may be specified inan I nit projection.

e Mem [10.8]

e Init [10.6]

CPU time used by SMP is reported in seconds, to a resolution of one "tick". A tick is typically 1/60 second;
its value at a particular installation is given in the Implementation Notes.

o #T [1.2]

e Time [10.8]

e Clock [10.10]

A9 SMP SUMMARY / External interface A9

A9 Initialization and termination

All SMP jobs first read a file typically named smp.par from a central system file directory. This file
either containsan 1 nit projection to define external parameters or generates such a projection by execution
of a monitor command through Run.

A sequence of file directories specified in I nit is searched for an initialization file usually named
smp.ini. This file often includes Open projections to define further terminal characteristics and to ini-
tiate entry of input and output into a record file typically named smp.out. It may aso include monitor
escapes or Dsp projections to print pertinent information.

When an SMP job is terminated, it searches a sequence of file directories specifiedin I ni t for a termination
file usually named smp . end. If found, the file is input before final termination. The SMP job passes by
default a "successful completion” exit code to the monitor; other exit codes may be specified in Exi t.

The external parameters to be givenin | nit are specified in the Implementation Notes, and are typically
1 List of file directories to be searched by Get and Load.
2. Ligt of file directories to be searched by Run.

3. List of file directories to be searched in information mode for on-line documentation, interactive instruc-
tion scripts, tutorials, etc.

List of files to be read on initialization.
List of files to be read on termination.
List of files to be included in the information mode database.

List of monitor commands to be executed by Run, Hard, Send, Save, Ed, Code, Load,
Plot.

Default code for Har d.

9. Default destination for Send.

10. Default intermediate language for Prog and Cons.

11. Default file directory for Dir.

12. Terminal characteristics [A.7].

13. Maximum number of memory blocks [A.8] to be allocated.

14. 1 for aninteractive job; {1, 0} for interactive input; {0, 1} for interactive output.
15. 1 to disable external operations not directly controlled by the SMP job.

N o o s

©

Index

?12
??12

#1 13
#0 1.3
#T 13

% 1.3
%0 6.3
%l 6.3
%0 6.3
%T 6.3

@ #0O 13

3-j symbol Wig 86
6-j symbol, Racah Rac 8.6

B(n) Catb 87
Mx) Gamma 87
MNx,a) Gamma 8.7
y Euler 84

o function Delta 83
((u) Wweiz 810
((z) Zeta 87
{(za) Zeta 87

O function Theta 83
6;(zlm) Jacth 810
Mg(n) Mob 811
v(n) Lio 811
nklt) EINPI 810
m Pi 84

pn(v,;z) Pcp 88
o(u) Weis 810
ok(n) Divsig 811
P(z,s,a) Ler 87
@ Phi 84

@(n) Totient 811
Y(z) Psi 87
y™(@z) Psi 87

Ai(z) AirAi 88
B(x,y) Beta 87
B(x,y,a) Beta 87
B, Ber 87

B,(x) Ber 87

ber,(z) + i bei,(z) Kelbe 88

Bi(z) AirBi 88
CPx) Geg 89
C(z) FreC 88
Chi(z) Coshi 87
Ci(z) Cosi 87

SMP SUMMARY / Index

Dy(z) Par 88
E(klt) EIIE 810
E, Eul 87
E,(X) Eul 87
E.(z) Expi 87
E,(z) WebE 88
Ei(z) Ei 87
ef(z) Erf 88
erfc(z) Erfc 88
F.(n,r) CouF 88
Fi(a;c;z) Chg 88
oFi(ab;c;z) Hg 89
G.(n,r) CouG 88
H,(z) Her 88
H®M@z) BesH1 88
H®(z) BesH2 88
H,(z) StrH 88
In(z) Besl 88
Je(n) Jor 811
J,(z) BesJ 88
J,(z) AngJ 88
jn(z) Besj 88
K(klt) ElIK 810
K,(z) BeskK 88
ky,(z) Batk 88

ker,(z) +ikei,(z) Kelke 88

L®(z) Lag 88
L,(z) StrL 88
Lin(z) Li 87
li(z) Logi 87
M m(z) Whim 88
P(u) WeiP 810
P@b)z) JacP 89
P™z) LegP 89
QMz) LegQ 89
S(z) FreS 88
sMm sti1 86
sMm sti2 86
Snn(z) Lom 88
Shi(z) Sinhi 87
Siz) Sini 87

Sn(xIm) etc. JacSn etc. 8.10

T,(X) CheT 89
T(m,n,z) Tor 88
U,(X) CheuU 89
UU(a,b,z) Kumu 88
W m(z) Whiw 88
(xX), Poc 87

Y,(z) BesY 88
Vo(z) Besy 88

SMP SUMMARY / Index

A 21

abort 1.5 Exit 10.6

Abs 83

absolute value Abs 8.3
accuracy 2.1

Acos 85

Acosh 85

Acot 85

Acoth 85

Acsc 85

Acsch 85

acute accent 3.5

addition of parts 3.2

addition Plus 82

Aex 7.10

Agd 85

ad 1.2

AirAi 88

AirBi 88

Airy function AirAi 88 AirBi 88
ambiguous input 1.1

ambiguous output 2.12

analyze expresson Aex 7.10
And 5.

Anger function AngJ 8.8
AngJ 88

angle brackets 0.

antisymmetric ordering Reor 7.7
antisymmetric tensor Sig 9.6
Ap 72

append Cat 7.7

application of expressions 2.7
application of rules 3.1

application of templates Ap 7.2
application of templates, recursive Map 7.2
approximation ~ Ax 95
approximations, series 9.5

Ar 71

arbitrary expressions 2.6

arbitrary length integer B 2.1
arbitrary magnitude number A 2.1
arbitrary precison number F 2.1
Arep 33

arguments 2.3

arguments, number of Len 7.4
arithmetic functions 8.2

arrange Sort 7.7

array generation Ar 7.1

arrays 2.4

arrays, assignment of 3.2

As 73

AS8.1

ASCII codes A.5

Asec 85

Asech 85

Asin 85

Asinh 85

assemble projection As 7.3
assertions 3.2

assertions, relationa 5.

assignment 3.2

assignment, property Prset 4.
assignment, type Tyset 4.
assistance 1.2

associative functions 2.6
associativity 2.10 211 Flat 4.
assumptions 3.2

asterisk in output 2.12

Asym Reor 7.7
asynchronous operations 10.9

At 7.2

Atan 85

Atanh 85

automatic variables Lcl 6.3
Ax 95

Axes 10.2

B 21

backquote Mark 2.3

base Pow 8.2

bases 9.1

Bateman function Batk 8.8
Batk 88

Ber 87

Bernoulli numbers Ber 8.7
Bernoulli polynomials Ber 8.7

BesH1 838
BesH2 88
Besl 88
BesJ 8.8
Besj 88
BesK 838

Bessel function, irregular spherical Besy 8.8
Bessel function, irregular BesY 8.8
Bessel function, modified

Besl 88 BeskK 88
Bessal function, regular sphericdl Besj 8.8
Bessel function, regular BesJ 8.8
Besy 88
Besy 88
Beta 87
beta function Beta 8.7
biconditional, logical Eq 5.
big floating point number F 2.1
biginteger B 2.1
big number A 21
binary code, evaluation by 10.7
binary file 10.7
binary operator 2.11
binomia coefficient Comb 8.6
bitpad 10.4
blank Null 2.2
blocks 6.3 A.8 Size 108
BMP 8.1
boolean operations 5.
bottom Den 7.9
brace levels 1.7
braces 0. 2.4

SMP SUMMARY / Index

bracket levels 1.7

branch cuts 8.1

break interrupt 1.5

bug report Send 10.6
bytes A.8

C language 10.7

canonical ordering of filters Reor 7.7
canonical orderingtest Ord 5.
Cartesian "product”, generalized Outer 9.6
Cartesian product Omult 8.2

Cat 7.7

Catalan 84

Catalan beta function Catb 8.7
Catalan’'s constant Catalan 84
Catb 87

catenate Cat 7.7

Cb 79

Ceil 83

Cf 95

Cham 4.

chameleonic expression 2.8
chameleonic symbols 2.2

change directory Dir 10.6
channels, input/output A.3

character codes A.5

character determination 7.6

character manipulation 10.5

character replacement 2.11

character set A5 Expl 105
character strings 2.2

characteristics 4.

Chebychev function of first kind CheT 8.9
Chebychev function of second kind CheU 8.9
CheT 8.9

CheU 8.9

Chg 838

Clebsh-Gordan coefficient Wig 8.6
Clock 109

Close 103

Code 107

code file 10.7

code files A.4

Coef 79

coefficient Coef 7.9

coefficient, numerical Nc 7.9

Col 79

collectteems Cb 7.9 Col 7.9
Comb 86

combinatorial coefficient Comb 8.6
combinatorial functions 8.6

combine denominators Rat 7.9
combinelists Cat 7.7
combineteems Cb 7.9

Comm 4.

commands, monitor A.3

comments 2.9

comments, external file A.2

common denominator Col 79 Rat 79

common elements Inter 7.7
common subexpressions Shar e 10.8
communication Send 10.6
commutative functions 2.6

commutativity Conm 4.

compilation 10.7

compile program Code 10.7 Cons 10.7
complementary error function Erfc 8.8
complex conjugate Conj 8.3

complex number Cx 2.1

compliments Send 10.6

compulsory filters 0.

computed goto statement Sel 6.1
concatenate Cat 7.7

conditional pattern matching Gen 2.6
conditional, logical Imp 5.

conditionals 6.1

confluent hypergeometric function Chg 8.8
Conj 83

conjugate Conj 83

conjunction, logica And 5.

Cons 107
Cons 4.
Const 4.

constant Const 4.

constants, mathematical 8.4

construction of programs 10.7

Cont 75

contains In 75

content determination 7.5

contents, list of Cont 75
contiguous list, test for Contp 7.6
contiguous lists 2.4

contiguous, make list Cat 7.7
continuation, input 1.1

continue Ret 6.3

continued fraction approximation Cf 9.5
contour plot Graph 102 Plot 10.2
Contp 7.6

contraction I nner 96

control of operations 2.5

control of simplification ~ Smp 4.
control structures 6.

control transfer ~ Jmp 6.3

controlled evaluation 3.3

controlled smplification ~ Smp 3.1
conventions 0.

conventions, external files A.2
conventions, symbol names 2.2
conversion, number A.3

convert character to code Expl 105
convert code to character Impl 105
convert list to projection As 7.3
convert projection to liss Dis 7.3
convert series to polynomial Ax 9.5
copy file Save 10.6

copy Open 103

core management 10.8

correction 1.7

SMP SUMMARY / Index

Cos 85

Cosh 85
Coshi 87
Cosi 87

cosine integral function Cosi 8.7
Cot 85

Coth 85
CouF 88
CouG 88

Coulomb wave function, irregular CouG 8.8
Coulomb wave function, regular CouF 8.8
CPUtime Clock 109 Time 108
criteria 2.7

criteria for pattern matching Gen 2.6
Csc 85

Csch 85

cursor operations 10.4

Curve 102

Cx 21

Cyc 7.7

cycle Cyc 7.7

Cyclic Reor 77

cyclic ordering Reor 7.7

D 94

dagger 8.1

datapoint Err 21
datatypes Cons 10.7
database, information mode 1.2
deassignment 3.2

debugging aids 10.10

debugging output Trace 4.
Dec 32

declaration 3.2

declaration, character 7.6
declaration, type Tyset 4.
decode Expl 105
decrement Dec 3.2

default values Nul |l 2.2
defaults A.9

defaults, set Init 106
deferred simplification 3.5
definite integration Int 94
definition of rules 3.2

Deg 84

degree of polynomial Expt 7.9
degrees Deg 84

Del 7.3

delayed assignment 3.2

delete nested braces Flat 7.7
delete parts Del 7.3

delete text 1.7

deletion of parts 3.2

Delta 83

Den 79

denominator Den 7.9
denominator, common Col 79 Rat 7.9
Dep 74

depth25 Dep 74

derivative, partia D 94
derivative, total Dt 94

Det 96

determinant Det 9.6
determination of character 7.6
determination of content 7.5
development aids 10.10
device-independent graphics A.6
Dfctl 86

diagonalization Simtran 9.6
differential, partial D 9.4
differential, total Dt 94
differentiation constant Const 4.
differentiation Dt 94 D 94
digamma function Psi 87
dilogarithm Li 87

Dim 74
dimensons Dim 7.4
Dir 10.6

Dirac function Delta 83
directories, default A.9

directory Dir 106

Dis 73

disassemble projection Dis 7.3
disunction, logica Or 5.

disk files 10.3

display file Dsp 10.6

display margins A.6

display mode commands A.7
display operations 104 At 7.2
Dist 78

Dist 4

distribution property Di st 4.
distribution Dist 7.8
distribution, list Ldist 7.7
distribution, list (property) Ldist 4.
distribution, power Powdi st 7.8
distribution, power (property) Powdi st 4.
Div 82

Divis 811

divison Div 82

division, matrix Mdiv 9.6
division, polynomial Pdiv 9.1
divisor function Divsig 811
divisors, integer Divis 811
divisors, polynomial Fac 9.1
Divsig 811

Do 6.2

doloop Do 6.2

documentation, external file A.2
documentation, on-line access 1.2
domains 2.5

domcrit 2.5

Dot 82

dot product Dot 8.2

double factorial Dfctl 8.6
Dsp 106

Dt 94

dummy expressions 2.6

SMP SUMMARY / Index

dummy index 2.8
dummy symbols 2.2
dyads 2.4

E 84

E function, MacRobert MacE 8.9
echoing 1.1

Ed 105

Edh 105

<edit>1117

edit held foom Edh 10.5

edit mode 1.7

edit Ed 105

Ei 87

Eig 96

eigenvectors Eig 9.6

Elem 73

elementary functions 8.5

elements, list 2.4 Elem 7.3
elimination of equations Sol 9.3
EIITE 810

elipsis Seq 7.1

elliptic functions 8.10

elliptic functions, Jacobian JacSn 8.10
eliptic integral of first kind EI IK 8.10
elliptic integral of second kind EI IE 8.10
elliptic integral of third kind EIl IPi 8.10
EIlIK 810

EIlPi 810

dse If 61

encasement type extension Exte 4.
encode Impl 105

endjob15 Exit 106

entries, list 24 Elem 7.3

entries, number of Len 7.4
epsilontensor Sig 9.6

Eq 5.

equality Eq 5.

equality, numerica Neq 3.4
equations, solution of Sol 9.3
equivalence of expressions 2.6

erase 3.2

Erf 88

Erfc 88

Err 21

error correction 1.7

error function Erf 88

error function, complementary Er fc 838
errors, input 1.1

errors, numbers with Err 21
escapes, monitor 1.6

Eul 87

Euler 84

Euler gamma function ~ Ganma 8.7
Euler numbers Eul 87

Euler polynomials Eul 8.7
Euler'sconstant Euler 84

Euler's totient function Totient 811
Euler-Mascheroni constant Euler 84

Ev 37

evaluation 3.1

evauation, numerica N 3.4

even number, test for Evenp 7.6
even ordering Reor 7.7
Evenp 76

Ex 78

exact integer B 2.1

examples 1.2

exclusveor Xor 5.

executable file 10.7

execute Run 10.6

Exit 106

exit 1.5 Ret 6.3

exit codes A.9

Exp 85

expansion property Dist 4.
expansion Ex 7.8

expansion, power Powdi st 7.8
expansion, power (property) Powdi st 4.
Expi 87

Expl 105

explode Expl 105

exponent Expt 7.9 Pow 8.2
exponential function Exp 85
exponentia integral Ei 87 Expi 87
exponential notation 2.1

expression size Size 10.8
expressions 2.5

Expt 79

Exte 4

external commands 1.6

external editor 1.7

external file conventions A.2

external file directory Dir 10.6
externd file information 1.2

externa file, copy Save 10.6
externd file, display Dsp 10.6
external files 1.4 A.2

externa operations 10.6 A.3

external parameters A.9 Init 10.6
external programs 1.6 Run 10.6
Extr 4

extraction of parts 7.3

F 21
Fac 9.1
factor, numerical Nc 7.9
factorial Fctl 86
factorial, double Dfctl 8.6
factorial, generalized Gamma 8.7
factorization, integer Nfac 811
factorization, polynomial

Cb 79 Fac 91
factorization, rational number Nfac 8.11
false 5.
Fctl 86
file characteristics 10.3 A.6
file directories, default A.9

SMP SUMMARY / Index

file directory Dir 10.6
file information 1.2

File 4

file, code 10.7

file, copy Save 10.6

file, display Dsp 106
file, program 10.7

files 1.4 10.3

filespec 10.3 A.6

filters 23 A.3

filters, number of Len 74
Flat 7.7

flat functions 2.6

Flat 4.

flaten Flat 7.7

floating point numbers 2.1
Floor 83

flow control 6.

Fmt 10.1

folded size Size 10.8
fonts 0.

fonts, externa file A.2

For 6.2

forloop For 6.2

Fork 109

format Fmt 10.1
formatting, external file A.2
FORTRAN language 10.7
fractional pat Floor 83
fractions 2.1

FreC 88

freecore Mem 10.8
freememory Gc 10.8
FreS 88

Fresnel function FreC 838 FreS 88
full list, test for Fullp 7.6
Fullp 76

function evaluation 3.1
function, test for Projp 7.6
functions 2.3

functions, mathematical 8.
functions, transcendental 8.5

G function, Meijer Mei 8.9

g.c.d., polynomial Pgcd 9.1
Gamtma 8.7

gamma function, Euler ~ Ganma 8.7
gamma function, incomplete Garmma 8.7
garbage collection Gc 10.8

Gauss hypergeometric function Hg 8.9
Gc 108

Gecd 811

gcode A.6 Open 103

Gd 85

Ge 5.

Geg 89

Gegenbauer functions Geg 89

Gen 26

Gen 4.

general symmetry Reor 7.7

generalized hypergeometric function Ghg 8.9
generdized zeta function Zeta 8.7

generate progran Cons 10.7 Prog 10.7
generate symbol Make 105

generic expressions 2.6

generic symbols 2.2

genus of expressions Gen 2.6

Get 103
Ghg 89
GIGI A.6

global objects 1.3

global switch Post 1.3 Pre 13
goldenratio Phi 84

goto Jmp 6.3

GR 8.1

gradient D 94
Graph 102
graph 10.2

graphical input 10.4

graphical output A.6 Open 10.3

grave accent Mark 2.3

greater than Gt 5.

greatest common divisor, integer Gecd 8.11
greatest common divisor, polynomial Pgcd 91
greatest integer function Floor 83

Gr eor Reor 7.7

grouping 2.10

groups 2.4

Gt 5

Gudermannian function Agd 85 Gd 85

Handbook, on-line access 1.2

Hankel function BesH1 88 BesH2 88
Hard 106

hard copy Hard 10.6

Hash 74

hash code Hash 7.4

Heavyside function Theta 8.3

held expression, test for Heldp 7.6

held form 3.5

Heldp 76

help 1.2

Her 88

Hermite function Her 8.8

Hg 89

hidden surfface Sur f 10.2

Hold 35

hold expresson Hold 35

hyperbolic cosine integral function Coshi 8.7
hyperbolic functions 8.5

hyperbolic sine integral function Sinhi 8.7
hypergeometric function, confluent Chg 8.8
hypergeometric function, Gauss Hg 8.9
hypergeometric function, generalized Ghg 8.9

1 22
identifier Lbl 6.3
I1f 6.1

SMP SUMMARY / Index

Im 83

imaginary number Cx 2.1
imaginary number, test for Imagp 7.6
imaginary part Im 83

imaginary unit I 22

Imagp 7.6

immediate assignment 3.2

immediate simplification 3.6

Imp 5.

Impl 105

implication, logical Imp 5.
implode Impl 105

impulse function Delta 83

In 75

Inc 32

includes In 75

inclusveor Or 5.

incomplete beta function Beta 8.7
incomplete gamma function ~ Gamma 8.7
increment Inc 32

Ind 73

indefinite integration Int 94
indefinite summation ~ Sum 9.2
index of list entry Ind 7.3

indices 2.4

indices of list entries Ind 7.3
inequality Uneq 5.

Inf 22

infille Get 103

infinite recursion 3.1

infinity Inf 22

infix foom 211 Sx 10.1
information 1.2

Init 10.6

Init 4.

initialization A.9 Init 106
Inline 4.

Inner 96

inner "product”, generalized Inner 9.6
inner product Dot 8.2

input editing 1.7

input expression #I1 1.3

input forms 2.10 2.11

input lines 1.1

input medium Terminal 103
input operations 10.1

input syntax 2.

input Get 103 Rd 101
input, graphical 10.4

input/output medium Terminal 10.3
insert text 1.7

Int 94

integer divison Mod 8.3
integer pat Ceil 83 Floor 83
integer, arbitrary length B 2.1
integer, test for Intp 7.6
integers 2.1

integration Int 94

Inter 7.7

intermediate language 10.7

internal object Sys 4.

internal representation Struct 10.10
internal variables Lcl 6.3
interrupts 1.5

intersection Inter 7.7

Intp 76

inverse functions Sol 9.3

inverse hyperbolic functions 8.5
inverse trigonometric functions 8.5
inverse, matrix Minv 9.6
inversion of equations Sol 9.3
inversion Not 5.

invert Rev 7.7

inverted replacement lIrep 3.3
lrep 33

irregular Bessel function BesY 8.8

irregular Coulomb wave function CouG 8.8
irregular spherical Bessel function Besy 8.8

Is 5.
iteration 6.2
JacAm 8.10
JacCd 8.10
JacCn 8.10
JacCs 810
JacDc 810
JacDn 810
JacDs 810
JacNc 810
JacNd 8.10
JacNs 8.10

Jacobi functions JacP 89

Jacobi symbol Jacsym 8.11

Jacobi 6 functions Jacth 8.10
Jacobian elliptic functions JacSn 8.10
JacP 89

JacSc 810
JacSd 8.10
JacSn 810
Jacsym 811
Jacth 810
Jmp 6.3

job recording 1.4

job termination 1.5 Exit 10.6
Jonquiere function Li 87
Jor 811

Jordan form Simtran 9.6
Jordan’s function Jor 8.11
jump Jmp 6.3

Kelbe 88
Kelke 88
Kelvin function, complex
Kelbe 88 Kelke 88
keywords 1.2
kill job 1.5 Exit 106
kill values 3.2
Kronecker product Omult 8.2

SMP SUMMARY / Index

Kummer function Chg 8.8
Kummer's U function KumU 8.8
KumU 8.8

L 104

label Lbl 6.3

Lag 88

Laguerre function Lag 8.8
lambda expression 2.7
language structure 2.

language, intermediate 10.7
Last 7.3
Laurent series
Lbl 6.3
Lcl 6.3
Ldist 7.7
Ldist 4.
least integer function Ceil 83
Legendre functions of second kind
Legendre functions LegP 89
LegP 89
LegQ 89

Len 74

length Len 74
Ler 87

Lerch transcendent
lessthan Gt 5.
levels 2.5

levels of nesting 1.7
Levi-Civita symbol
levspec 2.5

lexical ordering test
Li 87

library A.2

Library, on-line access 1.2
light pen 10.4

Lim 95

limit Lim 95

Line 102
line printer
Lio 811
Liouville's function
List 71

list distribution property Ldi st 4.
list distribution Ldist 7.7

list entries Elem 7.3

list entries, number of Len 7.4
list flattening Flat 7.7
list generation 7.1

list manipulation 7.7

list simplification 3.1

list template List 7.1
list, test for Listp 7.6
lising Hard 10.6
Listp 7.6

lists 2.4

Load 10.7

load program Cons 10.7
load Get 103

Ps 95

Ler 87

Sig 96

Ord 5.

Hard 10.6

Lio 811

Load 10.7

LegQ 89

loaded binary code, evaluation by 10.7
local variables Lcl 6.3

locate

L

Log 85

logarithm function

10.4

Log 85

logarithm integral function Logi 8.7

Logi

8.7

logical operations 5.
Lom 88

Lommel function

Loop

6.2

Lpr 101

MacE

Maclaurin series

8.9

Lom 8.8

Ps 95

macro redefinition 2.11

MacRobert E function

MacE 8.9

mail Send 10.6
10.5

Make

make symbol name
Mangoldt A function

Make 10.5
ManL 8.11

manipulation of lists 7.7
manipulation of projections 7.7
8.11

Manual, on-line access 1.2
Map 7.2
margins A.6

ManL

Mar k

2.3

mark L 104

Markov expression
2.

Mat ch

Rex 7.10
6

matching of patterns 2.6
mathematical constants 8.4
mathematical functions 8.
matrices 2.4

meatrix division
matrix generation

Mdiv 96
Ar 71

matrix inverse Minv 9.6
matrix manipulation 9.6

matrix triangularization Triang 9.6
Max 83

maximum memory A.9
maximum Max 8.3

Mdiv 96

Mei 89

Meijer G function Mei 8.9
Mem 108

memory management 10.8
memory reclamation Gc 10.8
memory unit A.8

memory usage Mem 10.8

memory, maximum A.9

memory, share

menus 1.2
messages 10.9

Mgen

4.

Min 83

minimum
Minv

9.6

Share 10.8

Min 83

SMP SUMMARY / Index

Mob 811 numerical coefficients 2.5
Mobius p function Mob 8.11 numerical constant Const 4.
Mod 83 numerical differentiaion D 9.4
modified Bessel function numerical equality test Neq 3.4

Besl 88 BeskK 88 numerical evaluation 3.4
modified Struve function StrL 8.8 numerical factor Nc 7.9
modify input Ed 10.5 numerical functions 8.3
modify part At 7.2 numerical integration Int 94
modulus Abs 83 Mod 83 numerical overflow A 2.1
modulus, polynomial Pmod 9.1 numerical products Prod 9.2
monitor commands A.3 numerical programs 10.7
monitor escapes 1.6 numerical summation ~ Sum 9.2
monitor programs Run 10.6
Monte Carlo Rand 8.3 odd number, test for Oddp 7.6
MOS 8.1 odd ordering Reor 7.7
mouse 10.4 Oddp 7.6
move file Save 10.6 Onult 82
Mult 82 on-line documentation 1.2
multi-generic symbols 2.2 Open 103
multigeneric symbols 2.6 operating system commands 1.6
multinary operator 2.11 operator form 2.11
multinomia coefficient Comb 8.6 operators 2.10
multiple application of templates Map 7.2 optimization 10.7
multiple integration Int 94 optional filters 0.
multiplication Mult 82 Or 5.
multiplication, input of 2.10 Ord 5.
multivalued functions 8.1 order filters Reor 7.7

order of evaluation 3.1

N 34 order of operators 2.10
name of symbol, make Make 105 order Sort 7.7
names of external files A.2 orderingtest Ord 5.
names of processes 10.9 ordering, filter (property) Reor 4.
names of symbols 2.2 Outer 96
Natp 7.6 outer "product”, generalized Outer 9.6
natural number, test for Natp 7.6 outer product Omult 82
Nc 79 outfile Put 10.3
negation Not 5. outline Tree 7.4
Neq 34 output characteristics 10.3 A6 File 4.
nesting levels 1.7 output expression #0 1.3
nesting Dep 7.4 output format characteristics 10.3 A.6
Nfac 811 output format Fmt 101 Pr 4.
noorm Abs 83 output forms 212 Sx 10.1
Not & output medium Terminal 10.3
notation 0. output operations 10.1
Np 23 output syntax ~ Sx 10.1
Null 22 output Lpr 101 Put 103
null list 2.4 overflow, numerica A 2.1
null projection Np 2.3
Num 79 P 5.
number conversion A.3 Pade approximant Ra 9.5
number theoretical functions 8.11 paper copy Hard 10.6
number, arbitrary magnitude A 2.1 Par 838
number, arbitrary precison F 2.1 Para 109
number, multiple precison F 2.1 parabolic cylinder functions Par 8.8
number, test for Numbp 7.6 paralel evaluation Ser 4.
numbers 2.1 parallel processing 10.9
Numbp 7.6 parameters 2.2
numerator Num 7.9 parametric plot Graph 102 Plot 10.2

numerical coefficient Nc 7.9 parentheses 0. 2.10

SMP SUMMARY / Index

parentheses, output of 2.12 power distribution property Powdi st 4.
parenthesis levels 1.7 power distribution Powdi st 7.8
parsing 2.10 2.11 power expansion property Powdi st 4.
Part 86 power expansion Powdi st 7.8
part deletion Del 7.3 power series Ps 95

part extraction 7.3 power Pow 82

part modification At 7.2 powersof Expt 7.9

part of In 75 Pr 101

part selection At 7.2 Pr 4

partial differentiation D 9.4 Pre 13

partia fraction Pf 9.1 pre-simplification 3.6

partial simplification 3.7 precedence 2.10

partition function Part 8.6 precedence definition 2.11

parts of expressions 2.5 precision 2.1

parts, addition of 3.2 precision, arbitrary F 2.1

parts, deletion of 3.2 precision, multiple F 2.1

pass output Run 10.6 predicate P 5.

patterns 2.6 predicates 7.6

<pause>11 prefix form 211 Sx 10.1
pausing 1.1 A.6 preprocessing Pre 1.3

Pcp 88 Prh 101

Pdiv 91 Prime 811

permanent record Save 10.6 prime factors Nfac 811
permutation symmetries Reor 7.7 prime number Pr ime 8.11

Pf 91 print file Dsp 10.6

Pgcd 9.1 print held foom Prh 10.1

Phi 84 print Pr 10.1

Pi 84 print, linear format Lpr 10.1
plane Surf 10.2 print, one-dimensional Lpr 10.1
pliss Plot 10.2 print, two-dimensional Pr 101
Plot 102 printing form, sizeof Prsize 101
plot 10.2 printing forms Fmt 101 Pr 4.
Plus 82 printout Hard 10.6

Pmod 9.1 priority of process Fork 10.9
Poc 87 problem report Send 10.6
Pochhammer symbol Poc 87 Proc 6.3

point Pt 10.2 procedures 6.3

pointer 10.4 process control 10.9

Poisson-Charlier polynomials Pcp 8.8 processing 3.1

polar plot Graph 102 Plot 102 Prod 92

polygamma function Psi 8.7 product Mult 82 Prod 92
polylogarithrm Li 8.7 profiling Time 10.8

polynomial divison Pdiv 9.1 Prog 107

polynomial factorization Fac 9.1 program construction 10.7
polynomial g.cd. Pgcd 9.1 program control 6.

polynomial manipulation 9.1 program file 10.7

polynomial modulus Pmod 9.1 program files A.4

polynomial resultant Rslt 9.1 program, run Run 10.6
polynomial, test for Polyp 7.6 programming aids 10.10

Polyp 76 programs 6.3

Pos 73 programs, external A.3

position L 104 Proj 7.3

positions of parts Pos 7.3 projection evaluation 3.1

Post 13 projection flattening Flat 7.7
postfix form 211 ~ Sx 10.1 projection generation 7.1
postprocessing Post 1.3 projection manipulation 7.7

Pow 82 projection simplication 3.1

Powdist 7.8
Powdi st 4.

projection, test for Projp 7.6
projections 2.3

SMP SUMMARY / Index

projectors 2.3

Projp 76

Prop 4.

properties 4.

property assignment Pr set 4.
property indirection Type 4.
property transfer Type 4.
Prset 4.

Prsize 101

Ps 95

pseudotensor unit Sig 9.6
Psi 87

Pt 102

pure function 2.7

Put 103

quit interrupt 1.5

quoted form 3.5

quotient Div 8.2

quotient, polynomial Pdiv 9.1

Ra 95

Rac 86

Racah 6-j symbol Rac 8.6
radians Deg 8.4

Rand 83

random expression Rex 7.10
random number Rand 8.3

Rat 79

rational approximation Ra 9.5
rational expression manipulation 7.9
rational number, arbitrary length B 2.1
rational number, test for Ratp 7.6
rational numbers 2.1

rationalize Rat 7.9

Ratp 76

ravel Flat 7.7

Rd 101

Rdh 101

Re 83

read file Get 10.3

read held form Rdh 10.1

read Rd 101

rea number, test for Realp 7.6
real pat Re 83

real time Clock 109

real-time interrupts 1.5

Realp 76

Rec 4

reclam memory Gc 10.8

record 103 Open 10.3

record files 1.4

records 2.4

rectangular array, test for Fullp 7.6
recurson 3.1 Rec 4. Smp 4
recursive application of templates Map 7.2
reduced residue syssem Rrs 811
Reference Manual, on-line access 1.2
references 0.

references, mathematical functions 8.1
regular Bessel function BesJ 8.8
regular Coulomb wave function CouF 8.8
regular spherical Bessel function Besj 8.8
Rel 35

relational operations 5.

release expresson Rel 35
remainder Mod 8.3

remainder, polynomial Pmod 9.1
removal of values 3.2

remove parts Del 7.3

rename file Save 10.6

Reor 7.7

Reor 4.

reorder filters Reor 7.7
reordering, filter (property) Reor 4.
Rep 33

Repd 33

repeat counts 2.5

repeat loop Rpt 6.2

repetiion Rpt 6.2

Repl 7.1

replace text 1.7

replacement 3.3

replacement type extension Extr 4.
replication Repl 7.1

report Send 10.6

representation, internal Struct 10.10
residue system, reduced Rrs 811
restart 3.2

restricted pattern matching Gen 2.6
resultant, polynomial Rslt 91
Ret 6.3

return Ret 6.3

Rev 7.7

reverse Rev 7.7

revise Edh 105

Rex 7.10

Riemann sheets 8.1

Riemann zeta function Zeta 8.7
rotate Cyc 7.7

rounding Floor 83

routines 6.3

Rpt 6.2

rpt 2.5

Rrs 811

Rslt 91

rules, application of 3.1

rules, definition of 3.2

Run 106

run command 1.6

run program Run 10.6

S 33

Save 10.6

save definitions Put 10.3
save expressions 1.4

save Open 10.3

scalar product Dot 8.2

SMP SUMMARY / Index

screen-oriented input 10.4

script 1.4

Sec 85

Sech 85

seed random number Rand 8.3
segments 6.3

Sel 6.1

select part At 7.2

select statement Sel 6.1

sdect L 104

semantics 2.

semaphores 10.9

Send 10.6

Seq 71

sequence generation Seq 7.1
sequence of expressions Np 2.3
sequences 2.4

Ser 4

serial evaluation Ser 4.

series approximations 9.5

series truncation Ax 9.5

series, power Ps 95

Set 32

set defaults Init 10.6

set priority of process Fork 109
set values 3.2

Setd 32

sets 2.4

Share 108

share memory Share 10.8
shell escapes 1.6

shell scripts A.3

Si 33

side effects 3.2

Sig 96

sigma function, Welerstrass Wei s 8.10
Sign 83

signature Sig 96

significant figures 2.1

silent processing 1.1

similarity transformation ~ Simtran 9.6
simplification 3.1

simplification, control of ~ Smp 4.
simplification, controlled Smp 3.1
simplification, deferred 3.5
simplification, immediate 3.6
simplification, partial 3.7
simplification, rational expressions 7.9
Simtran 9.6

Sin 85

sine integral function Sini 87
Sinh 85

Sinhi 87
Sini 8.7
Size 108

size of printing form Prsize 10.1
size Len 74

skeleton Tree 74

Snp 31

Smp 4.

smp.end A9

smp.ini A9

smp.out 14

smp.par A9

Sol 93

solution of equations Sol 9.3
solve Sol 93

Sort 7.7

sortingtest Ord 5.

sources, mathematical functions 8.1
space Size 108

special expression Mark 2.3
special input forms 2.10 2.11

specia output forms 2.12 Sx 10.1
specia printing forms Fmt 101 Pr 4.
special-purpose programs A.2

Spence function Li 87

spherical Bessel function, irregular Besy 8.8

spherical Bessel function, regular Besj 88
spline Curve 102

spur Tr 9.6

Sqrt 82

squareroot Sqrt 8.2

stack variables Lcl 6.3

standard deviation Err 21

star in output 2.12

start record Open 10.3

statement blocks 6.3

statistical expression analysis Aex 7.10
Statistical expression generation Rex 7.10
status interrupt 1.5

status Mem 10.8

Step 10.10

step function Theta 83
Stil 86

Sti2 86

Stirling numbers, first kind Stil 8.6
Stirling numbers, second kind Sti2 86
stop 1.5 Exit 10.6

stoprecord Close 10.3

storage 10.3

storage management 10.8

StrH 88

string manipulation 10.5

strings 2.2

StrL 88

Struct 10.10

structural operations 7.

structure determination 7.4

structure Struct 10.10

Struve function StrH 88

Struve function, modified StrL 8.8
subexpressions, common Shar e 10.8
subparts of expressions 2.5

subroutines 6.3

subscript Fmt 10.1

subscripts 2.4

subsidiary input %l 6.3

subsidiary output %0 6.3
subsidiary procedures 6.3
substitution 3.3

suchthat Gen 26

Sum 9.2

sum Plus 82

Summary, on-line access 1.2
summation Sum 9.2
superscript - Fmt 10.1

Surf 102

surface Sur f 10.2

suspend processing 1.5

switch statement Sel 6.1
switch, global Post 1.3 Pre 13
Sx 101

Sxset 211

Sym Reor 7.7

symbol evaluation 3.1

symbol name, make Make 10.5
symbol, test for Symbp 7.6
symbols 2.2

symbols, list of Cont 7.5
Symbp 7.6

symmetric ordering Reor 7.7
symmetries Reor 7.7
symmetry, genera Reor 7.7
symspec Cons 10.7
synchronize processes Wait 10.9
syntax 2. Sx 10.1

syntax errors 1.1

syntax extension 2.11

syntax modification 2.11

syntax, output Sx 10.1

Sys 4.

system characteristics A.8
system-defined object Sys 4.
system-defined symbols 2.2

table of input forms 2.10
tables 2.4

tabs A.6

Tan 85

Tanh 85

tautology testing Is 5.
Taylor series Ps 95
Tektronix 4010 A.6
Tektronix 4025 A.6
template application 7.2
templates 2.7

temporary variables Lcl 6.3
tensor generation Ar 7.1
tensor manipulation 9.6
tensors 2.4

termcap A7
Terminal 103
terminal characteristics A.7
terminal width A.6
termination A.9
termination, input 1.1

SMP SUMMARY / Index

termination, job 1.5 Exit 10.6
terms, number of Len 74
test, character 7.6
test, numerical equality Neq 34
test, pettern matching Match 2.6
tests 6.1
text editing 1.7
text manipulation 10.5
text, commentary 2.9
textual forms 0.
textua replacement 2.11
then If 6.1
theorem proving Is 5.
Theta 83
theta functions, Jacobi Jacth 8.10
three-dimensional plot
Graph 102 Plot 102
ticks A.8
Tier 7.7
Tier A4
tiered lists 2.4
Time 108
time unit A.8
time Clock 109
timing A.8 #T 1.3
Clock 109 Time 10.8
top Num 7.9
Tor 88
Toronto function Tor 8.8
total differentiation Dt 9.4
Totient 811
totient function, Euler’'s Totient 8.11
Tr 96
tracel5 Step 1010 Tr 96
Trace 4.
Trans 9.6
transcendental functions 8.5
transfer of control Jmp 6.3
trandlation 10.7
transpose Trans 9.6
Tree 74
tree structure 2.5
Triang 96
triangularize matrix ~ Triang 9.6
triggmma function Psi 87
trigonometric functions 8.5
true 5.
truncation, integer Floor 8.3
truncation, numerical N 34
truncation, series Ax 95
tutorials 1.2
type assignment Tyset 4.
type declaration Tyset 4.
type declarations Cons 10.7
type definition Type 4.
type extension Exte 4. Extr 4.
typefile Dsp 10.6
Type 4.
typesetting, externa file A.2

SMP SUMMARY / Index

typography O.
Tyset 4.

ultraspherical polynomials Geg 8.9
underlining 0.

Uneq 5.

unexpected input 1.1

unfolded size Size 108

Union 77

unique elements Union 7.7
unitary transformation ~ Simtran 9.6
unknowns 2.2

unravel Flat 7.7

unsimplified forms 3.5 Smp 4.
until loop Loop 6.2

user communication Send 10.6
user programs A.2

Valp 76

value, test for Valp 7.6
values 3.1

values, assignment of 3.2
variable evaluation 3.1

variable, test for Symbp 7.6
variables 2.2

variables, list of Cont 75
vector coupling coefficient Wig 8.6
vector, test for Contp 7.6
vectors 2.4

verbosity Trace 4

VT125 A.6

Wait 109

watch Step 10.10

wave function, Coulomb irregular CouG 8.8
wave function, Coulomb regular CouF 8.8
WebE 8.8

Weber function BesY 88 WebE 88
Weierstrass function Wei P 8.10
Weierstrass ¢ function Weis 8.10
Welerstrass ¢ function Weiz 8.10

WeiP 810

Weis 810

Weiz 810
whileloop Loop 6.2
WhiM 88

Whittaker M function WhiM 8.8
Whittaker W function WhiwW 8.8
Whiw 838

Wig 86

Wigner 3-j symbol Wig 8.6
write Send 10.6

Xor 5.

Zeta 87

zetafunction Zeta 8.7

zeta function, generalized Zeta 8.7
zeta function, Weierstrass Wei z 8.10

